

INTEGRATING PLANNING
INTO PRODUCTION SCHEDULING:
VISOPT SHOPFLOOR SYSTEM

Roman Barták, Roman Mecl
Charles University, Prague, Faculty of Mathematics and Physics

Abstract: Traditional planning deals with the problem of finding activities to satisfy a
given goal while traditional scheduling solves the problem of allocation known
activities to limited resources and to limited time. In many real-life problems
both tasks should be accomplished together. In the paper we describe a
scheduling engine of the Visopt ShopFloor system that integrates planning and
scheduling component in a unified framework.

Key words: planning, scheduling, constraint reasoning, applications

1. INTRODUCTION

Integrating planning and scheduling is a hot research topic especially in
the planning community. This integration usually means adding time and
resource restrictions to the planning problem. Because solving planning
problems is usually hard, adding time and resource constraints may make the
problem even harder. Therefore, some researchers propose to keep planning
and scheduling separated (Srivastava and Kambhampati 1999). In particular,
the planning problem is solved first, i.e., the set of activities is generated,
and the scheduling problem is solved next, i.e., the activities are allocated to
resources and time. This is useful, if the planning space is large - if it is hard
just to find a valid plan. However, in many real problems it is pretty easy to
find a valid plan but it is more complicated to find a good plan in respect to
available resources and time. In (Barták, 1999b) we argued for a more

 Roman Barták, Roman Mecl

tighten integration of planning and scheduling where time and resource
constraints play an important role in guiding the planner. The basic idea is to
post time and resource constraints as soon as the planner introduces some
activity. These constraints then help the planner to decide among the
alternative activities in a forward or backward chaining style of planning.

In this paper, we describe an approach bridging the gap between planning
and scheduling from the scheduling side. Basically, it means that we are
solving a scheduling problem where the activities can be introduced
(planned) during the scheduling process. We use the concept of tight
integration of planning and scheduling proposed in (Barták, 1999b). This
concept utilises the underlying constraint satisfaction technology that was
slightly modified to allow dynamic changes of the constraint store. The
planning component uses mixed forward and backward chaining and it is
fully integrated into the scheduler. Because the used planning technique is
not very complicated we are speaking rather about enhancing schedulers by
planning technology.

This is an application paper describing the solver behind the Visopt
ShopFloor commercial scheduling system. The main purpose of the paper is
not to present the GUI of the Visopt ShopFloor system with all its
possibilities to model scheduling problems in the factories but to present the
ideas that are used in the underlying solver. This solver is based on the above
surveyed ideas of enhancing scheduling by adding planning capabilities, i.e.,
we concentrate on the problems where the structure of activities is not
known in advance but it must be planned during the process of scheduling.
The system is intended to production scheduling in real-life complex
industries. Thus, the solved problem does not fit to any “standard” academic
view of scheduling problems like job-shop, flow-shop, or open-shop.
Probably the closest formal problem is the resource-constrained project
scheduling problem but Visopt ShopFloor system covers even more complex
problems, e.g. complex transition schemes of resources, including modelling
set-ups with by-products and recycling etc. The system has already been
tested in real-life factories and its development still continues.

The paper is organised as follows. First, we describe the problem area
and we give some examples where introduction of activities during
scheduling is necessary. Then, we show how the problems can be specified
formally, i.e., what modelling tools are available for the users. After that we
briefly sketch the system architecture. The main part of the paper is about
the solver. We describe the basic technology, the constraint model, and the
scheduling strategy. The paper is concluded with the results of some real-life
projects and with discussion of future development of the system.

2. PROBLEM AREA

Visopt ShopFloor is a general scheduling system applicable to production
scheduling. It means that the system is not designed for a particular factory
but it can be applied to various scheduling problems.

The goal of production scheduling is to generate a plan (a schedule) of
production for a specified time period. This plan should satisfy the demands
and it should be as profitable as possible. Demands are specified by ordered
items with ordered quantity and delivery time. The demand is satisfied if the
ordered quantity of the item is ready for delivery at the delivery time. It
means that the item must be produced, purchased, or already stored in the
factory. Production of the item is done on resources called producers. The
items are produced in batches (the resource schedule is described as a
sequence of batches); the batch specifies a quantum of item that is produced
together. It is possible to produce several items in a single batch (main
products and co-products). The batch can also describe various processing
formulas, i.e., the same item can be produced using different input items. If
one batch produces some item then there must be another batch or delivery
that consumes the item. In general, there could be many-to-many relation
between producers and consumers (Figure 1). It means that the quantity of
the item produced in a single batch can be split to several consuming batches
of various resources and vice versa. The feasible schedule must ensure that
the item flow in the factory is correct in the above sense.

 producer

consumer

Figure 1. Items are flowing (arrows) between the batches (rectangles).

To summarise the above discussion, the goal of production scheduling is
to generate a schedule for each resource in such a way that the item flow
between the resources is correct. A schedule of the resource is a sequence of
batches. Sequencing of batches can be further restricted by some transition
criteria. For example, minimum and maximum number of batches of the
same type (same output item) must be processed in a sequence. When the
batch type is changed then a changeover batch must be inserted or a cleaning
batch must be used when a given number of production batches is processed
(Figure 2). Such transition scheme is fully specified by the user (see Section
3.1 for details).

 Roman Barták, Roman Mecl

clean load heat unload load heat unload cool clean

Figure 2. A resource schedule is a sequence of batches with complex sequencing constraints
(e.g., after two load-heat-unload cycles there must be cleaning.

In addition to production resources there could be also moving resources
that are used to transport items between the production resources. Moving is
done in batches as well so the behaviour of the mover is similar to the
behaviour of the producer.

Producers and movers are called main resources. There could be also
secondary resources that assist to main resources. Tool and worker are
examples of the secondary resource. Again, the schedule of the secondary
resource is a sequence of batches (activities) - each such batch is
synchronised with a batch of the respective main resource, i.e. both batches
run in parallel (same start times and same completion times).

2.1 Why do we need planning?

In (Barták 1999a) we gave several examples where traditional static
scheduling approach is not sufficient because some activities are not known
before scheduling starts. Moreover, these activities cannot be planned in
advance because their appearance depends on allocation of other activities.
We call these activities the process dependent activities, which mean that
these activities might or might not appear in the final schedule depending on
some other activities. Nevertheless, appearance of the activity is strictly
determined by the activities on which it depends (e.g. its suppliers and
consumers) so there is no uncertainty for the activity existence. In the next
paragraphs we give some examples of such process dependent activities. All
these examples are taken from real-life problems.

In (Pegman, 1998), one of the first examples of the process dependent
activity is given. Pegman describes a scheduling system for metal
production. The metal blocks must have a particular temperature before they
can be processed. Naturally, the temperature of the metal block is decreasing
slowly after its heating so if the delay between the end of heating and the
start of processing is too long then the temperature of the block might be too
low. In such a case, the metal block must be reheated before it can be
processed. Because re-heating consumes the resource (the oven), there must
be a special re-heating activity introduced. Pegman uses a technique of
dummy activity that is either active, if re-heating is necessary, or it is not
used if the delay between heating and processing is short enough.

Another example of process-dependent activity is changeover that is
necessary to be inserted between two activities of different type processed by
the same resource. In constraint-based scheduling, the changeovers are
usually modelled using a transition time between two activities. During such
transition, the resource cannot be used. However, if some item is produced
during changeover, so called by-product, or the changeover requires another
resource, e.g. a worker, then we need an activity to model the changeover.
Again, the appearance of the changeover activity is dependent on the actual
allocation of other activities to resources. Thus the changeover activity
cannot be planned in advance.

The appearance of the changeover activity that produces a by-product
may lead to adding other activities consuming this by-product. For example,
the by-product can be re-cycled and used to satisfy some demand. In general,
we may have several process routes to satisfy the demand and these process
routes may have a very different structure of the activities. It is possible to
select one of the process routes in advance (planning) but in (Barták, 1999b)
we argued to postpone this decision into scheduling stage when more
information is available (e.g., we can use a by-product produced by some
changeover).

Some of the above examples can be modelled using a technique of
dummy activities. However, if the number of dummy activities is large then
this technique is not applicable. In such a case, it is better to introduce the
activities on demand during scheduling, i.e., to enhance scheduling by
planning capabilities.

3. PROBLEM FORMALISATION

Visopt ShopFloor uses a general description of the production scheduling
problem based on the resource-centric model (Brusoni et all 1996). The
problem is specified by a set of resources, a set of dependencies between the
resources, and a set of demands. In this section we give more details about
these parts of the model. For simplicity reasons, we describe only the key
features of the modelling framework.

3.1 Resources

The resource is described as a set of activities. For each activity the user
specifies its duration and time windows when the activity is processed. The
activity occupies the resource from its start time till its end time. The
interruptible activities may run out of time windows but they must start and
complete in a time window. The activity also specifies the produced and

 Roman Barták, Roman Mecl

consumed items with their quantities. In fact, the set of input and output
items (with quantities) forms a lot and it is possible to have several lots in
the activity. The number of lots is then restricted by the capacity of the
activity.

We use the notion of activity to describe parameters of batches - a batch
type; sometime we call it also a state. Thus, the user describes activities, but
in the schedule we use batches of a particular activity (Figure 3). The
batches are not overlapping. The user may specify the minimal and maximal
number of batches of given activity that can be processed in a sequence. It is
also possible to describe a transition scheme between the activities with
transition times etc. The transition is not allowed until a minimum number of
batches of given activity is processed and the transition is forced when the
maximum number of batches is reached. The user may also describe a global
batch counter, i.e., to specify activities whose batches are counted, and the
activity to which we must switch if a given limit is reached.

A A A B C C

C C A A A

C C B A A A

produce A (3-4)

produce B (1-2)

produce C (2-4)

Figure 3. Activities are connected in a transition scheme with minimum and maximum
number of batches per activity (left). This scheme restricts the feasible sequences of batches

(right).

The above scheme of the resource allows natural description of complex
resources. Changeovers and setups can be modelled as standard activities (if
they produce some items or if they use secondary resources) or they can be
modelled as a transition time between the activities. The global batch
counters describe features like insertion of the cleaning batch after N
production batches. Different processing formulas can be modelled using
different lots in the activity.

The same scheme (Figure 4) can be used to model producers, movers,
and secondary resources. Thus we can model rather complex behaviour of
the secondary resource like a learning curve, e.g., after ten batches the
worker is more experienced = transition to a new state. Or we can capture a
recreation schedule, e.g., after three "production" batches the worker needs
one "recreation" batch.

Resource
 Activity
 duration + time windows + interruptible
 capacity
 Lot
 input + output items with quantities
 Next activities with transition times

Figure 4. The basic schema of the resource model

3.2 Dependencies

The relations between the resources are called dependencies. Basically
the dependency describes an item flow between batches of different
resources. For each item, the user specifies a supplying resource with a
supplying activity and a consuming resource with a consuming activity.
Moreover, the user also describes the delay between the end of the supplying
batch and the start of the consuming batch (Figure 5).

dependency

delay

supplier

consumer

Figure 5. Dependencies express supplier-consumer relations

Note also, that is possible to specify several dependencies for a single
item so one consumer may be connected to several suppliers and vice versa.

Basically, the dependencies express supplier-consumer relations but if we
use some artificial item and negative delay, we can also model resource
synchronisation via dependencies. Thanks to the flexibility of the above
model there is no problem to describe alternative production routes, in
particular to express many-to-many relations (Figure 1), or to model
recycling. It is also possible to use dependencies for modelling simple stores
by allowing variable delay (= storing time).

 Roman Barták, Roman Mecl

Dependency
 Item
 Supplying resource with activity
 Consuming resource with activity
 delay

Figure 6. The basic schema of the dependency

3.3 Demands

To start-up production we need some demands. The demand is specified
by an ordered item with quantity and required delivery time. The user may
allow alternative items to be delivered instead of the ordered item and it is
also possible to allow delaying of the delivery. The demands can be
specified as consumers in dependencies so we know which resources can
supply the final product.

3.4 Purchases

Usually, the items are produced in the factory but some items can also be
purchased from external suppliers. It could be raw material, intermediate
items, or even the final products. To model such situations, it is possible to
specify whether given item can be purchased or not. Then, purchase plays a
role of the supplier in dependencies

3.5 The task

When resources, dependencies, demands, and purchases are specified
then the goal of the scheduling system is to generate a plan covering the
demands and satisfying the production constraints (a feasible plan). There
are no batches known in advance, the system has to find out what batches are
necessary and to which resources these batches should be allocated. Only the
batches describing the initial situation of some resources may be known. It
means that we are solving a planning problem under time and resource
constraints (Figure 7).

• re
so

ur
ce

s

time
• re

so
ur

ce
s

time

Figure 7. The scheduling task is to find out batches (rectangles) covering the demands (dots)
and to allocate the batches to resources.

So far, we discussed only the feasibility problem but we can also model
optimisation. It is possible to assign a cost parameter to every object in the
schedule and then the task is to minimise the sum of costs. For example, the
user may specify penalty for delaying deliveries or for using alternative
items. It is possible to assign cost to batches (e.g. energy consumption) or to
dependencies (e.g., moving/storing cost). More details about optimisation
issues can be found in (Barták, 2002b).

4. SYSTEM ARCHITECTURE

Visopt ShopFloor system consists of two independent parts: the
ShopFloor user interface and the solver (Figure 8).

Constraint model
• generating variables
• introducing constraints

Search strategy
• assigning values
• (branching)

resource

Search strategy
• assigning values
• (branching)

Search strategy
• assigning values
• (branching)

resource
Solver

GUI

Factory model

Figure 8. Visopt ShopFloor System Architecture

 Roman Barták, Roman Mecl

The ShopFloor user interface serves for the problem specification. It
provides a graphical modelling environment where the user describes the
structure of the factory, i.e., the resources and the production routes (the
relations between the resources). It is possible to model the problem from
scratch or to upload the problem from an ERP database. In the second case,
the ShopFloor visualises the problem description so the user can easily make
changes in the model. The ShopFloor user interface uses its own database
model that is converted to a factory model before scheduling.

The factory model is a structured text file containing a complete
description of the problem including the demands. This file is in a human
readable form so it is possible to check manually the data or to generate the
file using arbitrary text editor (for example to model simple benchmarks
without going through the complexity of the GUI). It is even possible to pre-
process the model before it is sent to the solver. The factory model serves as
an interface specifying the input to the solver so the solver is independent of
the user interface. We described the basic components of the factory model
in the previous section.

The solver is responsible for planning/scheduling. It consists of the
constraint model that is generated automatically from the factory model and
of the scheduling strategy. We use a modular architecture of the solver so it
is possible to add new resource types later. Also the scheduling strategy can
be exchanged easily to reflect a particular type of the problem. We give
more details about the solver in the next section. The solver produces a plan
that is returned to the ShopFloor user interface. The plan is presented to the
user in the form of a Gantt chart.

Separating GUI and solver gives us flexibility in designing dedicated user
interfaces for the solver or in using the user interface just for data
visualisation.

5. THE SOLVER

The solver, or we call it also a scheduling engine, gets the problem
specification in the form of a factory model and it generates a feasible plan if
it exists. We use a constraint satisfaction technology to implement the solver.
First, the solver generates the constraint model using the factory model.
Second, the solver tries to find a solution of the constraint model.

Unfortunately, we cannot use the traditional static view of constraint
satisfaction problems (CSP) where the variables and constraints are specified
first and variable labelling is done next. The problem here is the presence of
the planning component; in particular the batches are introduced during

scheduling. Thus the structure of variables and constraints is changing as the
search progresses.

In the next section we explain how we use the constraint technology to
overcome the difficulty with static CSP. Then we describe the constraint
model, i.e., how the variables and constraints are introduced. Finally, we
characterise the scheduling strategy.

5.1 Technology

Traditional formulation of CSP is static in the sense that the variables and
constraints are defined first and the search is done next. Modelling planning
problems as CSP is hard because of the variability of the plans (Nareyek,
2000). It means that the problem cannot be modelled statically (with dummy
variables) because of large size of the problem formulation. Thus CSP is
used when some planning decisions, e.g., about the plan length, are done.
Another possibility is using some generalisations of CSP like Structural CSP
(Nareyek, 1999).

The planning sub-problem in our problem area consists of decision about
batches necessary to satisfy the demands. The scheduling sub-problem
consists of resource allocation and time scheduling. Note that solving the
planning sub-problem separately is rather easy, what makes it hard is
assuming time and resources. Thus it seems that we can use some simple
planning technology like backward chaining combined with look-ahead
using constraints. It means that in the first step all alternative batches to
satisfy the demands are introduced including the time and resource
constraints. Then the constraint-based scheduler selects the necessary
batches and allocates them to resources. As soon as the batch is selected, the
planner introduces all alternative batches that supply items to this batch etc.
Basically the role of the planner is to watch the current partial schedule and
when some batch is missing, the planer introduces all the alternative batches
for its position.

Constraint satisfaction plays important role in the above process; in
particular constraint propagation is used to filter the planning alternatives.
Notice that new batches are added when some scheduling decision is done,
i.e., when a value is assigned to some variable. It means that variable
labelling interleaves with problem formulation, i.e., new variables and
constrains are added when the value is assigned to the variable. This could
be naturally implemented in constraint logic programming (CLP) where
constraints prune the search space.

Recall that the original formulation of CLP is based on exactly the same
idea - using constraints to prune the search space without distinguishing the
problem formulation and labelling (Gallaire,1985). Recently, when CSP

 Roman Barták, Roman Mecl

appeared, the separation of problem definition and labelling was introduced
to CLP as well. This second approach is more efficient if all the alternatives
can be captured in a static set of variables and constraints (Van Hentenryck
and Deville, 1991). As we already mentioned, when planning decisions are
involved, this is not necessarily the case. Thus we propose to use CLP where
labelling is interleaved with introduction of variables and constraints. Notice
finally, that despite the dynamic character of the constraint satisfaction
problem we do not need to use frameworks like Structural CSP (Nareyek,
1999) or Dynamic CSP (Mittal and Falkenhainer, 1990) which require a
special implementation of the constraint engine. We can use the existing
constraint solvers where labelling is seen as a procedure for adding new
constraints (and variables) to the system.

5.2 Slot Representation

Traditional scheduling systems use a task centric model of the problem,
i.e., the activities belonging to a single task (demand) are connected in a
chain with the precedence relations between the activities. However, this
model assumes rather simple behaviour of resources, typically, unary and
cumulative resources are used. Moreover, it is hard to model sharing of
activities between the tasks (many-to-many relations), the changeover
activities, or recycling. In our problem area, the transition scheme makes
resources more complicated so we decided to use a resource centric model.

The resource centric model is realised via a slot representation. The
partial resource schedule is represented here as a sequence of slots, where
the slot is a shell to be filled by the batch. This model is similar to
timetabling models - the main difference is that the slots are not assigned to
time in our representation. In particular, the duration of the slot is not fixed
(it depends on the batch that will be filled in the slot) and the slot may slide
in time. Still, the sequence of slots cannot be changed so it is not possible to
swap position of two slots (but the batches in the slots may be swapped –
simply slots are filled by batches in a different order).

time shift

Figure 9. Slots cannot be swapped but they can slide in time.

Each slot is specified by a set of variables describing its position in time
(start, end, duration) and specifying what activity can be filled in the slot (a
state variable). Note that the slots may be introduced even if we do not know

yet the batches in the slots. Thus we can post the constraints among the slot
variables to prune the search space by restricting which batches can be
allocated to a given resource in a given time. Typically, time variables are
connected to the state variables to describe time windows and duration of
batches. We use tabular constraints for this purpose, where a tabular
constraint is a general binary constraint with user defined domain (Barták,
2000). Because sequencing of slots is fixed as well, it is possible to model
the transition scheme using the constraints posted between two neighbouring
slots. To count batches of the same state, we use a special variable called
serial that participates in the transition constraints. A detailed description of
the transition constraints can be found in (Barták, 2002a).

The maximal number of slots covering the schedule period can be
computed in advance so the slots can be introduced before scheduling. The
difficulty of this approach is that it may introduce too many slots leading to
huge CSP for large-scale real-life problems. Therefore we decided to
introduce a minimal number of slots (from left) that can cover the current
demands for the resource. Note that the list of demands for the resource may
extend as scheduling progresses and the batches are being scheduled in other
resources. Thus, we use a guard watching the list of demands for the
resource and when the existing slots cannot cover the current demands, then
the new slots are added to the end of the slot list. It is also possible to add
new slots due to the transition scheme, e.g. to model resources that cannot be
interrupted (like big ovens in metal production factories).

The slot representation models naturally the batch resources. Its
advantage is that we can post resource constraints early so we can use them
to prune the search space even if the batches allocated to the resource are not
decided yet. Filling the slots corresponds to batch sequencing. A small
disadvantage is that when a batch is filled into the slot then its position in the
sequence is fixed. If we want to insert a batch before some batch then this
already filled batch must be moved to the next slot so it frees the slot for the
inserted batch. Thus decision about batches in slots must be done carefully
assuming all the demands for the resource.

5.3 Dependencies

Dependencies are used to propagate demands between the resources.
Recall that dependency describes a supplier-consumer relation so it connects
the supplying object (batch or purchase) with the consuming object (batch or
delivery). Basically, the dependency is a constraint binding the end time of
the supplying object with the start time of the consuming object. It also
describes what quantity is moved between the objects. At the beginning, we
know only the deliveries corresponding to user demands but we do not know

 Roman Barták, Roman Mecl

the actual suppliers for the deliveries. Thus we cannot post the dependency
constraints. Nevertheless, the factory model specifies what resource and
activity may supply the ordered item. Even if the actual batch(es) is not
known we can find the slots in possible supplying resources to which the
supplying batch(es) can be filled. Then we can post a conditional constraint
between the slot and the delivery binding the times if the quantity moved
between these objects is non-empty. The problem is that the number of
eligible slots may be very large so the number of conditional constraints will
also be very large. Thus in real-life problem this eager method is not
applicable. We use a more lazy method that connects only the first slot of
each possible supplying resource to the delivery. If we find later that the
quantity moved between this slot and the delivery is empty and still some
quantity must be supplied then the next possible slot is connected with the
delivery etc. (Figure 10). This approach is applicable to finding suppliers as
well as consumers of batches, i.e., when a batch is filled in some slot then we
can start the above process of finding missing suppliers and/or consumers.

XX Possible suppliers

Consumer

Figure 10. The dependency generator introduces the dependencies to the first possible slot
(from left). If the slot is not dependent (X) then the dependency is moved to the next free slot.

The above dependency mechanism realises the backward chaining
method of planning. We introduce the alternatives with short look ahead and
the decision about the used alternative is postponed to the scheduling stage.
Because the constraints are already posted, we are speaking about active
decision postponement (Joslin and Pollack 1995).

Each slot keeps a list of dependencies going to the slot and this list is
used during labelling to decide which dependencies will really go to the slot
(the quantity in the dependency is non-empty). Moreover, it is possible to
keep the list of dependencies (demands) for each resource and to apply some
ordering constraints to them, like in (Laborie, 2001) and (Baptiste and Le
Pape, 1996).

5.4 Scheduling Strategy

As we described above, the constraint model is dynamic but autonomous.
It means that the variables and constraints are introduced automatically when

values of other variables are known. The decisions about variables' values
are done by the scheduling strategy. The only but significant difference from
the traditional constraint satisfaction is that the set of variables is increasing
as the search progresses. Moreover, the set of variables may be different in
different search branches.

To implement the scheduling strategy we use depth-first search.
Naturally, the variable ordering must respect the dynamic nature of the
problem so let us look at the scheduling strategy from the scheduling point
of view. The goal of the scheduling strategy is to fill the slots by batches,
i.e., to decide about the value of the state variable in each slot, and to decide
about the connections between the batches. We call this process closing the
slot. We know that the slots are introduced in left to right manner and that
the dependencies are first started from demands. This observation
determines the ordering of slots to be closed (variable ordering). We decided
to generate the schedule in slices going from left to right. The slots in each
slice are closed in the order from demands/deliveries to purchases (Figure
11). The width of the slice is determined by the user (it is heuristic
information). We call the process of closing the slots in the slice a
scheduling step.

 purchases

time

re
so

ur
ce

s

demands

Figure 11. Variable (slot) ordering used by the scheduling strategy.

When the slot is selected, the next question is what batch should be filled
in, i.e., what value should be assigned to the state variable. This decision is
done using the dependencies going into the slot. The scheduling strategy
selects some dependency that can be connected to the slot. Then it sets the
quantity in the dependency to be greater than zero, so the dependency is
effectively anchored to the slot. This anchoring usually determines the value
of the state variable (if not, the scheduling strategy selects one). The process
of selecting dependencies going to the slot is repeated until the batch
capacity is exhausted. The remaining dependencies are moved automatically
to the next possible slot (Figure 12). The selection of dependencies is driven
by heuristic that uses information about time and cost; dependencies going to
earlier times and leading to less expensive production are preferred.

 Roman Barták, Roman Mecl

KK--11 KK--11 KK

Figure 12. When the dependency is selected for the slot, then the incompatible dependencies
are moved to next free slot.

During the first round, the batches are filled to the slots in the slice and
the dependencies between the batches are anchored. Thus the planning sub-
problem and the resource allocation sub-problem are solved. To complete
the scheduling step, the scheduling strategy decides about time allocation of
closed batches; the earliest times are preferred.

Notice that the choice of variable ordering ensures that the variables are
already present in the system. Unfortunately, the dynamic nature of the
problem complicates the direct usage of more advanced search techniques
that are basically oriented on static problems like Limited Discrepancy
Search (Harvey, Ginsberg 1995). We are currently exploring the possibility
of how to apply the good ideas from these more advanced search techniques
in our dynamic problems.

6. THE RESULTS

The Visopt ShopFloor has been tested in several pilot projects, in
particular in one of the biggest and famous candy producers in The
Netherlands, in one of the biggest dairies in Israel, and in a chemical factory
in Germany among others. The goal of these pilot projects was to model the
most complex production lines in these factories and to provide a feasible
schedule for them. At this stage, it is hard to estimate savings when Visopt
ShopFloor is applied because these production lines were scheduled
manually so far. It is even complicated to evaluate quality of the generated
schedules because there are no existing schedules to compare with.
Nevertheless, the production experts in the companies agree that the
generated plans satisfy the production rules and that they "look good". Note,
that in many real problems, the quality of the produced schedule is rather
subjective than objective. Even if the solver uses an objective function (cost)
to produce “good schedules”, still, it is the user who decides about the
quality of the schedule. One of such criterions could be that the plan is
optimized enough that the experienced human planner is not able to produce

better plan. The big win is that our system can cover all the features of the
complex production lines that the other tested systems like SAP APO cannot
model.

Because we cannot compare our system to existing schedulers (other
schedulers cannot even model the problems that we are solving) we provide
here the results of some of our tests based on real-life data from the above
mentioned enterprises. To show capabilities of the solver we report the size
of the problem, the size of the solution, and the runtime.

The solver is implemented in SICStus Prolog (3.8.7) and the tests are run
on Celeron 500 MHz with 192 MB RAM. Prolog programming language is
chosen for its rapid prototyping capabilities and for natural integration of the
constraint satisfaction technology.

Table 1 describes the size of the problems. We include the number of
resources in the factory, the total number of states (the types of batches), and
the number of different items going between the resources. These numbers
characterise a given production line. In some sense, Table 1 indicates the
size of the planning domain. To describe the size of the actual problem, we
also specify the number of demands with the total ordered quantity and the
duration of the scheduled period in time units. The quantity and time
attributes roughly describe the size of the variables’ domains used in the
system. For example 10080 time units correspond to one week production
with a minute resolution. It means that the scheduler must produce plans for
one week where we know what is going on in every minute.

Table 1. Model size for five test problems.
 resources states items demands

/ quantity
duration

1 57 704 45 256/196744 840
2 22 677 56 9/7600 3168
3 28 115 34 1/50 8640
4 19 334 47 50/144000 10080
5 34 574 294 45/88485 11520

Table 2 describes the size of the solution and the runtime. We report here

the total number of batches and the total number of dependencies in the final
schedule. From these numbers we can estimate roughly the number of
variables and the number of constraints in the final schedule. For example,
each batch is described by at least ten variables (the actual number depends
on the number of items in the batch) and each dependency is described by at
least six variables. However, note that much more variables and constraints
are used during scheduling because many alternative batches and
dependencies must be explored. For example, if many-to-many relations are
used between the resources then the number of introduced dependencies is
very large.

 Roman Barták, Roman Mecl

Table 2. Solution size and runtime.
 batches dependencies runtime (sec.)
1 990 1428 234
2 651 898 131
3 256 310 221
4 1000 1441 302
5 5807 10175 10095

The above results show that we can solve problems close in size to

traditional scheduling problems and much larger than traditional planning
problems. The large-scale scheduling problems contain about twenty
thousands activities (personal communication to Wim Nuiten from ILOG)
and the plans generated by state-of-the-art planners consists of tens of
activities (Long and Fox, 2002). The results are not surprising because the
plan complexity in our models is not very large. What makes them hard is
satisfaction of time and resource constraints. On the other hand, the activities
are introduced dynamically in our system according to the production rules.
The traditional scheduling technology cannot be applied there due to the size
of the static problem formulation. Even if we introduce the batches
dynamically, still a lot of memory is necessary to resolve the planning sub-
problem. For example, the model 5 is solved using model decomposition to
fulfil the current memory limit of SICStus Prolog (256 MB on 32-bit
architectures).

7. CONCLUSIONS

In this paper, we show that tight integration of planning and scheduling is
possible and that it extends modelling capabilities of the scheduling systems.
Constraint satisfaction technology proved itself to be flexible enough for
modelling such integrated planning and scheduling problems. However, it is
necessary to use a more dynamic view of CSP. In particular the existing
global constraints need to be “open” to accept incoming variables. We
proposed a general mechanism of dynamic global constraints in (Barták,
2003). Our experience also confirms that large-scale integrated planning and
scheduling problems can hardly be modelled in a static way using dummy
variables. Large memory consumption is one of the difficulties that we are
solving now despite the fact that we are using only a limited number of
dummy variables to model planning alternatives.

The presented technology is used in a scheduling engine of the
commercial system Visopt ShopFloor. The integrated planning component is
the main difference of our system from the traditional schedulers. However,
the dynamic nature of our system is different from on-line (reactive)

scheduling - neither the demands nor the factory is changing during the
scheduling process. We are working on a rescheduling feature that allows
the software to react faster to changes in the production environment.

The unique features of Visopt, which the other scheduling systems
cannot cover, include modelling of complex transition schemes for
resources, modelling of arbitrary dependency structure of the factory,
modelling of set-ups, cleaning, and maintenance including by-products, and
modelling of process and item alternatives. Moreover, Visopt ShopFloor
attempts to be a general scheduler where the customer describes the problem
in a declarative way and the system generates schedules automatically. Other
scheduling software is either provided as a toolkit (e.g. ILOG Scheduler), so
the particular scheduler must be programmed using this toolkit, or the
software solves a particular scheduling problem but it cannot be extended to
other problem areas. Opposite to these systems, Visopt ShopFloor (Visopt,
2002) provides intuitive graphical modelling environment independent of the
solver, generality covering many scheduling problems, and extendibility via
adding new type of resources.

ACKNOWLEDGEMENTS

The research is supported by the Grant Agency of the Czech Republic
under the contract no. 201/01/0942 and by Visopt B.V..

REFERENCES

Baptiste, P. and Le Pape, C. 1996. Edge-finding constraint propagation algorithms for
disjunctive and cumulative scheduling. Proceedings of the Fifteenth Workshop of the U.K.
Planning Special Interest Group (PlanSIG).

Barták, R. 1999a. Conceptual Models for Combined Planning and Scheduling. Electronic
Notes in Discrete Mathematics, Volume 4, Elsevier.

Barták, R. 1999b. On the Boundary of Planning and Scheduling. Proceedings of the
Eighteenth Workshop of the UK Planning and Scheduling Special Interest Group
(PlanSIG), Manchester, UK, 28-39.

Barták, R., 2000. A General Relation Constraint: An Implementation. Proceedings of CP2000
Post-Workshop on Techniques for Implementing Constraint Programming Systems
(TRICS), Singapore, 30-40.

Barták, R. 2002a. Modelling Resource Transitions in Constraint-based Scheduling.
Proceedings of SOFSEM 2002: Theory and Practice of Informatics, LNCS 2540, Springer
Verlag, 186-194.

Barták, R. 2002b. Visopt ShopFloor: On the Edge of Planing and Scheduling. In P. van
Hentenryck (ed.): Proceedings of the 8th International Conference on Principles and
Practice of Constraint Programming (CP 2002), LNCS 2470, Springer Verlag, 587-602.

 Roman Barták, Roman Mecl

Barták, R. 2003. Dynamic Global Constraints in Backtracking Based Environments. Annals of

Operations Research 118, Kluwer (2003) 101-119.
Brusoni, V., Console, L., Lamma. E., Mello, P., Milano, M., Terenziani, P. 1996. Resource-

based vs. Task-based Approaches for Scheduling Problems. Proceedings of the 9th
ISMIS96, LNCS Series, Springer Verlag.

Gallaire, H. 1985. Logic Programming: Further Developments, IEEE Symposium on Logic
Programming, Boston, IEEE.

Harvey, W.D. and Ginsberg, M.L. 1995. Limited Discrepancy Search. Proceedings of 14th
International Joint Conference on Artificial Intelligence, Morgan Kaufmann, 607-613.

Joslin, D. and Pollack M.E. 1995. Passive and Active Decision Postponement in Plan
Generation. Proceedings of the Third European Conference on Planning (ECP).

Laborie P. 2001. Algorithms for Propagating Resource Constraints in AI Planning and
Scheduling: Existing Approaches and New Results. Proceedings of 6th European
Conference on Planning (ECP), Toledo, Spain, 205-216.

Long D. and Fox. M. 2002. International Planning Competition 2002. Toulouse, France.
http://www.dur.ac.uk/d.p.long/competition.html

Mittal, S. and Falkenhainer, B. 1990. Dynamic Constraint Satisfaction Problems. Proceedings
of AAAI-90, USA, 25-32.

Nareyek, A. 1999. Structural Constraint Satisfaction. Proceedings of AAAI-99 Workshop on
Configuration.

Nareyek, A. 2000. AI Planning in a Constraint Programming Framework. Proceedings of the
3rd International Workshop on Communication-Based Systems (CBS).

Pegman, M. 1998. Short Term Liquid Metal Scheduling. Proceedings of PAPPACT98
Conference, London, 91-99.

Srivastava B. and Kambhampati S. 1999. Scaling up Planning by teasing out Resource
Scheduling. Technical Report ASU CSE TR 99-005, Arizona State University.

Van Hentenryck, P., Deville, Y. 1991. The Cardinality Operator: A New Logical Connective
for Constraint Logic Programming. Proceedings of the International Conference on Logic
Programming, 745-759.

Visopt B.V. 2002. http://www.visopt.com

