Algorithms and Data Structures 1

TINOGO

Jan Hric

Lecture 1, v. 16.3.2015

Syllabus

Syllabus:

* An asymptotical notation

 (Binary trees,) AVL trees, Red-Black trees

» B-trees

* Hashing

» Graph alg: searching, topological sorting,
strongly connected components

* Minimal spaning tree (d.s. Union-Find)

* Divide et Impera method

» Sorting: a lower bound on the complexity of
sorting, average case of Quicksort, randomization
of Quicksort, linear sorting alg.

» Algebraic alg. (LUP decomposition)

e Literature

T.H. Cormen, Ch.E. Leiserson, R.L. Rivest,
Introduction to Algorithms, MIT Press, 1991

e Organization
- Lecture
— EXxercises

Comparing algorithms

e Measures:

- Atime complexity, in (elementary) steps
- A space complexity, in words/cells
- A communication complexity, in packets/bytes

- (in practice: money ~ programmer/human time)
 How it is measured:
- A worst case, an average case (wrt a probability distribution)
- Usually an approximation: an upper bound
« Using functions depending on a size of input data

- We abstract from particular data to a data size, |D|
- We compare functions

Size of data

* Q: How to measure a size of (input) data?
 Formally: a number of bits of data

« Ex: Inputs are natural numbers @1, ---;n € N
a size D of input data is |D| ==, [log, a;

* Atime complexity: a function f: N->N, such that
f(|D]) gives a number of algorithm steps
depending on data of the size |D|

* Intuitively: An asymptotical behaviour: an exact
graph of a function f does not matter (ignoring
additive and multiplicative constants), a class of
f matters (linear, quadratic, exponential)

A step of an algorithm

* |n theory: Based on an abstract machine: Random
Access Machine (RAM), Turing m.

- Informally: an algorithm step = an operation executable
In a constant time (independent of data size)

 RAM, operations:

- Arithmetical: +, -, *, mod, <<, && ...
- A comparision of two numbers

- An assignment of basic data types (not for arrays)
« Numbers have a fixed maximal size

* EX: sorting of n numbers: |D| = n
* (Counter)Ex: a test for a zero vector

Why to measure a time complexity

* Why sometimes a faster machine doesn't help
* Time of f(n) for data of size n, 10"6 ops per second

500
20us 40pus 60us 80us 100ps 500us 1ms
86s 0.2ms 0.35ms 0.5ms 0.7ms 4.5ms 10ms
0.4ms 1.6ms 3.6ms 6.4ms 10ms 0.25s 1s

8ms 64ms 0.22s 0.5s 1s 125s 17min

1s 11.7days 36ky

Why to measure a time complexity 2

* A difference between polynomial and slower algs.

 How a speed-up of a computation enables to
Increase a size of a ,workable" data; the current
Size IS X

original 10 times 100 times 1000 times
X 10x 100x 1000x
X 7.02x 53.56x 431.5x
X 3.16x 10x 31.62x
X 2.15x 4.64x 10x

X x+3 x+6 x+9

Asymptotical complexity

 measures a behaviour of the algorithm on ,big”
data

- Ignores a finite number of exceptions
» supresses additive and multiplicative constants

- Abstracts from a processor, a language, (the Moore
law)

 classifies algs to categories: linear, quadratic,
logarithmic, exponential, constant ...

- Compares functions

Asymptotical (,Big”) O notation

* f(n) is asymptotically less or equal g(n),
notation f(n)eO(g(n)), ,big O
iff Jc > 0dngVn > np : 0 < f(n) < c.g(n)
* f(n) is asymptotically greater or equal g(n),
notation f(n) € Q(g(n)), ,big Omega“
iff dc > 0dngVn > np: 0 < c.g(n) < f(n)
* f(n) iIs asymptotically equal g(n),
notation f(n) € ©(g(n)) | big Theta*
iff 31, co > 0dngVn > ny : 0 < ¢1.9(n) < f(n) < es.9(n)

O-notation, def. |

* f(n) is asymptotically strictly less than g(n),
notation f(n) € o(g(n)), ,small 0"
iff Ve > 0dngVn > ng : 0 < f(n) < c.g(n)
* f(n) is asymptotically strictly greater than g(n),
notation f(n) € w(g(n)), ,small omega®
iff Ve > 0dngVn > ng : 0 < c.g(n) < f(n)
 Examples of classes: O(1), log log n, log n, n,
nlog n, n*2, n*3, 2%n, 2*2n, n!, n*n, 2*(2*n),...

 Some functions are incomparable

Exercises

Notation f = O(g) is sometimes used

‘0 prove: max(f,g)e O(f+qg)

‘o0 prove: if ¢,d>0, g(n)=c.f(n)+d then ge< O(f)
Ex.:. if feO(h), g€ O(h) then (f+g)c O(h)

- Application: A bound to a sequence of commands

Compare n+100 to n*2 ; 210 n to N2

- Simple algorithms (with a low overhead) are
sometimes better for small data

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

