
Algorithms and Data Structures 1

TIN060

Jan Hric

Lectures, part 2, v. 18.5.2015_c

 2

Dynamic sets
● Data structures for storing some data
● Dynamic structure: changes in time
● An element of a dynamic d.s. is accesible

through a pointer and has
1. A key, usually from some (lineary) ordered set
2. Pointer(s) to other elements, or parts of d.s.
3. Other (user) data (!)

 3

Operations
● S is a dynamic set, k is a key, x is a pointer to

an element
● Operations

– Find(S,k) – it returns a pointer to an element with
the key k (or NIL)

– Insert(S,x) – it inserts an element x into S
– Delete(S, x) – it deletes an element x from S
– Min(S) – it returns a pointer to an element with the

minimal key in S
– Succ(S,x) – it returns a pointer to the element next

to x (wrt. linear ordering)
– Max(S), Predec(S,x) – analogy to Min, Succ

 4

Binary search trees
● Dynamic d.s. which supports all operations
● A binary tree: each node has 3 pointers:

– Left child (left)
– Right child (right)
– Parent (par)

● A binary search tree (BST) invariant: for each
node x: each node in the left subtree of x has a
smaller (or equal) key than x, and each node in
the right subtree of x has a greater key than x

 5

Operations
● Find(x,k) ; x is a pointer to the root of the tree
while (x<> NIL) and (k<>key(x)) do
 if k=<key(x) then x:=left(x)
 else x:=right(x)
return(x)

● Time complexity is O(h), where h is the height
of the tree

● Min, Succ ...

 6

Operations
● Min(x) ; x is a pointer to the root of the tree
while (left(x) <> NIL) do
 x:=left(x)
return(x)

● Max(x) is symmetrical to the right
● Time complexity: O(h)

 7

Operations
● Succ(x) ; x is a local pointer (we don't need the

Root)
if (right(x) <> NIL)
 then return Min(right(x))
 else ; x doesn't have a right child
 y:= par(x) ; go up to the left ancestor
 while y<>NIL and x=right(y) do
 x:=y
 y:=par(y)
 return(y)

 8

Modification operations: Insert
● insert(x,z) ; x is a pointer to the root of the tree, z to the new element

y:= NIL ; w:=x ; we suppose left(z)=right(z)=NIL

while (w<>NIL) do ; going down through the tree, with 2 pointers
 y:=w ; invariant: y=par(w), if w=NIL, insert z under y

 if key(z) =< key(w)
 then w:=left(w)
 else w:=right(w)
par(z):=y
if y<>NIL then
 if key(z) =< key(y)
 then left(y):=z
 else right(y):=z
 else x:=z ; z is a new root, the tree was empty

 9

Operation: delete
● delete(x,z) ; x is a pointer to the root of the tree, z to the being deleted element

if left(z)=NIL or right(z)=NIL
 then y:=z ; going down through the tree, with 2 pointers
 else y:=Succ(z) ; y points to the be-deleted node

if left(y)<>NIL
 then w:=left(y) ; w points to the only child of y or NIL

 else w:=right(y)
if w<>NIL then par(w):=par(y) ; fixing the parent of w

if parent(y)=NIL
 then x:=w ; a new root

 else if y=left(par(y)) ; fixing the left/right down-pointer

 then left(par(y)):=w
 else right(par(y)):=w
if y<>z then key(z):=key(y) ; moving information

 10

Operation: Delete 2
● delete(x,z) ;
● 2 cases: 0-1 child or 2 children

– 0-1 child: we can delete in place
– 2 children: we must delete (from the place of) Successor

● Complexity: O(h)
● In case of pointers to the elements from outside of our data structure:

repointering of Succ(z)
– We want to leave a physical copy of Succ(z) - if it exists

 11

Balanced binary trees
● Time complexity of BST: O(h)

– On each level: Θ(1)
– For „plain“ BST with n elements:

● An average case: O(log n)
● The worst case: O(n) :-(

● Goal: each operation should be in O(log n) in
the worst case
– By using special local transformations

● Local and global invariants stay valid
– Local information is added

● Approaches: Red-Black trees, AVL trees

 12

Red-Black trees
● Each node has a colour: red or black

– Implementation: 1 bit
● Red-Black tree fulfills 4 conditions:

1. Each node is either red or black
2. Each leaf (NIL, an external leaf) is black
3. If a node is red, both its children are black
4. Each path from a node to any child has the same

number of black nodes, so called black height (bh)
● From 3., no two red nodes are neighbours on a

path → the worst ratio of a path length is 1:2
– Only black nodes vs. Alternating black and red nodes

 13

Height of R-B trees
● Lemma: R-B tree with n internal nodes has a

height h at most 2.log(n+1)
● Proof: by induction on the height
A subtree rooted in x has at least internal
nodes, by an induction
Apply to the root: , thus
● Corollary: #operations is O(log(n)), supposing

O(1) complexity for each layer

2bh  x−1

h≤2log n1n≥2h/2−1

 14

Rotations
● → Right rotation ; ← left rotation

– A local change, the same ordering
– Changed edges in a right rot.: parent-y, y-x, x-β

● We must update pointers in both directions

 →
 ←

 15

Insert
● We can recolour a red root to a black root without a violation of

invariants → it is the only way to increase the black height of a
tree
– We maintain the black root as an additional invariant

● We insert a node X to a tree as a leaf of BST and colour it red
– A possible defect is two red nodes on a path

● Analysis of Insert:

1. A black node above two red nodes
→ a defect must be propagated up, no reserve

2. A black node above a black node(s) forms a reserve, we can
insert locally

● Analysis of a defect: the uncle of X is 1. red or 2. black
– Or no defect → the tree is valid

 16

 ● The uncle of X (D in pictures) is red
● Recolour, propagate, C is a new X

 →

● The parent of C can be red → the only possible
defect
– An ordering is valid, 1-5 are black (are under red nodes)
– A local black height of 1-5 does not change

 17

 ● The uncle of X is red, X is an outer node
● Recolour, propagate, C is a new X

 →

● In all cases: 1-5 can be NIL

 18

 ● The uncle of X (4 in pictures) is black
– A local elimination of the defect, no propagation

 →

● Edge C-4 is correct, as (the root of) 4 is black

 19

Delete(T,x)
● We delete a leaf, possibly after relinking the

successor of x
– A new defect, if any: a node is double black
– The deleted node has

1. 0 children → an external node (NIL), double black
2. 1 child (red) → an internal node, black
3. 2 children, only during propagation → use transformations

● Transformations: by analysis of cases
– Only O(1) time on each level

 20

Delete 1
● The parent of X is black and the brother is red

– Restructuring → The brother is black, continue

● Check an ordering of a tree and a validity of
edges

 21

Delete 2
● The brother of X is black and has black children

(and a colour of the parent B does not matter)
– Elimination of a defect (if B was red) or
– Propagation (if B was black) and B is the new X

 →

 22

Delete 3
● The brother of X is black and has an outer black

child (and an inner red one)
– Restructuring → continue by 4

 →

 23

Delete 4
● The brother of X is black and has an the outer

red child (and a colour of other child does not
matter)
– Local elimination of the defect, we had a reserve

 →

● … and symmetrical cases

 24

AVL trees
● Def: (Adelson-Velskij, Landis) A BST is an AVL tree

(AVL balanced) iff for each node x holds:
|h(left(x)) – h(right(x))| <= 1 ,
where h(x) is the height of a tree

● We remember an actual balancing (from {-1, 0, +1})
for an efficiency of operations; (-1 ≈ left is deeper)

● Theorem: The height of AVL tree with n nodes is
O(log n)
– By an induction, we construct a tree having a height h

with least nodes
– ch=ch−1ch−21= fibbonaci h3−1  for fib3=2

 25

Operations on AVL trees
● Corollary: Nonmodifying operations: in O(log n)
● Modifying operations: Insert, Delete

– As in BST, but a propagation of a change bottom-up, if
needed

– Locally: fulfill an invariant using rotations (and propagate)
● Properties of rotations:

– Ordering of keys and subtrees is preserved
– Height is preserved or propagate a change
– Double rotations can be implemented by two simple

rotations, but for invariant proofs we take it as a single
operation.

 26

Insert 1
● Check and update balancing bottom up, if needed
● A single rotation: Insert X to an outer subtree

● Local and global heights are the same → no
propagation needed

 27

Insert 2
● Double rotation: Insert one of Xs to an inner

subtree

● Local and global heights are the same → no
propagation needed

 28

Delete
● Delete X, in the left child of A
● Balancing -1: h(left) > h(right)

– Propagate a decrement up

 29

Delete 2
● Delete X, in the left child of A
● Balancing 0: h(left) = h(right)

– Update balancing, no propagation

 →

 30

Delete 3a, 3b
● A single rotation, balancing +1 in A

– Case 3a) h(2) < h(3): w/o „?“: propagate a decrement
– Case 3b) h(2) = h(3): w/ „?“: without any propagation

 31

Delete 3c
● A double rotation, +1 in A, -1 in B

– Case 3c) h(C) > h(3), at least one „?“ exists
– Propagate a decrement

 →

 32

Remarks
● Usual implementation of operations is by a

recursion
– But we can remember the path explicitely: „LLRL“
– And propagate accoding to data without a recursion

● In some programming languages:
– A representation of trees by terms: t(Left,X,Right)
Rot3c(t(T1,A,t(t(T21,C,T22),B,T3)),
 t(t(T1,A,T21),C,t(T22,B,T3))).

 33

(B-trees)
● (Temporarily) skipped

– B-trees are included also elsewhere (Data structures)
● Nonbinary trees

– Used in database indices, have nodes at disk pages
– In some sense: a generalization of R-B trees

● Each leaf has the same depth
● A black node with red nodes below ~ a node in B-tree

– A node can have a variable number of keys and
children
● In a B-tree: between n/2 and n → a reserve in space allows

spliting and joining nodes (at the same level)

 34

B-trees
● A split of a vertex … (pictures)

 35

Hashing

● Hash tables are suitable for representation of
dynamic sets having only the operations Insert,
Delete, and Find
– A time complexity in an average case for 3 ops: Θ(1)
– Comparing to BST: no interval search (using Succ)

● An idea: a directly addressable table = an array
– But: keys (=indices) must be different
– A universum of keys is small
– There are data or pointers to data in a table

● Keys are stored explicitely or can be computed

 36

Hashing
● If a universum of keys is big:

→ compute an index to the table from data
– The hash function h: U → {0..m-1}, usually |U| >> m

● A hash table size is proportional to a number of
actually stored keys

● A problem: collisions
– Two (or more) keys hash to the same index
– Collisions are present, if |U| > m

 37

Collision solving
● 2 basic types of methods

1. A chaining of elements
2. An open addressing

● Ad 1: Elements hashed to the same index are
stored in a linked list

● Insert(x): Compute h(key(x)) and store x to the
beginning of the relevant list – Θ(1)

● Delete(x): Θ(1) if a linked list is bidirectional and
we have a pointer to x, otherwise as Find(x)

 38

Analysis
● Def: A load factor α = n/m, m is a table size, n is

 a count of stored elements
– A table with linked lists can have α > 1

● Preconditions:
– A value of a hash function is computed in Θ(1)
– A simple uniform hashing: each key is hashed to

the m places with the same probability,
independently of other keys
● A birthday paradox: A probability that among 23 people

some couple has the same birthday is above 50 %
● Find: successful and unsuccessful

 39

Analysis
● Theorem 1: An unsuccessful search takes

Θ(1+α) in a hash table with linked lists,
supposing a simple uniform hashing
Proof: The key k is hashed to m slots with the
same probability. An unsuccessful search
passes through a list till its end. An average
length of lists is α. An expected number of
analysed elements is α and a total time is
Θ(1+α).

 40

Analysis
● Theorem 2: A successful search takes Θ(1+α)

in a hash table with linked lists, supposing a
simple uniform hashing
Proof: Suppose that each stored element is
searched with the same probability. Suppose
new elements are stored at the end of lists.
Expected number of processed elements is
1+number of elements in a list during an
insertion of a searched element.
The expected length of a list is (i-1)/m during an
insertion of the i-th element.

 41

Analysis

● A conclusion: if n=O(m), then α=n/m=O(1)
● A note: inserting to the end vs. the beginning

– Frequent keys vs. a locality principle

 42

Hash functions
● Applications of hash functions (with different

demands)
1. A hash table
2. A signature of data, (a fingerprint ...)
3. In cryptography

● A construction of hash functions (for 1., 2.)
1. Hashing by division
2. Hashing by multiplication
3. Universal hashing (later)

● Note: We aim at a hash function which
distributes keys uniformly (and is quick)

 43

Hash functions
● A precondition: keys are numbers, otherwise

transform them to numbers
● Hashing by division

–

– Not suitable for m=2^p, 10^p, 2^p-1 (Q: why?)
– Suitable, if m is a prime number far from 2^p

● Hashing by multiplication
– , where 0<A<1
– If m is a power of 2, h(k) computes easily
– Knuth recommends A = (√ 5 -1)/2, a golden ratio φ

hk =k mod m

h k =⌊m⋅k⋅A mod 1 ⌋

 44

Hashing by multiplication
●

– An idea, for m=2^p ; k as a floating point: 1/2=<k<1
– A word length: w bits

h k =⌊m⋅k⋅A mod 1 ⌋

 45

Open addressing
● All elements are in a hash table, so a load factor is

α<1
● We compute indices to the table instead of having

explicit pointers in lists
→ a bigger table in the same memory

● A sequence of trials depends on a key and on the
order of a trial

h: U x {0..m-1} → {0..m-1}
– We look at positions h(k,0), h(k,1), … h(k,m-1), which

should be a permutation of all positions
● (A rule of thumb: α ≈ 70% - 90%)

 46

Open addressing
● An open addressing supports Find, Insert. An

implementation of Delete is nontrivial or
impossible
– Linked lists or Pseudodelete (with a rehashing)

● We want to approximate a uniform hashing:
– All m! sequences of trials are equiprobable

● Methods (only approximations of a uniform
hashing)
– A linear probing
– A quadratic probing
– A double hashing

 47

Open addresing - Methods
● A linear probing

– h(k,i) = (h'(k)+i) mod m
● Disadvantages:

– only m different sequences of trials
– Primary clusters are created: long sequences of

filled slots
● Ex: α=0.5, filled positions are:

1. Even
2. In the first half of a table

● HW: implement Delete for a linear probing

 48

Open addresing - Methods
● A quadratic probing

h(k,i) = (h'(k)+c.i+d.i^2) mod m; where c≠0, d≠0
– Parameters c and d must be appropriately chosen to

search through the whole table
– Only m different sequences, but without primary

clusters. Only secondary clusters for elements with
the same initial position

 49

Double hashing
● Using auxiliary fuctions h1 and h2

h(k,i) = (h1(k)+i.h2(k)) mod m
– If h2(k) is not commensurable with m (no common

factor), then a trial sequence goes through the
whole table

– A number of sequences is m^2.
● Examples of possible choices:

– m=2^p; h2(k) is odd
– m is a prime number, 0<h2(k)<m (~a pair of prime

numbers)

 50

Open addressing - analysis
● Theorem 1: An expected number of trials in a

table with open addressing with a load factor α
is 1/(1-α) for an unsuccessful search
(supposing an uniform hashing)

● Theorem 2: An expected number of trials in
table with open addressing with a load factor α
is 1/α ln(1/(1-α))+1/α for a successful search
(supposing an uniform hashing and an
equiprobable search of keys)

 51

Universal hashing
● A problem: Some n keys can be chosen so that they are

mapped to a single slot (if |U| > n^2) for each fixed hash
function

→ use a randomisation
– Idea: We choose a hash function randomly and

independently of keys from some suitable set of
functions
● A function is selected dynamically (in a run time), but then it

is fixed and used for a hash table
● Properties:

– No particular input (set of keys) is a priori bad (But ...)
– A repeated use on the same input calls (almost

surely) different functions → „an average case“ for
any data distribution (!an advantage of univ. hashing)

 52

Universal hashing
● Df: Let H be a finite set of hash functions from

U to {0..m-1}. The set H is called universal if for
all pairs of different keys x,y from U the number
of hash functions with a property h(x)=h(y) is
 |H|/m.

● An observation: for a randomly chosen function
h H is a probability of a collision for two
different random elements x, y exactly 1/m. It is
the same probability as if values h(x) and h(y)
are chosen randomly and independently from
{0..m-1}.

∈

 53

Universal hashing
● Theorem: let h be randomly chosen from a

universal set of hash functions and it is used to
hash n keys to a table with the size m, n=<m.
Then expected number of collisions of a
random key x is less than 1.

● Remark: a precondition n=<m means, that an
average number of keys in one slot is less than
1

 54

Construction
● We choose a prime number m and we split each

key x to (r+1) parts. We write x= <x_0,..,x_r>. The
r is chosen by the way that each x_i is (strictly)
less than m.

● Let a = <a_0,...,a_r> be a sequence of (r+1)
independent random numbers from {0..m-1}.

● Let , and .
● It holds: (the number of different as)
● A theorem: H is a universal set of hash functions

hak =∑i=0

r
ai x imod m H=∪a{ha}

∣H∣=mr1

 55

Example
● Ex: For x with a fixed size description: choose a

length of each x_i as 1 bit and select
corresponding a_i.
– Usually: a bit is set for some property/attribute of x
– An advantage: a quick update, incrementally

● (A hash is sometimes computed using bitwise XOR
instead of modulo)

● (Board) positions in games

 56

(Dynamic hash tables)
● Disadvantages of hash tables

– A fixed size m
– Only a pseudodelete operation

● An idea: a periodic reconstruction of data struct's
– Measurements by an amortised complexity: a worst case

in a seq. of operations
– Rehashing (eager or lazy), with a new function
– Increasing the size: 2 times (or d times), if a table is full

(wrt. α); also delete pseudodeleted elements
– Decreasing the size: 2 times, if the table has α.m/8

elements
● At least O(m) operations from previous reconstruction

 57

Graphs
● Representations of graphs: G=(V,E)

– Vertices V, |V| = n; Edges E, |E| = m
1. A neighbourhood matrix:

● A=(a_ij) with a size |V|x|V|, a used memory Θ(n^2)
● a_ij = 1 iff (v_i,v_j) E, and a_ij = 0 otherwise

2. A list of neighbours (a sparse representation):
● An array of size |V|: pointers to lists (or arrays)
● A memory: Θ(n+m)

3. By a computation: isEdge(i,j), getNeighbours(i)
● For undirected and directed graphs, without and

with weights (on edges)

∈

 58

Searching of graphs
● Two basic methods

– A depth first search (DFS)
● Using a stack

– A breadth first search (BFS)
● Using a queue

● A „three colours“ notation
– White for unvisited nodes, grey for processed

(open), and black for finished (closed) ones
– An invariant: no edge from any black node to a

white one

 59

A breadth first search
BFS(G,s) ; c: colour, d: distance, p: predecessor

1 forall u in V do c[u]:=white; d[u]:=Maxint;
2 p[u]:=NIL
3 c[s]:=grey; d[s]:=0; Queue:={s};
4 white Queue not empty do
5 u:=getFrom(Queue);
6 forall v in neighbours(u) do
7 if c[v]=white then ; d[v]=Maxint
8 c[v]:=grey; d[v]:=d[u]+1; p[v]:=u
9 addTo(v,Queue)
10 c[u]:=black; deleteFrom(u,Queue)

 60

BFS
● Notes:

– Searches a graph in levels according to a shortest
path (i.e. a number of edges from s)

– Visits all accessible nodes and creates a tree of
shortest paths (p[] in alg.)
● A reconstruction of a tree backwards (a „design pattern“)

– Works also for directed graphs (without changes)
– Is a base for other algoritms (a shortest path, a min.

spanning tree)
– Has a running time Θ(n+m), if a list-of-neighbours

repr. is used

 61

BFS: applications
● A test of connectedness of G

– Choose any vertex s and run BFS(G,s)
– If any vertex remains white, the graph is not

connected
● Counting of connected components of G

– Run repeatedly BFS from any white node till some
white node exists

● A test for a bipartite graph
● In Θ(n+m) time

 62

Depth first search
● Active (grey) nodes are stored on a stack

1. Recursive calls: an implicit stack
2. An explicit stack, in a data structure

● For directed graphs
● We use global time events: opening a node (d[])

and closing a node (f[])
● A representation of G: lists of neighbours

 63

A depth first search
DFS(G) ; c: colour, d: entry time, f leaving time, (p: predecessor)

1 forall u in V do c[u]:=white;
2 time:=0
3 forall u in V do if c[u]=white then VISIT(u)
4 procedure VISIT(u) ;recursive version

5 c[u] = grey;
6 time++ ; d[u]:=time
7 forall v in neighbour(u)
8 if c[v]=white then VISIT(v);
9 c[u]:=black
10 time++ ; f[u]:=time

 64

DFS applications
● As BFS
● A test for a cycle in G

● (A serialisation of a memory)
● (A garbage collection)
● (An implementation for implicit graphs: an

iterative deepening)

 65

Classification of edges
● For DFS in a directed graph
1. (i,j) is a tree edge iff j was searched from i; white

j during a visit of (i,j)
2. (i,j) is a backward edge iff j is an ancestor of i in

a DFS tree; grey j during a visit of (i,j)
3. (i,j) is a forward edge iff i is an (indirect) ancestor

of j in a DFS tree; black j during a visit of (i,j) and
d[i]<d[j]

4. (i,j) is a crossing edge otherwise; black j during a
visit of (i,j) and d[i]>d[j]

● For undirected graphs: only tree and backward edges

 66

DFS
● Properties:

– Tree edges create a directed forest
● a DFS forest: a set of DFS trees

– Intervals [d(i),f(i)] create a „good parenthesization“:
for each i≠j one of the following statements is valid:
● [d(i),f(i)] ∩ [d(j),f(j)] = Ø
● [d(i),f(i)] [d(j),f(j)] – i is a successor of j in a DFS tree
● [d(i),f(i)] [d(j),f(j)] – j is a successor of i in a DFS tree

– Corollary: j is a successor of i in a DFS tree iff an
interval for j is included in an interval for i

– Time: Θ(n+m)

⊃
⊂

 67

Topological sorting
● Df: A function t: V → {1..n} is a topological

numbering of V if for each edge (i,j) holds
t(i) < t(j).
– Another view: A topological ordering is a sequence

of vertices, where all edges go from the left to the
right

● An observation: A topological numbering exists
only for acyclic graphs
– No cycle ↔ no backward edge during DFS
– DAG – a Directed Acyclic Graph

 68

Algorithms
● Naive:
1. Find a vertex with no outgoing edge and assign

a last free number to it.
2. Delete the numbered vertex from a graph and

if the graph is not empty, goto 1.
● Time complexity: Θ(n.(n+m))

 69

Algorithms
● A topological sorting(G), in time Θ(n+m)
1. Compute DFS(G)
2. If a backward edge exists then
3. Return „impossible – the graph is not DAG“
4. Store all closed vertices to a head of a list S

during DFS ; no additional sorting
5. Return S
● Theorem: A numbering of vertices of DAG

according to decreasing values of closing times
f(i) is topological.

 70

Transitive closure
● Df: A graph G'=(V,E') is a transitive closure of a

directed graph G=(V,E) if for all pairs of vertices
i, j, where i≠j, holds:
if there is a directed path from i to j in G, then

● A transitive closure G' represented by a
neighbourhood matrix is a matrix of accessibility
of G
– The matrix can be computed in Θ(n.(n+m)) using

DFS n times

i , j ∈E '

 71

Strongly Connected Components
● Df: Let G=(V,E) be a directed graph. A set is a

strongly connected component if it holds:
1. For each i,j from K a directed path from i to j and a

directed path from j to i exist in G.
2. K is a maximal set fulfilling the condition 1.
● Ad 2: There is no strict superset L of K fulfilling 1.
● Corollary: each node belongs to a single SCC and all

SCCs create a decomposition of V
● A naive alg.: it uses a transitive closure, then it reads

SCCs from the matrix in Θ(n^2)

K⊂V

 72

SCC algorithm
● Input : G=(V,E)
1. Find all closure times d(u) of vertices using DFS,

return them in a linked list in a decreasing order
2. Make G' , the transposition of G
3. DFS(G'), where its main cycle selects vertices in

an ordering from the step 1.
● An output: DFS trees from 3. are SCCs of G
● Df: Let G = (V,E). A graph G'=(V,E'), where
 , is a transposition of G

● A usual notation: .GT

i , j ∈E '⇔ j , i ∈E

 73

Properties of SCC alg
● A transposition G' can be constructed in time

Θ(n+m)
 → An SCC alg. runs in time Θ(n+m)
● Lemma: Let G=(V,E) be a directed graph and K is

SCC in G. It holds after an SCC algorithm:
1. K is a subset of vertices of a single DFS tree
2. K creates a subtree in the constructed DFS tree

● Ideas: 1. from def. of SCC, a whole comp. is visited
● 2. Accessible nodes outside a current component K

were closed before visiting K during the step 3.

 74

Minimal Path Problem in G

● We use:
– A directed graph G=(V,E)
– A weight function w: E → R
– A weight of a path is

● Df: A weight of a shortest path from u to v is

– if there is no path, we set

P=〈v0, v1 ...vk 〉

w P =∑i=1

k
w v i−1 , vi

d ' u , v =min {w P ; P is a path from u tov }
d ' u , v=∞

 75

Variants
● A shortest path from u to v is any path P from u to v

with w(P) = d'(u,v)
● Usually: a minimal path, also maximal/extremal (DAG)
● Variants of the minimal path algorithm:

1. From a fixed vertex s to a fixed vertex v
2. From a fixed s to all x
3. From x to y, for all x,y , later

● An overview of methods for a single source s:
– An acyclic graph (and any weights) → alg. DAG
– Nonnegative weights (in any graph) → Dijkstra alg.
– No restrictions → Bellman-Ford alg.

∈V
∈V

 76

Observations
● 1. Any subpath from u to v of a shortest path P

is a shortest path from u to v
● 2. Let P be a shortest path from s to v and (u,v)

is its last edge. Then d'(s,v) = d'(s,u) + w(u,v)
● 3. For all edges (u,v): d'(s,v) <= d'(s,u) + w(u,v)
● An idea: each vertex v has a value d(v) and it

holds: d(v) >= d'(s,v) … an invariant
– d(v) represents a lenght of some path

● A reconstruction of a path: (again) using a
predecessor array p

 77

Relaxation

● A relaxation – an improving of estimates:
1 Relax(u,v,w): ; a relaxation of the edge (u,v)

2 if d(v)>d(u)+w(u,v) then
3 d(v):=d(u)+w(u,v)
4 p(v):=u ; store the previous vertex on a shortest path to v

5 end;
● A relaxation is used (in some order) repeatedly
● An initialisation: set d(s):=0, for other v: d(v):=∞

 78

Relaxation

4. If (u,v) is an edge, then after relaxation
d(v)<=d(u)+w(u,v) is valid.
5. The formula d(v)>=d'(s,v) is valid after
initialization and remains valid after any relaxation
steps. If d(v) reaches the (unknown) value d'(s,v),
then it stops changing.
6. Let be a shortest path from
 . Then after relaxing of edges
 in this order, it is true that
d(v) = d'(s,v)

– Algorithms must process any possible shortest path

P=〈v0, v1, ... , vn 〉
s=v0 tovn=v
v0, v1 ,v1, v2... , vn−1 , vn

 79

Algorithm DAG
● Also: An algorithm of a Critical Path (CP

Method)
1. DAG(G,w,s):
2. Sort V(G) topologically
3. Initialization(G,s)
4. For each vertex u in a(n increasing) topological

ordering do
5. For each edge (u,v) do Relax(u,v,w)
● After DAG() stops, for all s,v V: d(v)=d'(s,v)∈

 80

Alg. DAG
● A time complexity: Θ(n+m)
● Applications: Edges are processes, weights

represent durations of processes. A graph
expresses dependencies in a control flow of a
project. We look for a (maximal) critical path. A
delay of a process on any critical path delays
the whole project.
– Looking for a maximal path: 1. weights are

negative, or 2. an initialization with -∞ and Relax
with a reversed comparison

 81

Dijkstra alg.
● Assumption: All weights are nonnegative.

→ No negative cycles
● Vertices are divided to the sets: S and Q = V \ S

1. v is in S: its shortest path from s is correctly
computed: d(v) = d'(s,v), and outgoing edges from v
are relaxed

2. Otherwise v in Q: Q is a data structure supporting
search for v with a minimal value d(v)

● We start with: Q=V, S=Ø (after an initialization)
● A data structure for Q: a heap = a priority queue

 82

Dijkstra alg.

1. Dijkstra(G,w,s)
2. Initialization(G,s)
3. S:=Ø, Q:=V
4. while Q≠Ø do
5. u:=Extract-Min(Q)
6. S:=S {u}
7. for each v V with (u,v) E do Relax(u,v,w)

∪

∈∈

 83

Correctness
● Let G=(V,E) be a directed weighted graph with

nonnegative weights and s is any vertex of G.
 Then after Dijkstra(G,w,s) it is true that
d(v)=d'(s,v) for all v from G
● A time complexity:

● n times Extract-Min, m times Decrease-key (in Relax)
1. Θ(n^2): Q as an array
2. Θ((n+m) log n): Q as a binary heap
3. (Θ(n log n + m): Q as a fibonacci heap)

 84

(Min) Heaps
● Heap operations:
1. Insert(H,k) – it inserts a key k into the heap H
2. Extract-Min(H) – it returns a minimal key in H
3. Decrease-key(H,ptr_k,val) – it decreases k to val

● No operation Find(H,k)
● Implementations (of a binary heap):

1. In an array: a[i] has children at a[2*i] and a[2*i+1]
● if a[] starts at 1

2. In a (balanced) binary tree
● A heap invariant: children are greater than their parent

 85

Example
● An example of using heaps: The algorithm

Heapsort for n elements in increasing ordering:
1. Insert n elements into a heap

● Or create a heap in a „batch mode“ in O(n)
2. Use Extract-Min(H) n times

● For in-place sorting in an array:
● Use Max-Heap and put/exchange max elements to

the end of an unsorted part

 86

Alg. Bellman-Ford
● Slower than Dijkstra, but it works also with

negative edges (but no negative cycles)
– A note: negative cycles and a maximal path

● The algorithm does not check if a path is a simple path,
so results can be wrong in case of negative cycles

● An output of the algorithm:
– FALSE, if G contains a negative cycle accessible

from an initial vertex s
– TRUE, otherwise, with d[], p[]

 87

Implementation
● Bellman-Ford(G,w,s):
1. Initialization(G,s)
2. for i:=1 to |V|-1 do ; (n-1) is a length of max. path
3. for each (u,v) in E(G) do Relax(u,v,w)
4. for each (u,v) in E(G) do ; a search of a neg. cycle
5. if d(v) > d(u) + w(u,v) return FALSE
6. return TRUE
● A time complexity: O(nm)

 88

Properties
● We have a graph G, a weight function w and a

start vertex s
● If a negative cycle is reachable from s, then the

Bellman-Ford alg. returns FALSE
● Otherwise, the alg. returns TRUE and for all

vertices v it is true that d(v)=d'(s,v)
– The alg. relaxed all paths up to the length n-1

● A note: a triangle inequality is not true in a
graph with a negative cycle

 89

All shortest paths
● A goal: compute all shortest paths d'(u,v)
● Prepare a neighborhood matrix W:

1.
2.
3.

● We allow negative edges, but do not allow
negative cycles.

● We can use Critical Path, Dijkstra, and Bellman-
Ford n times with a time complexity O(n(n+m)),
O(n^3), and O(n^4), respectively

wuv=0 if u=v
wuv=w u ,v if u , v∈E
wuv=∞ if u , v ∉E

 90

„Matrix multiplication“ algorithm
● We use an induction on a number of vertices on

a shortest path
● Define: a minimal path from u to v with at

most k edges
1.
2.

● w(v,v)=0 enable to shorten expr. in the last equality
● We use matrices:

d uv
k =

Dk=d k uv ;W=wuv

a step :k−1 k :d uv
k =min d uv

k−1 , min1≤l≤n d ul
k−1w l , v=

min1≤l≤nd ul
k−1w l , v

k=1:d uv
1 =wuv

 91

„Matrix multiplication“ algorithm
● We want: , where
● uses a special operation instead of a dot

product. The special operation uses
1. a summation instead of a multiplication
2. a minimisation instead of a summation

● If G has no negative cycles, then any shortest
path is simple, without cycles → a shortest path
has at most n-1 edges

● A slow algorithm computes the result with n-2
matrix multiplications → time compl. O(n^4)

Dn−1 Dk1=Dk ⊗W , D1=W
⊗

 92

„Matrix multiplication“ algorithm
● A quick alg. computes only powers → a time

complexity
● We need to test for negative cycles

1. A negative number on a diagonal
2. A computation of D did not stabilise: D^2 ≠ D
3. A final test for a relaxation as in Bellman-Ford alg.

● An implementation note: The matrix D can be
computed „in-place“
● Because each number in a matrix corresponds to

some path

O n3 log2n

 93

Floyd-Warshall algorithm
● An algorithm has similar idea as a matrix

multiplication algorithm: it builds a final result
from smaller optimal parts („dynamic
programming“).

● = a minimal path from u to v through
(internal) vertices {1..k}

●

●

d uv
k

d uv
0 =w u , v

d uv
k =min d uv

k−1 , d uk
k−1d kv

k−1 for k0

 94

Floyd - Warshall alg.
● Floyd-Warshall(G,w)
1. D^0 := W
2. for k:=1..n do
3. for u:=1..n do
4. for v:=1..n do
5. d[u,v]:=min(d[u,v], d[u,k]+d[k,v])
6. return D
● A time complexity: O(n^3)
● Correctness: any vertex can be an internal

vertex → we have tried all paths

 95

Minimal Spanning Tree, MST
● An input: A connected graph G=(V,E) with a weight

function w: E → R
● A goal: to find a minimal spanning tree G'=(V,T) of G

– A spanning tree: a connected acyclic subgraph
– A weight of a tree: a sum of edge weights

● As |T|=|V|-1 in a tree, we can suppose that w(e)>= 0
● Idea: we add edges to a set of edges A which is

permanently a subset of some MST
– It is a greedy algorithm

 96

MST
● Def: Let A be a set of edges, which is a subset

of a minimal spanning tree. An edge e is safe
for A, if A {e} is also a subset of some MST.

● generic_MST(G,w):
1. A := Ø
2. for i := 1 to n-1 do
3. find safe edge (u,v) E
4. A := A {(u,v)}
5. return A

∪

∈

∪

 97

MST
● A cut (of a graph) is a partition of vertices to two

parts (S, V \ S).
● An edge (u,v) crosses a cut (S, V \ S), if

 |{u,v} ∩ S| = 1
● A cut respects a set of edges A, if no edge from

A crosses the cut.
● An edge is light for a cut, if its weight is the

smallest weight among all edges that cross the
cut

 98

MST
● Theorem: Let G=(V,E) be a connected graph

with a weight function w: E → R, a set of edges
A is a subset of a MST, and (S, V \ S) is any cut,
which respects A.
Then, if (u,v) E is a light edge, then it is a safe
edge

● Idea of a proof: an exchange property
● Corollary: if C is a component of a graph given

by A, then any minimal edge (u,v) between C
and other components is safe for A.

∈

 99

MST, strategies

1. Algorithm Borůvka 1926, Kruskal 1956
1. selects a minimal edge between two components

of A
2. The set A is a forest (a set of trees)
3. Two trees are connected to a single tree in each

step
2. Algorithm Jarník 1930, Prim 1957

1. The set A is a single tree
2. The alg. selects a minimal edge between A and

some other component (i.e. a vertex)

 100

Borůvka – Kruskal alg.
● Borůvka_Kruskal(G,w)
1 sort all edges to nondecreasing order according
 to their weights
2 A := Ø
3 foreach v in V do Make_Set(v)
4 foreach (u,v) in E in precomputed order do
5 if Find_Set(u) ≠ Find_Set(v) then
6 A := A {(u,v)}
7 Union(u,v)
8 return A
● Alg. uses a Union-Find data structure

∪

 101

A data structure Union-Find
● Time complexity:

– Edges represented using linked lists: Θ(m log m)
● dominated by sorting of edges

● Used operations:
– Make_set: n times
– Union: n-1 times
– Find-Set: at most 2m times

 102

A data structure Union-Find
● An implementation of a Union-Find structure

1. In an array: Each vertex points to a representant
● Union: Θ(n)
● Find-Set: Θ(1)
● total: Θ(n^2+m)

2. Using pointers (in an array or in a „tree“ structure)
● Union: Θ(1) (A) – an implementation „trick“
● Find-Set: Θ(log n), using (A)
● total: Θ(n+m log n)

● (A): A root of the smaller tree will point to a root of the
bigger tree → a depth is Θ(log n)

 103

Jarník – Prim alg.
● Jarník_Prim(G,w,r)
1 Q := V; A := Ø
2 foreach v in V do key(v) = ∞
3 key(r) := 0; p(r) := NIL
4 while Q ≠ Ø do
5 u := Extract_Min(Q); add (p(u),u) to A
6 foreach v in V s.t. (u,v) in E do
7 if v in Q and key(v) > w(u,v) then
8 key(v):=w(u,v); p(v):=u
9 return A
● The algorithm uses a heap for vertices

 104

Jarník – Prim alg.
● A time complexity

– A heap as an array: Θ(n^2)
– A heap as a binary heap: Θ(m log n)

● Used operations:
– Insert: n times, for vertices
– Extract-Min: n times, for vertices
– Decrease-key: m times, for edges

 105

Divide et Impera
● A method for design of algorithms
● An algorithm of this type has usually 3 steps:

1. Divide a problem to some smaller subproblems of
the same type

2. Solve subproblems
1.recursively using another division, if they are big enough
2.directly for small subproblems (often trivial)

3. Combine solutions of subproblems to get a solution
of an original problem

● Examples: Mergesort, Binary searching

 106

Complexity analysis
● T(n) : a time for solving a problem of a size n

– We suppose: if n<k, then T(n) = Θ(1)
● D(n) : a time for a division of a problem to #a

subproblems of a size n/c, and for combining
solutions of subproblems

→ a recurrent equation:
– T(n) = a.T(n/c) + D(n), for n>=k
– T(n) = Θ(1), for n<k

 107

Methods of solving

1. A substitution method
2. A Master Theorem
● A simplification:

1. An assumption T(n) = Θ(1) is not written explicitely
2. We ignore rational parts and use only n/2 instead

of and
3. We use an asymptotic notation in equations, as we

are interested only in an asymptotic solution
● Ex: Mergesort: T(n) = 2 T(n/2) + Θ(n)
● BinSearch: T(n) = T(n/2) + Θ(1)

⌈n /2 ⌉ ⌊n /2 ⌋

 108

Substitution method
● To guess an asymptotically correct solution
● To check correctness using an induction

– separately for an upper and lower bound
● A pitfall:

– Constants in an Induction hypothesis and Induction
conclusion must be the same; a proof is for a fixed c

● Ex: Mergesort: T(n) = 2 T(n/2) + Θ(n),
– A solution T(n) = Θ(n log n)
– An induction: T(n)<c.n log n - d.n for T(n)=O(n

log n)

 109

Quick multiplication
● A (slow) basic-school multiplication of long

numbers with n bits has a time complexity O(n^2)
● A quick multiplication: T(n) = 3.T(n/2)+b.n

– A solution: (using a master theorem)
● An induction:

– The part „-d.n“ creates a reserve for an overhead
● An alg. computes A, C, B recursively using 3 multiplications „*“:

T n=O nlog2 3

T nc.nlog2 3−d.n

 x1⋅px2∗ y1⋅p y2=A⋅p2B⋅pC , where p=2n/2

A=x1∗y1 ;C=x2∗y2

B= x1x2∗ y1 y2−A−C=x1∗y2x2∗y1

 110

Examples
● T(n) = 2 T(n/2) + Θ(n), Mergesort, Fast Fourier Transform
● T(n) = 4 T(n/2) + Θ(n), the classical multiplication

– T(n) = Θ(n^2)
● T(n) = 3 T(n/2) + Θ(n), a quick multiplication

–
● T(n) = T(n/5)+T(7n/10)+Θ(n), Median/k-th elem.

– T(n) = Θ(n) … only a substitution method; using 1/5+7/10<1
● T(n) = 4 T(n/3) + Θ(1), (a „fractal“ drawing)

–
● T(n) = 8 T(n/2) + Θ(n^2), Matrix multiplication

– T(n) = Θ(n^3)

T n=Θ nlog2 3

T n=Θ nlog3 4

 111

Master Theorem
● Let a≥1, c>1, d≥0 are real numbers and T: N → N

is a nondecreasing function, such that for all n
expressed as c^k, k N, holds:

 T(n) = a.T(n/c) + F(n)
 where F: N → N fullfils . Let .
● Then
a) If x<d, then
b) If x=d, then
c) If x>d, then

∈

x=logc a

T n=Θ nd 

T n=Θ nx

T n=Θ nd logc n=Θ nx logc n

F n=Θ nd 

 112

Matrix multiplication
● An input: matrices A and B of an order n x n
● An output: C = A B, also of an order n x n
● If , we can reformulate an alg. using Divide

et impera method
n=2k

 113

From classical to Strassen Alg.
● We get: T(n) = 8.T(n/2) + O(n^2)

– A solution from a master theorem:
– T(n) = O(n^3), the same as the classic alg.

● To get a lower time complexity, it is necessary
to decrease a=8 and preserve (or slightly
increase) d=2

● The Strassen algorithm uses 7 multiplication of
n/2-submatrices (instead of 8 multiplications
classically)

a=8, c=2, logc a=3, d=2

 114

Strassen Alg. 1
● A preparatory computation: 7 multiplications

 115

Strassen Alg. 2
● A final computation of C

● A time complexity: T(n) = 7.T(n/2)+O(n^2)
● The Master Theorem:

● Note: Numbers in submatrices get bigger (by 1 bit)

T n=O nx≈O n2.81

a=7,c=2, logc a=log2 7=x ,d=2

 116

Strassen alg.
● Note: The Strassen algorithm needs a „minus“

operation (an inversion op. to „plus“) → it works
over a ring (an algebraic structure with „+“, „-“
and „*“, without „/“)
– It cannot be used directly for a boolean

multiplication (e.g. for a transitive closure in
graphs), but can be used for the 0-1 representation
of boolean matrices

● Schema for pictures:
– A: 1st row first
– B: 1st column first

 117

Strassen alg.
● We want 4 submatrices of C:

 118

Strassen alg.
● 7 preparatory computations:

 119

Strassen alg.
● A final computation of 4 submatrices of C:

 120

A lower bound of Sorting
● The problem of Sorting: To sort an input sequence of

the length n
– Many algorithms for the same problem P (also

undiscovered, …) → new: a complexity of a problem P
● The asymptotical complexity of Sorting: the complexity

of the best algorithm (using the worst case complexity)
● Simple: an upper bound for a complexity of the

problem P: Any algorithm for P gives an upper bound
for a complexity of the problem P

● Asymptotical lower bound for the Sorting problem: An
arbitrary alg. must fulfill the lower bound
– An idea of an approach: To prove some common

characteristic of all algorithms for a problem

 121

Decision tree for Sorting 1

● A sorting algorithm based on comparisons:
Branching of a program flow is based only on
comparisons (branching in general, not only „if“)
– Especially not allowed: indirect addressing on a key

● Any deterministic sorting algorithm based on
comparisons can be represented by a decision
tree – a binary tree with
1.internal nodes representing a comparison: a test

● Left branch if TRUE
● Right branch if FALSE

2.leaves representing output permutations of an input

x≤ y

 122

Decision tree for Sorting 2

– (A): If the permutation P
is not presented in a tree,
then the inverted
permutation to P taken as
an input cannot be sorted

● A tree for a correct sorting algorithm must have
all n! permutations (= orderings) in leaves, (A).
→ #leaves >= n!

● HW: is it possible that #leaves > n! ?
● Ex: alg. Insertsort, n=3

 123

Decision trees (for sorting)
● A (worst) time complexity of the algorithm = a

longest branch in a tree = a depth of the tree
● Th: A binary tree with n! leaves has a depth

d Ω(n log n).

2d≥n!=∏i=1

n
i≥∏i=n /2

n
i≥n /2n/2

d≥log n!≥logn /2n/2≥n /2 . log n /2

d∈Ω n log n

∈

 124

Linear time sorting
● Algorithms in this section are not based on

comparisons
– Countingsort
– Radixsort

● They use keys for adressing (usually in an
array)

 125

Counting sort

● Input: n numbers from the interval 1..k
– We suppose k=O(n)
– This condition on bounded keys is not present in

general sorting algorithms.
● Data structures:

1. I[1..n] – an input array
2. O[1..n] – an output array
3. C[1..k] – a counting array

 126

Counting sort algorithm
1.for i:=1 to k do C[i]:=0 ; initialization

2.for i:=1 to n do C[I[i]]++ ; C[i] is # of i in I[]

3.for i:=2 to k do C[i]+=C[i-1] ; C[i] is # of j, j<=i

4.for i:=n to 1 do ; put I[i] in a correct place

5. O[C[I[i]]] := I[i] ; C[j] points to the last

6. C[I[i]]-- ; ... empty place for j
● A time complexity: O(n+k)

 127

Counting sort: properties
● A time complexity: O(n+k)
● A stability of sorting: Equal elements from an

input have the same order in an output array
● Impl.: We must copy data in the last pass, as

we are interested also in data associated with
I[i]. (vs. generate k C[k]-times)

 128

HW
● Change the algorithm, so that the last pass is a

forward pass instead of a backward one.
– You still want a stable sorting
– The forward pass is more appropiate for streamed

data returned from a compresion, from a
serialization, or from a magnetic tape :-)

 129

Radixsort
● A historical use: sorting of punch cards
● An observation: if we sort numbers according to

the most significant order, we use a stable
sorting and an input sequence was sorted
according to a less significant orders, than we
have a sorted sequence as output
→ Radixsort: sort according to the lowest order,
put groups immediately in a sequence and
continue sorting according to higher orders.
– An advantage: we operate with a single sequence

 130

Radixsort
● Countingsort algorithm can be used as a stable

algorithm for a single pass
● A current use

– Sorting of compound keys (e.g. a year, a month, a day)
– Sorting of alphanumeric keys (words)

● A time complexity: O(d.(n+k)) = O(n), if k=O(n) and d is
a constant (d is #digits)

● Notes about padding:
– Numbers with a different number of digits are padded

with zeros on the left side
– Words with different lengths are padded with blanks on

the right side

 131

Randomization of Quicksort
● A problem of a fixed choice of pivot: Some input

sequences are bad.
– We must suppose a uniform distribution of input

sequences for an average case
● Randomization: We choose a random element

as a pivot instead of a fixed one.
● An average complexity is over all possible

choices of pivots (for any input sequence) →
we do not need a uniform distribution of inputs
– But: A particular run (for an input sequence and a

choice of pivots) can still be O(n^2)

 132

 133

To do / skipped

●

● Algebraic alg. (LUP decomposition)
● B-trees
●

∪∈

 134

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134

