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Syllabus

Syllabus:

* An asymptotical notation

 (Binary trees,) AVL trees, Red-Black trees

» B-trees

* Hashing

» Graph alg: searching, topological sorting,
strongly connected components

* Minimal spaning tree (d.s. Union-Find)

* Divide et Impera method

» Sorting: a lower bound on the complexity of
sorting, average case of Quicksort, randomization
of Quicksort, linear sorting alg.

» Algebraic alg. (LUP decomposition)



e Literature

T.H. Cormen, Ch.E. Leiserson, R.L. Rivest,
Introduction to Algorithms, MIT Press, 1991

e Organization
- Lecture
— EXxercises



Comparing algorithms

e Measures:

- Atime complexity, in (elementary) steps
- A space complexity, in words/cells
- A communication complexity, in packets/bytes

- (in practice: money ~ programmer/human time)
 How it is measured:
- A worst case, an average case (wrt a probability distribution)
- Usually an approximation: an upper bound
« Using functions depending on a size of input data

- We abstract from particular data to a data size, |D|
- We compare functions



Size of data

* Q: How to measure a size of (input) data?
 Formally: a number of bits of data

« Ex: Inputs are natural numbers @1, ---;n € N
a size D of input data is |D| ==, [log, a;

* Atime complexity: a function f: N->N, such that
f(|D]) gives a number of algorithm steps
depending on data of the size |D|

* Intuitively: An asymptotical behaviour: an exact
graph of a function f does not matter (ignoring
additive and multiplicative constants), a class of
f matters (linear, quadratic, exponential)



A step of an algorithm

* |n theory: Based on an abstract machine: Random
Access Machine (RAM), Turing m.

- Informally: an algorithm step = an operation executable
In a constant time (independent of data size)

 RAM, operations:

- Arithmetical: +, -, *, mod, <<, && ...
- A comparision of two numbers

- An assignment of basic data types (not for arrays)
« Numbers have a fixed maximal size

* EX: sorting of n numbers: |D| = n
* (Counter)Ex: a test for a zero vector



Why to measure a time complexity

* Why sometimes a faster machine doesn't help
* Time of f(n) for data of size n, 10"6 ops per second
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Why to measure a time complexity 2

* A difference between polynomial and slower algs.

 How a speed-up of a computation enables to
Increase a size of a ,workable" data; the current
Size IS X

original 10 times 100 times 1000 times
X 10x 100x 1000x
X 7.02x 53.56x 431.5x
X 3.16x 10x 31.62x
X 2.15x 4.64x 10x

X x+3 x+6 x+9



Asymptotical complexity

 measures a behaviour of the algorithm on ,big”
data

- Ignores a finite number of exceptions
» supresses additive and multiplicative constants

- Abstracts from a processor, a language, (the Moore
law)

 classifies algs to categories: linear, quadratic,
logarithmic, exponential, constant ...

- Compares functions



Asymptotical (,Big”) O notation

* f(n) is asymptotically less or equal g(n),
notation f(n)eO(g(n)), ,big O
iff Jc > 0dngVn > np : 0 < f(n) < c.g(n)
* f(n) is asymptotically greater or equal g(n),
notation f(n) € Q(g(n)), ,big Omega“
iff dc > 0dngVn > np: 0 < c.g(n) < f(n)
* f(n) iIs asymptotically equal g(n),
notation f(n) € ©(g(n)) |  big Theta*
iff 31, co > 0dngVn > ny : 0 < ¢1.9(n) < f(n) < es.9(n)



O-notation, def. |

* f(n) is asymptotically strictly less than g(n),
notation f(n) € o(g(n)), ,small 0"
iff Ve > 0dngVn > ng : 0 < f(n) < c.g(n)
* f(n) is asymptotically strictly greater than g(n),
notation f(n) € w(g(n)), ,small omega®
iff Ve > 0dngVn > ng : 0 < c.g(n) < f(n)
 Examples of classes: O(1), log log n, log n, n,
nlog n, n*2, n*3, 2%n, 2*2n, n!, n*n, 2*(2*n),...

 Some functions are incomparable



Exercises

Notation f = O(g) is sometimes used

‘0 prove: max(f,g)e O(f+qg)

‘o0 prove: if ¢,d>0, g(n)=c.f(n)+d then ge< O(f)
Ex.:. if feO(h), g€ O(h) then (f+g)c O(h)

- Application: A bound to a sequence of commands

Compare n+100 to n*2 ; 210 n to N2

- Simple algorithms (with a low overhead) are
sometimes better for small data
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