

Algorithms and Data Structures 1

TIN060

Jan Hric

Lecture 1, v. 16.3.2015

Syllabus
Syllabus:

● An asymptotical notation
● (Binary trees,) AVL trees, Red-Black trees
● B-trees
● Hashing
● Graph alg: searching, topological sorting,
strongly connected components
● Minimal spaning tree (d.s. Union-Find)
● Divide et Impera method
● Sorting: a lower bound on the complexity of
sorting, average case of Quicksort, randomization
of Quicksort, linear sorting alg.
● Algebraic alg. (LUP decomposition)

● Literature
T.H. Cormen, Ch.E. Leiserson, R.L. Rivest,
Introduction to Algorithms, MIT Press, 1991

● Organization
– Lecture
– Exercises

Comparing algorithms
● Measures:

– A time complexity, in (elementary) steps
– A space complexity, in words/cells
– A communication complexity, in packets/bytes
– (in practice: money ~ programmer/human time)

● How it is measured:
– A worst case, an average case (wrt a probability distribution)
– Usually an approximation: an upper bound

● Using functions depending on a size of input data
– We abstract from particular data to a data size, |D|
– We compare functions

Size of data
● Q: How to measure a size of (input) data?
● Formally: a number of bits of data
● Ex: Inputs are natural numbers ,

a size D of input data is
● A time complexity: a function f: N->N, such that

f(|D|) gives a number of algorithm steps
depending on data of the size |D|

● Intuitively: An asymptotical behaviour: an exact
graph of a function f does not matter (ignoring
additive and multiplicative constants), a class of
f matters (linear, quadratic, exponential)

A step of an algorithm
● In theory: Based on an abstract machine: Random

Access Machine (RAM), Turing m.
– Informally: an algorithm step = an operation executable

in a constant time (independent of data size)
● RAM, operations:

– Arithmetical: +, -, *, mod, <<, && …
– A comparision of two numbers
– An assignment of basic data types (not for arrays)

● Numbers have a fixed maximal size
● Ex: sorting of n numbers: |D| = n
● (Counter)Ex: a test for a zero vector

Why to measure a time complexity
● Why sometimes a faster machine doesn't help
● Time of f(n) for data of size n, 10^6 ops per second

n

f(n) 20 40 60 80 100 500 1000

n 20µs 40µs 60µs 80µs 100µs 500µs 1ms

n log n 86µs 0.2ms 0.35ms 0.5ms 0.7ms 4.5ms 10ms

n^2 0.4ms 1.6ms 3.6ms 6.4ms 10ms 0.25s 1s

n^3 8ms 64ms 0.22s 0.5s 1s 125s 17min

2^n 1s 11.7days 36ky

n! 77ky

Why to measure a time complexity 2
● A difference between polynomial and slower algs.
● How a speed-up of a computation enables to

increase a size of a „workable“ data; the current
size is x

speed-up

f(n) original 10 times 100 times 1000 times

n x 10x 100x 1000x

n log n x 7.02x 53.56x 431.5x

n^2 x 3.16x 10x 31.62x

n^3 x 2.15x 4.64x 10x

2^n x x+3 x+6 x+9

Asymptotical complexity
● measures a behaviour of the algorithm on „big“

data
– Ignores a finite number of exceptions

● supresses additive and multiplicative constants
– Abstracts from a processor, a language, (the Moore

law)
● classifies algs to categories: linear, quadratic,

logarithmic, exponential, constant ...
– Compares functions

Asymptotical („Big“) O notation
● f(n) is asymptotically less or equal g(n),

notation , „big O“
iff

● f(n) is asymptotically greater or equal g(n),
notation , „big Omega“
iff

● f(n) is asymptotically equal g(n),
notation , „big Theta“
iff

O-notation, def. II
● f(n) is asymptotically strictly less than g(n),

notation , „small o“
iff

● f(n) is asymptotically strictly greater than g(n),
notation , „small omega“
iff

● Examples of classes: O(1), log log n, log n, n,
n log n, n^2, n^3, 2^n, 2^2n, n!, n^n, 2^(2^n),...

● Some functions are incomparable

Exercises
● Notation f = O(g) is sometimes used
● To prove: max(f,g) Θ(f+g)
● To prove: if c,d>0, g(n)=c.f(n)+d then g O(f)
● Ex.: if f O(h), g O(h) then (f+g) O(h)

– Application: A bound to a sequence of commands
● Compare n+100 to n^2 ; 2^10 n to n^2

– Simple algorithms (with a low overhead) are
sometimes better for small data

∈

∈

∈ ∈

∈

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

