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St Andrews
• Best known as the “home of golf”,
• and as being the home of the University 

of St Andrews.

Images from Wikipedia



St Andrews, Charles Connections
• Connections:

• Educational contact between Charles and St Andrews was first 
established in the Middle Ages, when the writings of Laurence of Lindores 
were widely read in Prague.

• In the early twentieth century, St Andrews received a quincentenary scroll 
from Charles University, and research contact was ongoing.

• In the 1930s and 1940s, both universities hosted astronomer Erwin 
Finlay-Freundlich when he was forced to leave Germany.

• Assisted by her husband, St Andrews graduate Willa Muir also made the 
first English translations of the work of Charles University graduate Franz 
Kafka.

• Building on friendly relations and research links across all faculties, 
Charles University and St Andrews signed a strategic partnership 
agreement at the end of 2019.

https://news.st-andrews.ac.uk/archive/lost-manuscript-from-renowned-scottish-author-willa-muir-finally-published/


Charles Visit to St 
Andrews, March 2025



Collaborative Opportunities
• There are undergraduate and postgraduate student exchanges.

• At present limited to International Relations, Comparative Literature and History.
• There is a joint seed funding scheme.

• 12-month projects, up to 5K.
• Annual call, deadline in May.

• St Andrews has a Global Fellowship scheme, which we can use to 
host you.
• Visits of up to 4 weeks.
• Flights, accommodation, stipend.

• The UK has associated to Horizon.
• My visit here paid for by a Global Partnerships Travel Grant.



The School of Computer Science at St Andrews

• ~70 academic, research 
and professional
services staff. 

• ~55 PGR students. 
• ~140 Physical PGT 

students.
• ~100 Online PGT 

students.
• ~700 Undergraduate 

students.



Research Themes at Computer Science St Andrews

Artificial 
Intelligence

Computer 
Systems

Health 
Informatics

Human-
Computer 
Interaction

Programming 
Language 

Technology
Sustainability

Computer 
Science

• Our research themes cut across the major areas of the discipline 
and underpin interdisciplinary work.



Computer Science 
Interdisciplinary 
Collaboration



Artificial Intelligence
Theme Lead: Ruth Hoffmann (rh347@st-andrews.ac.uk)



Artificial Intelligence: Overview

• Both symbolic and sub-symbolic AI represented:
• Constraint Programming.
• AI Planning.
• Algorithm Selection.
• Argumentation.
• Natural Language Processing.
• Computational Algebra.
• Machine Learning.
• Machine Vision.

• Good deal of overlap with Health Informatics theme described 
later.



Constraint Programming
• See Part II of this talk. Ian Gent

Ian.Gent@st-andrews.ac.uk

Joan Espasa
jea20@st-andrews.ac.uk

Ruth Hoffmann
rh347@st-andrews.ac.uk

Chris Jefferson
caj21@st-andrews.ac.uk

Nguyen Dang
nttd@st-andrews.ac.uk

Ozgur Akgun
Ozgur.akgun@st-andrews.ac.uk

Ian Miguel
ijm@st-andrews.ac.uk

Andras Salamon
Andras.Salamon@st-andrews.ac.uk



Planning & Scheduling via SAT/SMT/CP

• Planning & Games:
• Player support systems
• General Modelling & solving

• AI Planning
• Understanding modelling challenges 

and extending language capabilities
• Much work on improving scalability of 

planning as satisfiability
• Solution sets for robustness/diversity
• Tailoring off-the-shelf combinatorial 

solvers for planning

Joan Espasa
jea20@st-andrews.ac.uk



Spider: 97.51-100%

Canfield: 
70.39-71.20%

Klondike: 
80.47 - 83.63%

Free Cell: 
99.9983 – 99.9991%

Games & PuzzlesSolving Solitaire Games

Understanding n-Queens Puzzles
Ian Gent
Ian.Gent@st-andrews.ac.uk

• We wrote the World’s best program for solving games 
of Solitaire/Patience. 

• E.g. Klondike which is the game in Windows Solitaire 
which is still played 100 million times every day. 

• We improved knowledge of how much it can be won 
by a factor of 30 – and with a program that also 
solves lots of other games like those on the screen.

• Theoretical research gives 
us new understanding of 
famous old puzzles.

• E.g. the n-queens 
completion puzzle which 
goes back to 1850.

• The picture shows a board 
with 2 queens placed and 
then the two ways it is 
possible to complete the 
layout with 8 queens and 
no two queens attacking 
each other.

• We showed this puzzle is 
NP-complete, a key 
complexity class 



Human-Agent Argumentation
and Deliberation

Argumentation in Human-Agent teams to support:

• Reasoning: in Intelligence Analysis, Analysis of Debates & Essays, Explanations

• Deliberation dialogue: Models of Dialogue, Multiagent Games

Computational Argumentation
• Define Pro/Con Arguments 
• Analyse Conflicts

Approach

Aim

•Find Agreement
•Explain & Motivate
•Identify reasoning 
flaws

How can we help people 
make effective decisions 
in conflicting situations?

Problem Alice Toniolo
a.toniolo@st-andrews.ac.uk



• Counting seals in aerial surveys (350GB)
• Fish specimen re-identification in photographs
• Inferring history of salmon based on scale images (100k+)
• Classifying skin lesions in dolphin populations
• Classifying fishing activities based on GPS traces
• Monitoring activity in videos of captive quails
• Image-based sizing and sexing of lobsters and crabs

Computer Vision and Learning in 
Conservation

Photo: C Morris

Kasim Terzic
kt54@st-andrews.ac.uk



Graph Theory and Computational Geometry
for Data Science

Clustering Similarity Search Dimensionality Reduction

Peter Macgregor
prm4@st-andrews.ac.uk

• Developing graph-based clustering algorithms with improved complexity, approximation guarantees, 
• Studying the geometry of high-dimensional data for applications in similarity search, 
• Applying algorithmic techniques such as dimensionality reduction to improve the performance of ML 

algorithms.

• Algorithms for processing large data sets. Applications in ML.



At the Interface with Discrete Mathematics
• Applications in and of:
• Graph theory,
• Combinatorics, 
• Formal languages
• Computational group theory.
• Example: symmetry breaking 

in combinatorial search.

Ruth Hoffmann
rh347@st-andrews.ac.uk

Chris Jefferson
caj21@st-andrews.ac.uk

Steve Linton
sl4@st-andrews.ac.uk

Olexandr Konovalov
alexander.konovalov@st-andrews.ac.uk

The Petersen graph: a small graph that is often 
a counter-example for new graph conjectures 
(Don Knuth)

Representation of a 
permutation.
Sub-permutations that have 
consecutive indices and 
contiguous values indicated



Computational Tools For Chemistry Problems 
• Predicting structure of a crystalline material from chemical formula.
• Taking computational problems from chemistry and applying tools

from computer science to solve them.
• Main results: 

• This problem is hard - indeed it is undecidable- in general, 
• Exact solutions for restricted instances - Novel combinatorial algorithms for solving problems in chemistry. 

• Overview of reduction:
• starting with the Wang Tiling problem, and ending with the chemistry problem.
• Interesting as we take a problem that relies strongly on operating in oriented, discrete space, and convert it into 

a problem in non-oriented, continuous space.

Duncan Adamson
Duncan.Adamson@st-andrews.ac.uk



• Tools for exploring temporal graphs. 
• Local symmetry breaking in networks

based on hypergraphs.
• Via colourings or independent sets

• Exploring
• Determining amdynamically changing networks

exploration schedule for an agent so that they can
visit every node in the network.

• Use case: a robot chemist.
• These robots move around lab spaces, which may be modelled as a dynamic 

network, with nodes representing positions at which the robot has to 
complete a task, and connections representing corridors in which the robot 
can move.
• Over time, these corridors may become blocked (i.e., by a person moving 

though it) or become available.

Duncan Adamson
Duncan.Adamson@st-andrews.ac.uk

Algorithms For Dynamic And Distributed Networks 



Tristan Henderson
tnhh@st-andrews.ac.uk

• Understanding and monitoring collection of training data:
• Disconnect between technical solutions (robots.txt) and legal solutions 

(contract, chattel)
• Need to gather empirical data on what is happening and what will work 

(ongoing work)
• Tools for efficient AI impact assessments:

• Impact assessments are a common a priori tool for mitigating harm
• But there are lots of proposed assessments for different scenarios, and 

little enforcement
• How can technology help?
• See BILETA 2025 (forthcoming)

How can Technology Help Effective 
Regulation of AI?



Advancing NLP: Efficiency & Emergent 
Communication

Research Focus 1: Making NLP more cost-effective and accessible

Key Methods:

● Employing weakly supervised learning to minimize annotation costs
● Developing noise-tolerant Machine Learning algorithms for unreliable data

Impact and Applications: Enabling low-cost, scalable, reliable NLP applications

Research Focus 2: Understanding Inductive Biases via Emergent Communication

Key Methods:

● Training deep-learning agents in language games
● Exploring inductive biases in agent architectures
● Evaluating agent behaviors using game-theoretic and linguistic metrics

Impact and Applications: Insights into language evolution, cognitive science, and 
NLP

… …

Phong Le
pl200@st-andrews.ac.uk

See “low power” theme later.



Juan Ye

• Work with different types 
of sensors to understand 
human behaviors, 
gestures, environmental 
events

Source

Target

new activities 
being introduced

1. Learn domain adaptation 
and build a predictive model 

to recognise activities on 
the target dataset

2. Directly apply the 
learnt domain 

adaptation to recognise 
the same new activity      
on the target dataset

Accelerometer Feature Distribution Domain Adapation 

Gs

Gt

Ds

Dt

Bidirectional GAN

Activity Recognition Benchmark 175

processing and is timestamped using the same clock (the internal clock of the computer)

that is used to timestamp the sensor data.

(a) House A
(b) House B

(c) House C, First floor (d) House C, Second floor

Fig. 8.2 Floorplan of houses A, B and C, the red boxes represent wireless sensor nodes.

8.3.3 Houses

A total of three datasets was recorded in three different houses. Details about the datasets

can be found in Table 8.1. Floorplans for each of the houses, indicating the locations of the

sensors, can be found in Figure 8.2.

House A House W

Xlearn
Annotate unlabelled sensor data in each dataset

Start time                  End time                               SID    SVal    Activity
-------------------- --------------------          -- ---      ---
25-Feb-2008 00:20:14   25-Feb-2008 00:22:57 13 1       Θ
25-Feb-2008 09:33:41   25-Feb-2008 09:33:42 13 1       Θ     
25-Feb-2008 09:37:51   25-Feb-2008 09:37:52 8 1       use toilet
25-Feb-2008 09:37:55   25-Feb-2008 09:37:56 8 1       use toilet  
25-Feb-2008 09:37:58   25-Feb-2008 09:38:01 3 1       use toilet
25-Feb-2008 09:49:31   25-Feb-2008 09:49:38 7 1       prepare breakfast
25-Feb-2008 09:49:39   25-Feb-2008 09:49:44 6 1       prepare breakfast
25-Feb-2008 09:49:53   25-Feb-2008 09:49:56 6 1       prepare breakfast

Start time                                       SName SVal   Activity
--------------------                    -----   ------   ---------
2009-08-24 07:07:05.048491 M017  ON     meal preparation
2009-08-24 07:07:09.025382 M016  ON      meal preparation
2009-08-24 07:07:11.000921 M016  OFF     meal preparation
2009-08-24 07:07:11.043797 M045  ON       Θ
2009-08-24 07:07:46.013543 M032  ON       R2_sleep
2009-08-24 07:07:47.015822 M017  ON       R2_sleep 
2009-08-24 07:07:47.058612 M036  ON       R2_sleep
2009-08-24 07:08:07.095058 M017  ON       Θ

House A House W

Start time                                       SName SVal   Activity
--------------------                    -----   ------   ---------
2009-08-24 07:07:05.048491 M017  ON     meal preparation
2009-08-24 07:07:09.025382 M016  ON      meal preparation
2009-08-24 07:07:11.000921 M016  OFF     meal preparation
2009-08-24 07:07:11.043797 M045  ON      use toilet
2009-08-24 07:07:46.013543 M032  ON      R2_sleep
2009-08-24 07:07:47.015822 M017  ON      R2_sleep 
2009-08-24 07:07:47.058612 M036  ON      R2_sleep
2009-08-24 07:08:07.095058 M017  ON      use toilet

Start time                      End time                             SID   SVal    Activity
--------------------   --------------------          -- ---      ---
25-Feb-2008 00:20:14   25-Feb-2008 00:22:57 13 1       sleep
25-Feb-2008 09:33:41   25-Feb-2008 09:33:42 13 1       sleep     
25-Feb-2008 09:37:51   25-Feb-2008 09:37:52 8 1       use toilet
25-Feb-2008 09:37:55   25-Feb-2008 09:37:56 8 1       use toilet  
25-Feb-2008 09:37:58   25-Feb-2008 09:38:01 3 1       use toilet
25-Feb-2008 09:49:31   25-Feb-2008 09:49:38 7 1       prepare breakfast
25-Feb-2008 09:49:39   25-Feb-2008 09:49:44 6 1       prepare breakfast
25-Feb-2008 09:49:53   25-Feb-2008 09:49:56 6 1       prepare breakfast

Ambient sensors IMU sensors

Microphone

Radar sensors

Happy walkNormal walk

Juan Ye
jy31@st-andrews.ac.uk

Sensor Data Analysis and Human Activity 
Recognition



! Systems in Society

! Scalability

! Energy Efficiency

ElasticNet, a dynamic network architecture 
for continual learning 
- Reduce parameter space and training time 
- Keep the network small without making 

assumption of what or how many future 
classes will be

- Only grow the network when necessary

gate

Branch: add neurons

Branch: add layers

Branch: consolidate

Branch: branch transferinput

subnetwork

Appearance-based eye tracking
- Estimate gaze direction from facial 

images captured by camera 
- Design gaze interface and gestures 
- Enable user authentication and 

deepfake detection

Juan Ye
jy31@st-andrews.ac.uk

Sensor Data Analysis and Human Activity 
Recognition



Automated Algorithm Configuration and 
Selection

• Almost every algorithm has its own parameters that can be tuned.
• AI planning (choice of heuristics), deep learning (learning rates, number of hidden 

layers),…

• Automated algorithm configuration:
• General purpose methods to automate the optimisation of algorithm parameters.
• What’s inside: a combination of machine learning and optimisation techniques.

• Similarly, in many applications, there is often no single algorithm that 
performs best on all problem instances.
• Automated algorithm selection:

• Given a problem instance, automatically select the best algorithm from a portfolio of available 
algorithms.

• What’s inside: machine learning techniques to predict the best algorithm based on features of 
instances.

Nguyen Dang
nttd@st-andrews.ac.uk



Health Informatics
Theme Lead: David Harris-Birtill (dcchb@st-andrews.ac.uk)



Health Informatics: Overview

• The School is situated next door to the School of Medicine, with 
which we work closely.

• Part of our collaboration is through the Mackenzie Institute for 
Early Diagnosis:

• https://medicine.st-andrews.ac.uk/mackenzie/ 

• Applications of both symbolic and sub-symbolic AI
• Examples:

• AI and ML applied to diagnosis, fertility prediction, multimorbidity.

https://medicine.st-andrews.ac.uk/mackenzie/


Health Data Science in Cancer and Fertility
• Cancer treatment and age affect fertility-

related biomarkers and long-term 
reproductive health.

• 40-year population-based cohort studies 
investigating mental health, hospital 
admission and fertility for cancer survivors.

• AI and machine learning to personalize, 
streamline and improve assisted 
reproductive technologies, using data from 
over 13,000 cycles.

• The use of Electronic Health Records to 
optimize public health initiatives for lung, 
breast and bladder cancer screening.

Tom Kelsey
twk@st-Andrews.ac.uk 



Sensors and Large Language Models

• WiFi sensor data provides important data on 
the home lives of vulnerable people 

• Modern deep learning and generative AI 
methods can be used to train and validate 
models that reliably detect occurrences of 
dangerous events

• LLMs such as ChatGTP are now pervasive in 
modern society

• Is their use in medical settings a danger or an 
opportunity?

• What is the concordance between LLM 
output and clinical team recommendations?

Tom Kelsey
twk@st-Andrews.ac.uk 



Epidemic Modelling

• Processes on networks and other combinatorial 
structures
• SIR, SEIR, percolation, opinion dynamics, …
• Tooling now downloaded over 100,000 times
• https://pyepydemic.readthedocs.io/en/latest/

• Main interests
• New models of epidemic spread and potential (how big 

will it get, and how fast?)
• Co-infection and interactions of  multiple strains

Simon Dobson
Simon.Dobson@st-andrews.ac.uk 

https://pyepydemic.readthedocs.io/en/latest/
mailto:Simon.Dobson@st-andrews.ac.uk


Optimising Treatments for 
Multimorbidities

• Search for solution(s) with maximal score such that side effects 
have low probability of occurrence, and minimising number of 
medications.

Juliana Bowles
jkfb@st-andrews.ac.uk

Very much an 
application of the 
constraint 
programming 
approaches we will 
see later.



Data Science Methods to 
Improve the Delivery of Healthcare Services

Predicting length of stay 
in hospital
• Pediatric critical care
• Using only routinely collected 

data.

Safer intra-hospital transfers 
through symbolic AI

Discovering and visualising disease 
trajectories of multimorbidity in Scotland.

• In what order do people accumulate 
diseases?

Areti Manataki
a.manataki@st-andrews.ac.uk

• Process modelling of the 
steps.

• Resulting in checklist inspired 
by WHO process for surgical 
safety.



1024 synthetic histopathology 
patches created using a 

Generative Adversarial Network

Generative Machine Learning for Synthetic 
Histopathology Slides David Morrison

dm236@st-andrews.ac.uk

• Anonymising medical data for use in 
machine learning is important to 
preserve patient privacy and, in 
many circumstances, is a 
requirement before data can be 
made available.

• One approach to anonymising image 
data is to train a generative model to 
produce data that is statistically 
similar to the input data and use the 
synthetic data in place of the real.

• A study of the effects of such a 
process on an exemplar 
downstream task, histology image 
classification:



Medical Imaging and Sensing
• Cancer detection and segmentation:

33

David Harris-Birtill
dcchb@st-andrews.ac.uk

• Automated labelling of radiology reports:



Probability Malignant = 0

Probability Malignant = 1

Annotation Probability 
Malignant

= Background

= Blood or mucus

= Malignant

= Benign

Deep learning for 
cancer detection

Machine learning to 
discriminate high and low 

genetic risk

Chrissy Fell
cmf21@st-andrews.ac.uk

Cancer Detection & Risk Estimation



Medical Imaging and Sensing
• Measure vital signs at a distance.
• Automated Remote Pulse Oximetry – measuring

peoples vital signs at a distance using cameras:

35

David Harris-Birtill
dcchb@st-andrews.ac.uk



Human-Computer Interaction
Theme Lead: Loraine Clarke (lec24@st-andrews.ac.uk)



Human-Computer Interaction: Overview

• Exploring what interactions and technologies should be made to 
support a positive impact upon society and a quality user 
experience.

• Different User Needs • Quality User Experience



Human-Computer Interaction: Overview
• The Interdisciplinary Design Science of Human-Computer Interaction 

(HCI) combines knowledge and methods associated with professionals 
including:
• Psychologists (incl. Experimental, Educational, Social and Industrial 

Psychologists)
• Computer Scientists
• Instructional and Graphic Designers
• Technical Writers.
• Human Factors and Ergonomics Experts
• User experience designers
• Anthropologists and Sociologists



Research Strengths within the HCI Theme

• Primary Research Areas:
• Privacy, Ethics and Equality
• Sustainability & Biodiversity
• Digital Inclusion & Education

• Research Approaches:
• Tangible Interaction & Physical Computing
• Storytelling & Data Visualization
• User-centred & Participatory Design.



Understanding the Impact of ”Crowdwork” 
and the Expanding Gig Economy

Longitudinal analysis of the impact of 
platforms (apps) on work and the gig 
economy:
• Graph shows long term analysis on 

unemployment rates
• Previously, digital knowledge workers 

(crowdworkers) were far more likely to be at risk 
of unemployment

• More recently, the expansion of higher-skill 
knowledge work and the physical gig economy 
have offered more viable/rewarding work

• However, challenges remain for gig-economy 
work (benefits: pensions, healthcare; job 
security; disability/equity; taxation and revenue)

Jason Jacques
jtj2@st-andrews.ac.uk



Exploring Interactive and Passive Data Visualisations 
for Understanding Environmental Data

• Accurate communication of environmental data is 
important:
• Public health, climate change, trust in science.

• Communication of uncertainty in data (sensor noise, 
model error, etc.) can influence decision making and 
trust

• We (Jason, STARIS intern, Emory University) have 
explored the trade-offs in how visualisations can 
accurately communicate data

• Our experiments show that increased interactivity 
results in lower user comprehension/accuracy

• However, interactivity increases user insight into 
variability in the data which can improve trust

Jason Jacques
jtj2@st-andrews.ac.uk



Exploring experiences of AI facial recognition 
technologies

Loraine Clarke
lec24@st-andrews.ac.uk

• Work undertaken in India with the public to 
discuss the concerns they have about large tech 
giants and governments collecting biometric data 
on a mass scale.

• The device in the centre image is a raspberry pi 
that takes photos of you and sends this Photo to 
an AI to determine what age it thinks you are, what 
gender, your facial expression….. all from one 
image.

• This is an example of how we are exploring public 
opinion, knowledge and perceptions of what data 
is being collecting about them daily by tech giants.



Sensing Biodiversity at the Botanic Gardens
Loraine Clarke
lec24@st-andrews.ac.uk

• One of our collaborators is the botanic gardens in St 
Andrews.

• To explore ways in which we can sense changes in 
biodiversity and then use this information to engage the 
public with biodiversity changes that often go unnoticed.

• Left, we have a raspberry pi set up with a powerbank and 
camera taking pictures throughout the day to detect visual 
changes in the woodpile.

• We’ve seen slugs, bugs, a frog and a wasp burrowing into 
the wood using this system.

• The next phrase we’re interested in is creating playful 
interactive technologies for the public to engage with these 
changes.



Tangible Interactive Experiences Encouraging 
Reflection on the Sustainable Values of our Food 
Choices Loraine Clarke

lec24@st-andrews.ac.uk

• Part of a project working with Indian farmers investigating 
the different perspectives farmers and consumers have of 
food.

• Where a traditional weighting scales only allows people to 
find out the weight of food, this scales allows people to 
investigate other sustainable attributes of the food such 
as:
• Distance travelled from the farm, 
• Amount of pesticide used,
• How much money the grower received in comparison 

to the price a consumer is paying.



Tangible Interactions & Physical Computing

Miriam Sturdee 

Loraine Clarke

Loraine Clarke
lec24@st-andrews.ac.uk

Miriam Sturdee
ms535@st-andrews.ac.uk

• More examples of 
tangible 
interfaces and 
shape changing 
interfaces.

• Using physical computing, digital fabrication and tangible 
interfaces to address our research.

• For example, exploring ways to engage the public with the impact 
of human activity on biodiversity.

• A tangible interface to enable people to scroll through the increase 
in flights and decrease of lake size over the years.

• Rather than having screen based content we’re interested in 
alternative technologies such as tangible interfaces.



Storytelling
Miriam Sturdee
ms535@st-andrews.ac.uk

• Sketching as a tool for designing new 
technologies.

• Also the creation process when using newer 
novel technologies, such as:

• Augmented reality,
• VR,
• haptics.



Data Visualization

• Data visualisation in the 
context of health care 
settings.

• 78% of participants who 
evaluated the dashboard 
who said they knew little 
about gender bias in 
healthcare felt their 
knowledge had increased.

• All participants maintained 
the same level of importance 
or their belief in the 
importance became stronger 
of addressing gender bias in 
healthcare.

https://www.ghcdp.co.uk/

Areti Manataki
a.manataki@st-andrews.ac.uk

• A dashboard to raise awareness of “Gender bias in healthcare”.

https://www.ghcdp.co.uk/


Digital inclusion

Digital Inclusion in Later Life
• Understanding the age-based digital divide 
• Improving the digital literacy of older adults
• Developing accessible digital services 

User studies

Participatory design

Community engagement

Dharini Balasubramaniam
dharini@st-andrews.ac.uk

• DILL is a global challenge, recognised by the UN, 
governments and NGOs.

• In the context of population ageing, continuing 
digitalisation, and fast-changing technologies, many older 
adults are digitally excluded from services and resources 
that are needed to maintain their independence, wellbeing 
and social connections.

• This research aims to explore the barriers and enablers to 
digital technology adoption in later life and create effective 
and scalable solutions to improving the digital literacy of 
older adults and developing and deploying accessible 
digital services.



Digital inclusion

User studies

Participatory design

Community engagement

Abd Ardati
Abd.ardati@st-andrews.ac.ukCommunity-Led Digital Inclusion

• Ethical digital transformation and digital inclusion, particularly for marginalised 
communities. 

• His work explores ways to build digital skills, reduce exclusion, and address AI bias.
• He collaborates with policymakers, industry, and civil society to support responsible 

digital innovation. 
• Through initiatives like the Scottish Collective Intelligence Community (SCIC), he 

examines how participatory approaches, and AI can enhance decision-making and 
governance.

• Contributes to shaping ethical, inclusive digital policies and practices that ensure 
technology benefits all communities.



The Inclusion, Diversity, Equity, and Accessibility in Open Research 
Network (IDEA Network for short):
• To make knowledge production inclusive, diverse, equitable, and 

accessible to all people, regardless of their background, location, or 
culture

• by engaging research institutions in high-impact open knowledge 
projects that bring researchers closer to communities and 
encourage collaboration.

• IDEA Network has led several impactful projects, including The Role 
of Universities in an Ethical Digital Nation, which explores how 
universities can align with the government’s vision for ethical digital 
transformation.

Website

Digital Inclusion 
WikiConnect Project

Abd Ardati
Abd.ardati@st-andrews.ac.uk

Kirsty Ross
ksrh1@st-andrews.ac.uk



Tristan Henderson
tnhh@st-andrews.ac.uk

Human-data 
Interaction
• HCI evolved from interactions

between humans and 
computers as artefacts

• but we increasingly interact
with data rather than 
computers

• see e.g. Encyclopedia of HCI

• How do stakeholders (e.g. data 
subjects, data protection officers) 
engage with technology law and 
related technologies?

• See e.g. GoodIT 2024 
doi:10.1145/3677525.3678675

Participatory Design 
for Data-centred 
Projects

https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed/human-data-interaction
https://doi.org/10.1145/3677525.3678675


Systems
Theme Lead: Stephen McQuistin (sjm55@st-andrews.ac.uk)



Systems: Overview
• Research Challenges:

• How do we design computer systems that scale to millions or billions of 
users?

• How do we balance the trade-offs between performance, energy 
consumption, and security in computer systems?

• How do we ensure that the increasingly complex and interconnected 
systems that we build are sustainable and provide social benefit?

• The Systems Research Theme:
• Systems is one of the largest research areas in the School, covering the 

broad areas of distributed systems, networked systems, sensor systems 
and data-intensive systems

• The group takes a very practical approach to research, by building and 
evaluating real systems, whilst publishing in many of the top-tiered 
systems research conferences and journals



Computer Systems
Broad interests:
● Dynamic Binary Translation
● Virtualisation
● Operating Systems
● Compilers
● Hardware Acceleration

Tom Spink
tcs6@st-andrews.ac.uk

Simulation and Virtualisation

● Generating Fast and Efficient Instruction
Set Simulators from Formal Semantics

● Virtualising the Internet-of-Things
● Hybrid Static/Dynamic Binary Translation

Hardware Acceleration

● Hardware Accelerated JIT Compilation
● Sparse Matrix Acceleration

Operating Systems

● Make Unikernels Great: Making unikernels a viable alternative to 
containers



Generating Fast and Efficient Instruction Set 
Simulators from Formal Semantics

● Formal semantics can accurately describe the 
Instruction Set Architecture of a processor, but they are 
often verbose, containing a significant amount of 
detail.

● Such detail is not required for functional simulation of 
the ISA, and instead gets in the way of doing things fast.

● This project aims to identify parts of formal semantics 
that do not directly contribute to ISS, and generate a 
simulator from these descriptions that is significantly 
faster than existing.

Tom Spink
tcs6@st-andrews.ac.uk

Ferdia McKeogh
tcs6@st-andrews.ac.uk



Virtualising the Internet-of-Things

The Internet-of-Things is growing! There are literally billions of connected 
devices, from light bulbs to toasters.

But, companies are not testing their products at scale – or if they are, it’s 
using a “patchwork” of simulator tools that don’t give a holistic overview of 
what’s going on.

Combining my expertise in fast simulator generation, I’m looking to change 
that by developing high-performance, configurable simulation infrastructure 
to model and simulate large IoT device deployments, from the hardware to 
the software.

Tom Spink
tcs6@st-andrews.ac.uk



Hybrid Static/Dynamic Binary Translation

Work in collaboration with: TU Munich
● Binary Translation is an important tool in modern 

systems, facilitating the transition from one processor 
architecture to another.

● Dynamic Binary Translation introduces a lot of runtime 
overhead, and Static Binary Translation is often 
impossible in a lot of cases.

● Combining these strategies, we have developed 
techniques that provide a “hybrid” translation 
environment.
○ Translate as much statically as possible, and fall back to 

dynamic translation when required.

Tom Spink
tcs6@st-andrews.ac.uk



Hardware Accelerated JIT Compilation

Work with PhD student: Kim Stonehouse (University of Edinburgh)

● JIT compilers are prevalent in dynamic language runtimes, such as Java, 
C#, WebAssembly, Python, PHP, etc – and the popularity of these 
language is growing.

● These languages are found on devices ranging from mobile phones, 
through to scale-out applications running across data centres.

● Recognising this, we aim to build faster and more energy efficient JIT 
compilers in hardware (i.e. specialised hardware for JIT compilation), so 
that the performance of applications written in these languages 
improves significantly.

Tom Spink
tcs6@st-andrews.ac.uk



Sparse Matrix Acceleration

● Sparse Matrices are an important underlying data 
structure in many scientific and ML-based 
application.

● Recognising that with sparse matrix computations 
comes a number of potential optimisations, and 
that scientific workloads are demanding more and 
more performance, we aim to build an accelerator 
specifically designed for performing fundamental 
operations on sparse matrices.

Tom Spink
tcs6@st-andrews.ac.uk

Simon Dobson
Simon.Dobson@st-andrews.ac.uk 

mailto:Simon.Dobson@st-andrews.ac.uk


Make Unikernels Great: Making unikernels a 
viable alternative to containers

The container ecosystem is highly prevalent, and used significantly in 
both development and end-user workflows.

● They allow applications to be bundled together with their dependencies, 
support files, and assets in a convenient package that can be 
distributed and orchestrated locally, or across a computing cluster.

● However, they incur significant overheads in terms of storage utilisation, 
and can also have certain performance implications too.

● This project proposes Unikernels as a viable alternative to the container 
ecosystem, playing off their strengths as bare-metal applications with 
full access to virtualised hardware.

Tom Spink
tcs6@st-andrews.ac.uk



Edge Computing

• Key benefits
• Privacy preserving
• Improves responsiveness by 

processing closer to user
• Reduces bandwidth demand
• Reduces environmental impact

Cloud

Edge

Cloud

Extreme edge - 
devices, including 
sensors/ actuators

Blesson Varghese
blesson@st-andrews.ac.uk



Edge AI research
• Edge AI - bridging machine learning (ML) and 

edge computing
• How to run ML on small devices with 

limited compute and memory?
• Host and direct the Rakuten-funded Edge Computing Hub
• Partners in the recently awarded UKRI National Edge AI Hub 

(~£10M)
• 12 UK universities and 

55+ industry partners
• We lead a research theme and the Industry

Engagement Directorate in Scotland.

MBs a few GBs

…

a few more GBs

…
Neural 

Networks

Transformers

Developed a range of 
new techniques to train 
and run ML models:

• Offloading
• Compression
• Pipeline parallelism
• Local learning

Blesson Varghese
blesson@st-andrews.ac.uk



Al Dearle

Al Dearle
Alan.dearle@st-andrews.ac.uk

Richard Connor
rchc@st-andrews.ac.uk

Similarity Search

• Modern neural networks very good at producing embeddings:
• High-dimensional vectors that contain dense information about the network input.

• Typically used to perform classification tasks, 
• but usually distance metrics over the embeddings give a good proxy to similarity 

within the original domain.
• In the example image, we are querying a large set of random photographs with queries 

representing a border collie dog, and the results are mostly also border collies, a tiny 
minority of all the photos present in the set.

• We have pioneered the use of polyadic queries, where more than a single object is 
presented as a single, composite query.

• The results shown here are better than those returned by any individual element of the 
query set.

• Most current techniques for search use a notion of graph navigation to achieve fast query 
time, but such techniques are inherently unscalable to, for example, billion-scale data.

• We are investigating various locality sensitivity techniques, which typically require much 
less pre-processing time, to address this issue.

• Find, from within a very 
large collection of objects, 
those few that are most 
similar to another object 
presented as a query.



Al Dearle
Alan.dearle@st-andrews.ac.uk

Richard Connor
rchc@st-andrews.ac.uk

Similarity Search

• Also interested in more theoretical aspects of high-
dimensional vector spaces.

• We have shown some startling correlations among 
various commonly used loss functions in neural 
networks, and have some early results suggesting 
that more principled information-theoretic metrics 
may perform better than those commonly used.

• The nSimplex-Zen transform has been developed 
over Hilbert spaces in general, which include most 
commonly-used metric spaces.

• Its performance, in terms of accuracy, is markedly 
better than any of principle component analysis, 
multidimensional scaling, and random projects for 
almost all spaces.

• The picture is an abstraction of a high-dimensional 
polytope being rotated in a one-smaller dimension 
to demonstrate an upper-bound property and a 
powerful estimator function.



Linkage

● Scottish Historic Population Platform SHiPP
project (with Edinburgh)

● The aim is to link records of Scotland 1855-
1973 to reconstitute the genealogical 
population structure for use in other research 
(medical, historical, sociological etc.)
■ 14 million births (1.9Gb)
■ 11 million deaths (2.3Gb)
■ 4.2 million marriages (0.8Gb)
■ 18 million individuals

Al Dearle
Alan.dearle@st-andrews.ac.uk

Graham Kirby
Graham.kirby@st-andrews.ac.uk

Ozgur Akgun
Ozgur.akgun@st-andrews.ac.uk



Birth Record

www.scotlandspeople.gov.uk/content/images/famousscots/birthCharlesRMcIntosh1868.tif

Charles Rennie
Macintosh

A 19th Century Scottish 
architect, designer, 
water colourist and 
artist.



Linkage: Metric Indexing
● Comparing each record with every other record would be prohibitively 

expensive many use blocking but blocking potentially misses 
potential matches.

● Metric indexing does not suffer from that problem
● We therefore use a metric indexing system called BitPart to index the 

data (from our similarity search work)
● The BitPart index structure creates a set of inclusion zones encoding 

the inclusion of data points in (or out of) a set of database partitions in 
a binary fashion with respect to a set of reference points. 

● A relatively small number of reference points (in the order to 20-40) is 
enough to characterise the search space and each metric query only 
requires distances to be calculated to the reference points.

● For large datasets such as the Scottish vital event records this 
represents a large performance increase.

● Furthermore, the index is highly compressed (as a set of bits) and 
obviates the need to directly interact with the stored database 
records when making queries.

Al Dearle
Alan.dearle@st-andrews.ac.uk

Graham Kirby
Graham.kirby@st-andrews.ac.uk

Ozgur Akgun
Ozgur.akgun@st-andrews.ac.uk
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! Performance Optimisation

! Security & Privacy

! Scalability

! Energy Efficiency

Identifier Locator Network Protocol (ILNP)

Internet addressing architecture, routing state, multiple connectivity, ubiquitous 
connectivity.
https://ilnp.cs.st-andrews.ac.uk 

Protocol performance, mobile / wireless, quality of service for end-systems.
https://sites.cs.st-andrews.ac.uk/people/snb6//tcp.html 
https://sites.cs.st-andrews.ac.uk/people/snb6//ieee_802_11-wifi.html 
https://sites.cs.st-andrews.ac.uk/people/snb6//qos.html 

Architectural mechanisms for privacy and security, without new cryptographic techniques.
https://sites.cs.st-andrews.ac.uk/people/snb6//privacy.html 
https://sites.cs.st-andrews.ac.uk/people/snb6//security.html  

Client-side energy efficiency, mobile / wireless Internet connectivity, energy usage in video.
https://sites.cs.st-andrews.ac.uk/people/snb6//energy.html 

Saleem Bhatti
saleem@st-andrews.ac.uk

https://ilnp.cs.st-andrews.ac.uk 

https://ilnp.cs.st-andrews.ac.uk/
https://sites.cs.st-andrews.ac.uk/people/snb6/tcp.html
https://sites.cs.st-andrews.ac.uk/people/snb6/ieee_802_11-wifi.html
https://sites.cs.st-andrews.ac.uk/people/snb6/qos.html
https://sites.cs.st-andrews.ac.uk/people/snb6/privacy.html
https://sites.cs.st-andrews.ac.uk/people/snb6/security.html
https://sites.cs.st-andrews.ac.uk/people/snb6/energy.html
https://ilnp.cs.st-andrews.ac.uk/


Building a Trustworthy Internet

Developing protocol 
description languages 
for Internet standards 

documents

Analysing the social 
and political process 

of standards 
development

Measuring the 
network to 

understand the impact 
of standardisation

Stephen McQuistin
sjm55@st-andrews.ac.uk



Tristan Henderson
tnhh@st-andrews.ac.uk

• We can use for instance data portability rights requests to obtain data 
from data controllers in a machine-readable format.
• Can be used to understand how systems work, and also to audit them to make 

sure that they do what they are supposed to be doing.

• Data rights as a tool to measure how the law works in practice
• e.g. using data rights to measure compliance with GDPR Art 20 (data portability)
• see IDPL 2019 doi:10.1093/idpl/ipz008

• Data rights as a tool to audit large-scale systems:
• e.g. using data rights to gather ground truth data on cloud-based health systems

• See WRAPS 2021 doi:10.1145/3460418.3479343 

How can we use technology law as a 
measurement tool?

https://doi.org/10.1093/idpl/ipz008
https://doi.org/10.1145/3460418.3479343


Programming Languages
Theme Lead: Edwin Brady (ecb10@st-andrews.ac.uk)



Programming Languages: Overview

• Type Systems (type-driven development), refactoring.
• Parallel and Concurrent programming.
• Energy Efficiency
• Runtime systems, GPUs, hardware architecture.



Type Systems

• Types are a key concept in language design.
• A way of classifying values 

• e.g. numbers, text, functions, . . .

• A well-understood formal method
• We can think of them as lightweight specifications 

• Safe type-directed editing and refactoring
• Expressing concepts such as: what a program can do, when it is allowed to do it 

(protocol verification) 
• Research problems: expressivity, ergonomics, applications
• Idris (http://idris-lang.org/) is a functional programming language with first 

class types, supporting type-driven development. 
• Development led in St Andrews.

• Hundreds of contributors (academic and industry) 

• Programming as a conversation, led by types as a lightweight
specification.

Edwin Brady
ecb10@st-Andrews.ac.uk 

Chris Brown
cmb21@st-Andrews.ac.uk 

Adam Barwell
adb23@st-Andrews.ac.uk 

http://idris-lang.org/


Parallel and Concurrent Programming 

•Multi-core CPUs are everywhere, but 
much easier to program sequentially
How to take advantage of parallel 
architectures 
• Language design choices Refactoring, 

preserving semantics 
• Reliability of concurrent systems 
• Energy efficiency: can we predict and 

reduce energy usage of a program, by 
static analysis? 

Chris Brown
cmb21@st-Andrews.ac.uk 

Adam Barwell
adb23@st-Andrews.ac.uk 



Hardware Architecture and Runtime 

• Programs are translated to a form which runs 
on hardware Semantics must be preserved. 
•Challenging on modern, heterogeneous 

systems! 
•Memory consistency models for ARM, RISC-

V, IBM POWER machines 
•Cache protocol verification Assembly code 

semantics Efficiency of binary translation 

Tom Spink
ecb10@st-Andrews.ac.uk 

Susmit Sarkar
ecb10@st-Andrews.ac.uk 



Can we Afford AI
(and the Rest of Computing)?

Simon Dobson
Simon.Dobson@st-andrews.ac.uk 

mailto:Simon.Dobson@st-andrews.ac.uk


Computing is amazing!
• The only technology that can save the planet

• Simulate and analyse our societal challenges

• Cloud, machine learning, and artificial intelligence
• Extend the power of available computing, and the range

of potential algorithms we can apply

• Data collection through sensing
• Cheap, in the field, embedded, ...

Wikimedia Commons

NASA



The effects
• Changes the way we do science

• Collect lots of data
• ...and be confident we can actually process it afterwards
• Machine learning as well as more traditional curve-fitting

• Change the science we do
• Simulation as a “third pillar” alongside theory and experiment
• The computer as the new microscope

• ...and surveillance capitalism :-(

sciencemuseum.org.uk



Ubiquitous computing
• General-purpose computing

• Fast, convenient, elastic
• Don’t have to commit ahead

of time

• Some applications can “pre-commit”
• Sensors in the field, wearables, embedded, …
• The environment constrains the power envelope
• Cheap and flexible for field use

Chilton computing Marco Herrera via Wikipedia



But There’s a Problem
• Power consumption is a massive constraint on computing futures

• Unsustainable energy, water, and resource footprints

• At scale
• “In the cloud” simply means “out of sight, out of mind”
• ...but AI compute demands double every 100 days
• ...and currently accounts for 2.1–3.9% of all greenhouse gas emissions

• Pervasively, in people and the environment
• Can’t collect, store, or process the data as we want to, sustainably

According to the World Economic Forum



Where Does It Come From?
• (Computing) power costs (electrical) power

• Moore’s law has a power analogue,
via the Second Law of Thermodynamics

• Modern chips are massively more
efficient – but still draw massively more
power and need to shed massively more
heat

quietpc.co.uk
Wikipedia

Wikipedia techpowerup.com



...and it needs fixing urgently

• We’re starting to see pushback
• Economics favours consolidation into “hyperscalers”
• And the “digital exhaust” remains too valuable to lose

utilitydive.com

techradar.com

guardian.com

theconversation.com

denverpost.com



...and is often amazingly mis-diagnosed

nytimes.com



...and there are pressures the other way
• Commercial concerns mitigate against

even trying to address the issue
• Infinite demand for AI implies an

infinite power demand
• Grows faster than we can reduce power

consumption in (all) other areas

• Should we really give up before we’ve
properly tried?

https://x.com/tsarnick/status/1842401670225125539



Where is the power consumed?

• Computing in data centres can be very efficient and secure
• ...but also concentrates the load on the grid
• ...and makes a valuable target

• Distributed computing reduces (literal) hot-spots
• ...at a cost of requiring more power everywhere
• ...and requiring more user effort to keep secure



Distributing AI
• “Older” models like ChatGPT require enormous computing and 

storage
• Especially during training, ut increasingly during operation
• Recent advances like “test-time training”

increase power load

• “New” models like DeepSeek-v3 appear to be far cheaper
• Less training time, less storage, …
• Some very novel architectural decisions,

like using 8-bit floating-point numbers for weights



Our interest
• A topic we’re becoming increasingly interested in

• Keep the benefits of computing…
• ...but stop exacerbating the problems we’re trying to solve

What do
advanced computing futures with

radically reduced
environmental footprints

look like?

• Across all our research
• Computer systems
• Programming languages
• AI
• HCI
• Digital health



Vision: A holistic view of computing futures
• How should we program?
• Do we need new platforms?
• Where do AI and machine learning fit?
• How do I simulate complex systems?
• How do analyse lots of data?

• Impart sustainability at the
centre of our world-leading
student experience



The entwinedness of low power
• Solutions come from interactions across our main research themes:
• A lot of computing in the field can be powered from local low-voltage solar – even in Scotland. If:

• We can design algorithms to work in a compatible way.
• We can design algorithms to work in a compatible way.
• We keep machine learning for what it’s really good at.

economist.com



Low power @ St Andrews
• There’s a global challenge to be addressed

• Arguably the only significant computing challenge is power consumption

• A holistic take
• Leverage our small size to work together
• Positioning to train the next generation of young minds
• Re-centre the computing curriculum while

driving the technology research



Part I: Summary



Summary

• We are eager to collaborate!
• If you have seen anything that might interest you, please do get in 

touch and I will connect you to the right person/group.



Part II: Automated Constraint 
Modelling & Solving



Constraint Programming in a 
Nutshell



Constraint Programming

• An active field of Artificial Intelligence in which we 
study how to model and solve constraint satisfaction 
problems.

• Subject of major investment from industry.
• E.g. Google OR-tools, IBM CP-optimizer



Constraints: A Natural Means of 
Knowledge Representation

• x + y = 30
• Adjacent countries on map

cannot be coloured same.
• The telescope must be 

observing a particular star at
a particular time.
• The deployed application:

• Requires at least 2GB of memory.
• This set of applications:

• Must be deployed in the same region.

Highland
Moray

Ab’dnshire
P&K

Fife
Angus

St Andrews University Observatory



The Constraint
Satisfaction Problem
• A general way in which we can represent and solve 

decision-making problems:
• Given:

1. A set of decision variables.
2. For each decision variable, a domain of potential 

values.
3. A set of constraints on the decision variables.

• Find:
• An assignment of values to variables such that all 

constraints are satisfied.



1. Decision Variables

• A decision variable corresponds to a choice that must be 
made in solving a problem.

• In university timetabling we must decide, for example:
• The time for each lecture.
• The venue for each lecture.
• The lecturer for each lecture.
• …



2. Domains

• Values in the domain of a decision variable correspond 
to the options for a particular choice.

• E.g. Decide lecture time.
• Values in this domain:

9am, 10am, …, 5pm

• E.g. lecture venue.
• Values in this domain:

theatre A, theatre B, …

• A decision variable is assigned a
single value from its domain.
• Equivalently: the choice associated with

that variable is made.



3. Constraints
• scope: subset of the decision variables a constraint involves.

• Of the possible combinations of assignments to the 
variables in its scope, a constraint specifies:
• Which are allowed.

Assignments that satisfy the constraint.
• Which are disallowed.

Assignments that violate the constraint
• I.e. can think of a constraint as a relation.

• E.g. if variables tA, tB, represent
time for lectures A, B, both taken
by student S:
• tA ≠ tB (student S can’t be in two

places at once!)



The Constrained
Optimisation Problem (COP)

• A CSP + an objective function.
• E.g. maximise/minimise value of some 

variable/expression.
• In our example: maximise preferences of lecturers.

Given:

Find:
• An assignment of values to variables such 

that:
• All constraints are satisfied.
• The objective is optimised.



Problem Classes
• A problem class describes a family of problems, 

related by a common set of parameters.
• Obtain an instance: give values for the parameters.
• Example: n-queens problem class.

Place n queens on an n x n chess board such that no 
pair of queens attack each other.
• Here is a solution to the 4-queens instance.

102
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The Sudoku Problem Class

• Sudoku is parameterised by the set of filled-in cells 
in the grid:

2 6 8 1

3 7 8 6

4 5 7

5 1 7 9

3 9 5 1

4 3 2 5

1 3 2

5 2 4 9

3 8 4 6



Solving Problems with Constraints

• An efficient means of finding solutions to combinatorial 
problems.
§ Planning, Scheduling, Design, Configuration, …

• Two phases:
1.Describe the problem to be solved as a constraint 

model, a format suitable for input to a constraint solver.
2.Search (automatically) for solutions to the model with a 

constraint solver.



Constraint Modelling

• A constraint model maps the features of a given 
problem onto the features of a constraint satisfaction 
problem.

Input Problem

Constraint
Modelling

Mapping from Input
Problem to CSP

IN



Constraint Solving

• The CSP is input to a constraint solver, which produces 
a solution (or solutions).

Input Problem

Constraint
Modelling

Mapping from Input
Problem to CSP

Constraint
Solving

Solution(s) to CSP

Mapping
Back

Solution(s) to Input
Problem INOUT

Instance Data



Finding Solutions

• How does a constraint solver go about finding 
solutions?

• It combines:
• Search (guesses J), with
• Deduction (ruling out values it can prove cannot be 

part of a solution, based on the decisions made so 
far).



In More Detail

1. Systematic Search through a space of
partial assignments.
§ Extend an assignment to a subset of the variables 

incrementally.
§ Backtrack if establish that current partial assignment cannot 

be extended to a solution.

2. Constraint Propagation.
§ Deduction based on constraints, current domains.
§ Usually recorded as reductions in domains. 

Solutions



Representing Constraints

• Constraints are relations and can be represented by listing 
allowed/disallowed tuples of values (called “Table” constraints).
• Cumbersome, e.g. Sudoku.

• Instead, constraint solvers provide a library of commonly-occurring 
constraints that can be specified much more concisely.
• E.g. AllDifferent.

• Internally, the solver usually represents these constraints 
Intensionally:
§ An expression that can be evaluated:

o E.g. =, <, ≤, ≠.
§ An algorithm that can be executed:

o AllDifferent, various kinds of counting constraints.

2 6 8 1
3 7 8 6
4 5 7
5 1 7 9
3 9 5 1

4 3 2 5
1 3 2
5 2 4 9
3 8 4 6



Constraint Languages and 
Constraint Programs

• We do not usually work directly with 
CSP/COPs, which can be large and 
cumbersome.
• Instead we write constraint programs

(also known as constraint models) in 
constraint languages.
• A constraint program/model is a

recipe.
• When followed, produces a CSP/COP.
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Constraint Languages:
Common Features

• Allow us to declare decision variables, and their 
domains.

• Often support arrays of variables.
• And iteration over these arrays for concision.

• Allow us to model problem classes.
• I.e. allow us to specify parameters.



112

Constraint Languages:
Common Features

• All support table constraints.
• These are our basic building blocks.

• Equality, disequality, inequality.
• Operators allow us to build constraint 

expressions:
• Arithmetic: +, -, ´, absolute value.
• Logical: AND, OR, NOT

• These constraints are represented 
intensionally.



Automated Constraint 
Modelling



The Importance of Modelling

• There are typically many ways to formulate a constraint model of a 
problem.

• What should the variables be? Their domains?
• How should we express the constraints?

• These choices have a substantial effect on the efficiency of the 
solving process. 



Importance of Modelling: Example

• How should we model this problem?
• We should always begin by asking ourselves what decisions we 

need to make, and so what the variables are:
• A variable per square, domain is on/off for queen or not.
• A variable per queen, domain is square.
• A variable per row, domain is position of queen in that row.

• Since we know that each row must contain a queen.



Importance of Modelling: Example
• A variable per row, domain is position of queen in that row.

• Since we know that each row must contain a queen.

• The reason this is the best of the three is symmetry:
• A symmetry is a solution-preserving transformation.

Rotate 90 degrees clockwise:

Not a solution Also not a solution
BUT cannot be represented in our row-based model



Importance of Modelling: Example II

• Let’s say our problem requires us to model a set with four 
elements.

• Could be the contents of a bin, packages assigned to a van, items held by 
a robot, …

• And our constraint modelling language doesn’t support sets 
directly.

• So it is natural to use a 1-dimensional array of four elements:

1 2 3 4

a b c d
And add an all-different constraint



Importance of Modelling: Example II
• But there’s a problem. The original set has no indices but the array 

does.
• This is the same set:

• as:

• Why a problem? Because if the set {a,b,c,d} is not part of a 
solution the solver may have to search through all of its 
symmetrical equivalents to establish that.

1 2 3 4

a b c d

1 2 3 4

b c a d



Importance of Modelling: Example II
• So what can we do?
• One option is to insist the set is presented in ascending order:

• Or switch to a characteristic function-like representation:

• Which is best depends on the set we want to represent, the 
constraints on the set…

1 2 3 4

a b c d

a b c d e f

1 1 1 1 0 0

< < <
Notice hear that we can dispense with 
the all-different constraint



Automating Modelling.

• The preceding examples illustrate that some expertise is needed 
in formulating a model.

• Can we automate any of this process?
• Several ideas:

• Automate the improvement of a given model.
• ”Learn” the model by querying the user with example assignments.

• ConAcq and its descendants.
• Get LLMs to model the problem.

• We have a different approach…



A Constraint Modelling Pipeline



Our Constraint Modelling Pipeline
Essence

Essence 
Prime

Conjure

Savile 
Row

SAT 
Solving

CP 
Solving

SMT 
Solving

MIP 
Solving

• Overview:
• We capture an abstract 

specification of a constraint 
problem in the Essence language.

• Abstract: without committing to 
detailed modelling decisions.

• This is automatically refined into a 
solver-independent constraint 
model in Essence Prime.

• And then tailored for a particular 
solver type.



Constraint Modelling Pipeline: Essence
Essence

Essence 
Prime

Conjure

Savile 
Row

SAT 
Solving

CP 
Solving

SMT 
Solving

MIP 
Solving

• An abstract constraint 
specification language.

• Domain constructors, such as 
set, function, sequence, partition, 
relation, …

• Arbitrary nesting of these: set of 
sets, sequence of functions, …

• Attributes of these domains:
• Injective function, symmetric 

relation.

• Constraints/Operators on these 
domains:

• Projection on relations.
• Range of function.
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• Example: Social Golfers Problem.
• In a golf club there are a number of 

golfers who wish to play together in g 
groups of size s. Find a schedule of 
play for w weeks such that no pair of 
golfers play together more than once
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• Example: Social Golfers Problem.
• In a golf club there are a number of 

golfers who wish to play together in g 
groups of size s. Find a schedule of 
play for w weeks such that no pair of 
golfers play together more than once

Integer parameters
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• Example: Social Golfers Problem.
• In a golf club there are a number of 

golfers who wish to play together in g 
groups of size s. Find a schedule of 
play for w weeks such that no pair of 
golfers play together more than once

Individual golfers don’t need to be identified.
Symmetry avoided.
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• Example: Social Golfers Problem.
• In a golf club there are a number of 

golfers who wish to play together in g 
groups of size s. Find a schedule of 
play for w weeks such that no pair of 
golfers play together more than once

One highly-structured decision variable.
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• Example: Social Golfers Problem.
• In a golf club there are a number of 

golfers who wish to play together in g 
groups of size s. Find a schedule of 
play for w weeks such that no pair of 
golfers play together more than once

The socialisation constraint

NB Having described the combinatorial structure to be found using 
Essence’s types this is the only constraint left to be stated.
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• We can’t typically solve an Essence 
specification directly.

• We use the Conjure system to refine an 
Essence specification into Essence 
Prime.

• A subset of Essence with facilities common 
in constraint modelling languages.

• (Matrices of) Integer, Boolean variables.
• Logical, Arithmetic, Global Constraints.
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• Refinement proceeds from the choice 
of representation of the decision 
variables.

• The outer structure of sched here is a 
fixed-cardinality set.

• A natural model is via a matrix:
1 2 … w-1 w

<partition> <partition> … <partition> <partition>

Structural constraint: AllDifferent(sched)

sched
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• Key advantage of refinement-based approach:
• Recognise and break symmetry as it enters the 

model.
• By refining a set to an indexed matrix we introduce 

symmetry: permuting the weeks is solution-
preserving.

• Conjure knows this and adds constraints to break 
this symmetry: 

1 2 … w-1 w

<partition> <partition> … <partition> <partition>

< < < <

(and the AllDifferent is automatically removed)
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• We can think of a partition as a constrained 
set of cardinality g of sets of cardinality s: 

A 
week

1 2 .. g

1

2

..

s

Parts (i.e. groups)

Elements of 
each part (i.e. 
golfers)

Again, breaking 
symmetry. Among 
columns using 
lexicographic 
ordering.

Structural constraint: AllDifferent

< <

<

<

<

<

Domain: {1, …, g x s}
Where g x s is the 
number of golfers
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• Giving (a) representation of sched:

Weeks
Partitions

1 2 .. g

1

2

..

s

Parts (i.e. groups)
Elements 
of each 
part (i.e. 
golfers)
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• Conjure then refines the constraints to suit 
the representation chosen:

1 2 .. g

1 4

2 5

..

s

Parts (i.e. groups)

Elements of 
each part (i.e. 
golfers)

• Disallow 4, 5 in the same 
group in any other week

• How:
• Represent the 

intersection 
between parts in 
different weeks.

• Ensure size at most 
1.
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• Conjure has alternative refinement rules 
for both decision variable and constraint 
representation.

• Allows us to explore the space of models.
• Heuristics to select models likely to be 

effective.
1 2 .. g

1 0/1

2 0/1

..

gxs 0/1

Parts (i.e. groups)

Elements of 
each part (i.e. 
golfers)

Structural: each column sums to s.



Constraint Modelling Pipeline: Conjure

• We refined Essence specifications of 
42 benchmark problems from CSPLib.

• In doing so, naturally employed all six 
of the abstract types in Essence:

• Set, multiset, sequence, function, relation,
and partition.

• Confirmed that Conjure can generate 
the kernels of models written by 
human experts.

• I.e. not including implied constraints that 
might require arbitrarily complex chains of 
reasoning.
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• The Essence Prime model is close to the 
input of a constraint solver.

• Savile Row is responsible for:
• Tailoring this model to a particular solver
• Or encoding to a different formalism.

• While further enhancing the model.
• E.g. Common subexpression elimination, 

tabulation. 

Social Golfers 3 weeks

3 groups, size 
3

[1, 2, 3] [1, 4, 7] [1, 5, 9]

[4,5,6] [2,5,8] [2,6,7]

[7,8,9] [3,6,9] [3,4,8]

Solution to an instance of Social Golfers
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Directions
• Model selection:

• Conjure has heuristics, we are exploring using ML.
• This in turn requires training data:

• A framework for generating informative benchmark instances. N Dang, O Akgun, 
J Espasa, I Miguel and P Nightingale. CP 2022.

• Solving Essence directly:
• A new solver called Athanor:

• Athanor: Local Search over Abstract Constraint Specifications. S Attieh, N Dang, 
C Jefferson, I Miguel, P Nightingale. Artificial Intelligence 340, 104277, 2025.

• Streamlining:
• Automated streamliner portfolios for constraint satisfaction 

problems. P Spracklen, N Dang, Ö Akgün, I Miguel. Artificial Intelligence 
319, 103915, 2023.




