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Syllabus ADS2
● A string search: alg. Aho-Corasick, …
● Flow networks
● Fast (discrete) Fourier transform
● Gate networks, sorting networks, ...
● Problem classes P, NP, NPC, reducibility
● Approximation algorithms
● Cryptographic protocols
● Probabilistic algorithms, primality testing
● Algorithms in plane, convex hull
● (Dynamic programming)

~ Algorithms in a wider sense
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A string search: Aho-Corasick alg.
● A search of multiple patterns in a text
● An alphabet Σ, finite words Σ*, length, 

concatenation, empty word ε (or λ)
● A problem: Given an alphabet Σ, a word              

                 , searched patterns 
● Output: All instances of patterns from K in x, i.e. 

        ,      is a suffix of         (tricky: only pointers)
● Parameter l = |K| = 

x=x1 x2 ... xnx=x1 x2 ... xn K={ y1 , ... , yk }

[i , p ] y p x1 ... xi

∑i=1

k
length  yi
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Naive alg.
● For all patterns p, for all valid positions i:

  match a pattern p from the beginning with a 
text at a position i
  if the whole pattern successfully matches, then 
Report(i,p)

● Complexity: in the worst case O(l.n)
– Without counting of an output writing 

● It is the same for all (correct) algorithms
● It depends on input data
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An idea of AC alg.
● We construct an algorithm dependent on patterns 

(≈ Finite Deterministic Automaton) in time O(l), 
which finds patterns in a text in O(n).

● Alg. 1 – an interpret of a searching machine
● Alg. 2 – a compilation of patterns, a creation of a 

forward function
● Alg. 3 – a compilation of patterns, a creation of a 

backward func.
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Wider context
● A compiler, a generation of a machine and a 

code
● DSL: Domain Specific Languages

● Different views on a search machine 
(interpretation)
– An abstract machine: data structure or bytecode
– Source code or executable code

● Use of a runtime library for specific operations



  7

Search AC machine
● The machine (over Σ) is a tuple (Q, g, f, out)

– Q = {0..q} is a set of states
– g: Q x Σ → Q    { ┴ } ; a (forward) goto function

● g(0,c)    Q, a step from state 0 is defined for all letters
– f: Q → Q ; a backward fail function

● f(0) = 0
● f is used, when g returns ┴

– out: Q → P(K) ; an output function
● As multiple patterns can be finished on the same place, 

we must return a subset of patterns

∪
∈
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Properties of a search: g
● A graph of the function g, excluding a loop in 0, 

is a tree
– State 0 is the root of the tree
– Each path from the root is valuated by some prefix 

of a pattern
– Each prefix of each pattern describes a path from 

the root to a (single) state s; a prefix u represents a 
state s. Particularly, the word ε represents the state 
0
● Each step using g goes one level deeper in the tree.
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Properties of a search: f and out
● The backward function f:

– For each state s represented by a word u, the value 
f(s) is represented by the longest proper suffix of u, 
which is also a prefix of a pattern from K
● f(s) is defined for all states, because an empty suffix 

ε is a possible value
● The output function out

– If u represents s and y     K, then y    out(s) 
whenever y is a suffix of u.
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AC: alg. 1
● Input:                     Σ ⃰ , M=(Q,g,f,out)
● Output: pairs (i,y) … (a position i, a pattern y)
1 state := 0
2 for i := 1 to n do ; through letters
3   while g(state,x[i]) =   do
4     state := f(state)
5   state := g(state,x[i])
6   forall y ϵ out(state) do  
7     Report( (i,y) ).

x=x1 x2 ... xn∈
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Notes on searching
● A pattern is reported on a final position
● A pattern can be a suffix of another pattern → 

the function out reports a set of patterns
● Patterns are reported only after g-step (line 6)
● Conditions on f and g are „boundary conditions“ 
● The function g creates a data structure for 

search: TRIE 

● Ex: SLICE, SLICES, ICE, SCENE
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Correctness
● Invariant (declaratively): The algorithm visits 

states each representing the longest suffix of a 
processed part of the text, which is also a prefix 
from K.
– Proof: using property of f

● The algorithm returns all patterns found
– Proof: using property of out



  13

Complexity of interpretation
● A hard part: the number of f-steps (lines 3,4)

– A separate count gives too loose approx. O(n.l)
– → we must count f-steps globally (to reach O(n))

● A potential method:
– A depth of a current state is a potential. A g-step 

increases a potential, an f-step decreases a 
potential.

– We want to show that globally a count of f-steps is 
O(n).

● Note: this is an example of an amortized 
complexity. (It counts complexity of sequences of ops.)
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Complexity 2
● Th: The count of f-steps is less than n.
● Pr: n = a count of g-steps  {g is increased by at most 1}

>= a cummulative increase of potential  {alg. starts at 0}
= cummulative decrease of potential + final depth
>= cummulative decrease of potential  

{f is decreased by at least 1}
>= a cummulative count of f-steps

● Therefore globally a complexity of the search is 
O(n)
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Algorithm 2 for g and o 
In: patterns K; Out: states Q, g, o: Q → P(K) 

1  procedure Enter(c[1]..c[m]) ; adds the pattern y[p]
2  state:=0; j := 1 
3  while j<m and g(state, c[j]) ≠    do
4    state := g(state, c[j]) ; repeated chars
5    j++
6  for p:= j to m do ; new branch
7    q++; Q:=Q  {q}    ; new state
8    forall x in Σ do g(q,x) :=     ; undef. implicitly
9    g(state,c[p]) := q    ; adding a character
10   state := q           ; shift to a new state
11 o(state)= y[p]  ; a preliminary output

∪
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Alg 2, main

12 Q := {0}; q:=0       ; init of states count
13 forall x in Σ do      ; for all letters
14   g(0,x) :=    ;
15 for i:=1 to k do ; through all patterns
16   Enter(y[k])      ; add pattern to a trie
17 forall x in Σ do
18   if g(0,x) =    then g(0,x):=0  ; a boundary cond.
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Alg. 3 for f and out

In: Q={0..q}, g:                        , o: Q → P(K) 
Out: f: Q → Q, out: Q → P(K)
● Using queue for unprocessed states
01 queue := empty        ; init
02 f(0) := 0; out(0) := Ø ;
03 forall x in Σ do
04   if (s:=g(0,x)) ≠    then   ; nodes below root
05     f(s):=0; out(s):=o(s)         ; trivial init
06     queue := queue    {s}  ; a new state to the end∪
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Alg. 3 cont'd
07 while queue is not empty do
08   r:= take the first element of queue (and delete)
09   forall x in Σ do
10     if g(r,x) ≠    then   ;process descendants of r
11     s:=g(r,x); t:=f(r)
12     while g(t,x) ≠    do t:=f(t)  ;through suffixes
13     f(s) := g(t,x)   ; a valid node (~prefix) found
14     out(s):=o(s)   out(f(s))  ; out() from suffixes 
15     insert s to queue.

∪
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Alg 3: comments
● We must use a queue in the alg. 3

– We may need an arbitrary f(t) for a lower depth 
state

● The line 12 stops because g(0,.) is defined
● A value of f(s) can be the state 0, as ε is a valid 

prefix of any pattern.
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Properties: Correctness
● The output of alg. 3 is a correct AC search 

machine
– Used f is defined

● Due to a queue and a lower depth 
– f points to the longest possible suffix
– out includes shorter patterns

● A patterns p can be embedded in a longer pattern r, so a 
machine can visit only states of r, but must report also p.
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Complexity
● It is nontrivial to count f-steps on line 12

– We can have O(l) patterns with max. length O(l) 
giving naively         .
● (Practically, a correctly implemented machine is quick also 

without a proof – O(l), but ...)
● For each pattern p, a cumulative count of f-steps 

on prefixes of p is bounded by the length of p.
● So globally we have O(l) f-steps. If      is not 

taken as a constant, then             steps. O l⋅∣∣

O l 2

∣∣
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Implementation
● We can use a sparse (or implicit) representation 

of       and g(0,.) = 0: values are not in a 
memory and need not be inicialised.
– A sparse representation needs O(l) cells

● It does not have O(1) access, but O(log |Σ|).
– A dense representation (e.g. using arrays) needs

            cells. It is a standard representation for a 
finite automaton (from another lecture Automata 
and grammars).

O l⋅∣∣
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Alg. Knuth -Morris-Pratt
● An alg. for a search of 1 pattern.
● In our context, it is a simplified AC alg.
● A graph of g is not a tree but a string. So a state 

corresponds to a count of characters being read 
(including 0) and we can use g implicitly.

● An asymptotic complexity is              instead of

● We use the prefix function π instead of f: π(s) is 
the length of the longest proper suffix of the 
state represented by s, which is also a prefix of 
the pattern.

nl⋅∣∣

nl 
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Alg. Rabin-Karp
● Idea: take a pattern of a length l as l-digit 

number with a base 
● We compute a signature of a pattern as well as 

a signature of a section from the text of the 
same length (called a window) modulo a 
(prime) number q.
– It is a hash function, but not for a table search

● If a signature v of p doesn't match a signature  
at a position i, then p is definitely not at a pos. i.
– The signature at a pos. i is denoted by 

a=∣∣

t i
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Implementation
● We compute v and     using Horner schema

● A time complexity O(l), where l is the length of p
● A shift of the window

●     is the first deleted digit and        is a newly 
appended digit.

● ! if we use exact numbers (without modulo), 
then their length is O(l) bits. :-(

t1

i il
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Implementation 2
● A choice of q: such a prime number that a.q can be 

computed in a register
→ arithmetic operations in time O(1) instead of O(l)

● We used                    precomputed in O(l)
● But: Equality of signatures modulo q causes a false 

hit when a pattern p doesn't equal a relevant text 
window  

h=a l−1mod q
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Time complexity
● The worst case: 
● Expected complexity:

– OK is a count of found positions (we must verify it)
– F is a count of false hits: (supposing a uniform 

distribution of    ) F = O(n/q)
→ O(n)+O(l.(1+n/q))

● HW: more patterns of the same length, of a 
different length

n−l1⋅l 

t i

O nO l⋅OK O l⋅F 
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Flow networks
● A flow network is S = (G, c, s, t) where

– G=(V,E) is a directed graph (if (u,v) in E → (v,u) in E)
– c: E →      represents a capacity of edges
–         : the source vertex 
–                 : the sink vertex (t as a „target“)

● Notation: |V|=n, |E|=m ; c(h)=c(u,v) for h=(u,v)...
● Without loss of generality

1. Single source and single sink
2. Capacity only for edges, not for vertices

 HW: using transformation/reduction (and the same sw) 

R0


t∈V , s≠t
s∈V
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Flow
● A flow f in the network S = (G,c,s,t) is a function 

f: V x V → R, such that
1. Symetry: f(u,v) = -f(v,u) for all u,v
2. Capacity: f(u,v) =< c(u,v) for all u,v
3. Flow conservation: d(f,u)=0 for 

where d(f,u) =                        (a divergence of f in u)
● Df: An edge e is saturated iff c(e) = f(e)
● Df: A flow size of f is d(f,s) for a source s; a 

notation |f|

∀ u∈V ∖{s , t }
∑v∈V

f u , v 
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Maximum flow problem
● A problem: To find a flow of a maximal size in a 

given network, i.e. a maximal flow f*.
– We denote f*, it is not unique, but its size is unique

● Df: a cut in a graph is a disjunctive pair of sets, s.t. 
 

● Df: A capacity of a cut: 
● Df. A flow over a cut: 
● Df: A minimal cut is a cut with a minimal capacity

X∪Y=V , s∈X , t∈Y

cX ,Y =∑u∈X , v∈Y
cu , v

f X ,Y =∑u∈X , v∈Y
f u , v
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Flows and cuts
● Lemma 1: It is valid for each flow f and each cut 

(X,Y), that a flow over a cut (X,Y) is equal to |f|
– Proof: By induction over |X| with a base X={s} 

● Corollary: As f(X,Y) <= c(X,Y) for each cut 
(X,Y), the size of a max. flow is at most the 
capacity of a minimal cut. → We show equality. 

● Df: A residual capacity of f is a function r: 
V x V → R defined r(u,v) = c(u,v) – f(u,v)
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Residual net
● Df: A residual net R for a net S and a flow f is 

R= (G',r,s,t), where (u,v) is in G' whenever
r(u,v) > 0.  
– The value r(u,v) is an edge capacity in a residual graph
– (We want only potentially usable edges in the residual graph)

● Df: An augmenting path P is a path from s to t in R.
● Df: A residual capacity of P is r(P) = min{r(u,v), 

   (u,v)    P }
– A size of a flow can be increased by r(P) on edges of the 

augmenting (improving) path P

∈
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Max-flow min-cut theorem
● The following conditions are equivalent:

1. A flow f is maximal
2. There is no augmenting path for f
3. |f|=c(X,Y) for some cut (X,Y)

● Pr: 1 → 2: by contradiction: If f is maximal, but 
an augmenting path P exists, then |f| increases 
after improving. A contradiction.
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Cont. 2
● 2 →  3: We suppose that no augmenting path 

exists in G from s to t. Define X =
{v | an augmenting path from s to v exists}
and Y = V \ X. A division (X,Y) is a cut because 
s and t are in different parts (by construction)

● Each edge from X to Y is saturated, otherwise 
we can extend X. Using lemma 1:
|f| = f(X,Y) = c(X,Y), second eq. from saturation
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Cont. 3
● 3 → 1: We have |f| <= c(X,Y) for all cuts (X,Y) 

by corollary.
So the condition |f| = c(X,Y) implies that |f| is 
maximal 
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Ford-Fulkerson method
● Also known as: an augmenting path method

– It is a generic algorithm with a strategy for a path 
finding (line 2)

1 Initialize a flow f to 0
2 while an augmenting path exists do  ;found by a strat.
3   improve f on edges of P by r(P)
4 return f



  37

Properties

1. We can construct a minimal cut in O(m) based 
on a maximal flow. (using Theorem, more cuts)

2. If capacities are irrational numbers, then 
implementation can diverge. The size of a flow 
converges but possibly to a suboptimal flow
● Informally: a strategy is not fair: a path is not selected

3. Rational capacities can be transformed to integer 
capacities

4. Each augmenting path improves a flow at least 
by 1 for integer capacities. So |f*| steps are 
enough. The f* has integer values on edges. 
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Properties 2

5. The F-F alg. is generic. An augmenting path 
can be found by any algorithm for a graph 
search.
– It is an advantage for a proof of the correctness and 

a disadvantage for proving a complexity bound.
● Ex: a graph with long computation
● Th: The constructed function f is a flow.

– Pr: by induction on cycle iterations. A zero flow is a 
flow. Changing a flow along the whole path does 
not change a flow conservation except s,t
The new flow is allowed using r(P)
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Properties 3
● A time complexity of the F-F alg. with integer 

capacities is O(|f*| . m) → Alg. finishes
– Note: Time is not polynomial wrt. a binary size of an 

input
● Partial correctness: If the F-F alg. finishes, it 

has not found an augmenting path and so the 
found flow is a maximal flow, by Theorem.

● Best complexity: A max. flow can be 
constructed by m augmenting paths. (HW)
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Strategies for path choosing
● (A maximal augmenting path)

– A variant of the Dijkstra alg. for a minimal path finding
● A shortest augmenting path

– Based on a breadth-first search
–               globally : n phases, m edges in a phase to 

be saturated, O(n+m) for finding an augmenting path
● An improvement: All shortest paths in „a batch“
● HW: to find a time complexity bound for a graph 

with capacities 1

O n⋅m2
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Dinic alg: A level graph
● Idea: Based on a level graph and a blocking flow
● Df: A level graph has a finite number of levels and 

directed edges are only between adjacent levels.
A level of a vertex is the length of a shortest path from s. 
The first level is {s} and the last one is {t}
– A level graph is usually pruned: each edge and vertex are 

on some shortest path (this simplyfies a complexity analysis)
– Let d(u,v) denote the shortest path from u to v. It is true that 

d(s,v) +d(v,t) = d(s,t)
● Df: A blocking flow has a saturated edge on each shortest 

path
– There can be augmenting paths but they must be longer. 
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Blocking flow
● We look (only) for a blocking flow in a level 

graph
– Longer augmenting paths are processed and 

saturated in next iterations with new level graphs
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Dinic alg.
● In: A network G=((V,E), c, s, t)
● Out: a maximal flow f from s to t
1 Initialize f(e) = 0 for all edges
2 Construct level graph Gl of a residual graph 
3 if dist(t) = ∞ then stop and output f
4 find a blocking flow f' in Gl
5 improve f by f' and continue at 2 
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Properties of Dinic Alg.
● L: A distance d(s,t) increases during alg.

– Idea: New paths have some new edge in an opposite 
direction
=>We have n phases, so complexity is O(n.h(n,m)), 
where h(n.m) is a time necessary to find a blocking flow.

● We have a pruned network: we can use any edge 
(greedy) for prolongation of any partial aug. path
– As backtracking is not needed, we have O(n) for a 

single path, so a phase takes O(n.m)
–  Globally: O n2⋅m
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Implementation 1

1. A creation of a level graph
● To get d(s,x) and d(x,t) for all vertices x, in O(n+m)
● A vertex u stays in R: d(s,u)+d(u,t)=d(s,t)
● An egde (u,v) stays in R: d(s,u)+1+d(v,t)=d(s,t)

● An invariant of a pruned net: each vertex and edge are 
on some minimal path => any edge can be used for a 
path

2. Pruning (after augmenting vs. during a search)
1. A net is pruned after each augmenting => invariant
2. Backtracking: unsuccessful vertices and edges are 

deleted once (from a level graph per phase)
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Implementation 2
● A network pruning: we need a good 

implementation. We need only constant time per 
an edge and a vertex

● A possible technique: a cascade pruning 
– Store a count of in- and out-degrees of vertices
– Decrement counts for all saturated edges. If any 

count is zero, propagate through vertices and edges
● Note: A selection of a vertex with a minimal inflow 

and a change propagation from it by levels gives   
         globallyO n3
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Goldberg alg., a preflow-push alg.
● Idea of an alg.: it uses a preflow and a height f.
● Df: A preflow is a function: V x V → R, that fulfills 

conditions of a capacity and a symmetry, but it is 
allowed an excess: V → R for all vertices except 
a source s.

● excess(v) ≥ 0, excess(v) = 
● A vertex (except s and t) is active, if excess(v)>0

∑w∈V
f w ,v 
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Height function
● Df: Let f be a preflow and R is a residual graph 

for f. A function h: V → N is a height function if:
1. h(s) = |V|
2. h(t) = 0
3. 

● An edge (u,v) is available if equality holds in 3.
● Idea: we construct a preflow, not a flow along a 

whole augmenting path. We shift an excess  
along an unsaturated edge – if an edge goes 
„down“ and a height difference is exactly 1.

∀u , v∈E R : hu≤hv1
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Alg.
Goldberg alg. - generic; 
01 h(s)=n ; h(v)=0 for other vertices except s 
02 f(s,v)=c(s,v) for all edges (s,v) //f from s is satur. 
03 f(e)=0 for other edges
04 while an vertex v ≠ s with positive excess exists do
05   if ex. e=(v,w) with positive reserve and h(v)>h(w) then
06     choose (v,w) as an edge from v
07     d=min(excess(v), r(v,w))
08     we shift an excess of size d from v to w
09   else h(v) := h(v)+1  // increasing a height of v
10 end
● A choice of a vertex v (line 4) and an edge e (l. 5,6) is given by a strategy
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Steps of an alg.
● A main loop execution (dependent on an order):
1. A saturated shift of an excess ( d=r(v,w) )

 →  an edge changes to saturated
2. An unsaturated shift of an excess ( d<r(v,w) )

 → an excess of v changes to zero
3. Increasing a height of v (line 9)
● Note: A vertex can get higher than a source 

height n = h(s), so it can return an excess to the 
source
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Partial correctness 1

● L1: After an initialisation, there is no edge (v,w) s.t. 
h(v) > h(w)+1 and its edge reserve is positive

● Pr: A condition holds after an initialisation, as all 
edges with a height difference start in a source 
and all edges from source have zero reserve

● A main loop does not create such edge, because:
– Increase of v: If v has an excess (by choice in an alg.) and 

an edge has a positive reserve (a precondition), then v is 
not increased (a contradiction), but an excess is shifted. So 
edges have zero reserve.

– A shift of an excess along an opposite edge (w,v) means 
h(w)>h(v)
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Partial correctness 2
● Th: (a partial correctness) If Goldberg alg. finishes, 

then it has found a maximal flow.
● Pr: if a while cycle finishes, then all vertices except s 

have zero excess and a preflow is a flow as well.
● It remains to prove: a found flow f is maximal ←  there 

is no augmenting path ← each path (from s to t) has a 
saturated edge

● Any path from s to t starts at height n=h(s), ends at 
0=h(t) and it has n-1 edges. So an edge with a height 
difference 2 exists. We proved in Lemma 1 that this 
edge has zero reserve.
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Time complexity: idea
● We give upper bounds on 3 operations:

1. The maximal height of a vertex → number of a 
height increasing

2. Number of saturated shifts
3. Number of unsaturated shifts

● It is a generic algorithm and a generic proof (of 
worst-case complexity). A particular strategy 
can have a better time complexity.
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Height count - preparation
● L2: If vertex v has a positive excess after an 

initialisation, then there exists a directed path 
from v to s, such that all edges on a path have 
a positive reserve.

● Pr: Let v to have a positive excess. Let A be a 
set of vertices, which have a directed path from 
v consisting of edges with a positive reserve.
 → an inflow to A is zero → an excess of A is 
nonpositive → as s is the only vertex with         
a nonpositive excess, it belongs to A. QED
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Height count
● L3: The height of any vertex is bounded by 2n.
● Pr: Suppose we want to lift a vertex over 2n. 

Then it is in a height 2n and has a positive 
excess. Using Lemma 2, we have a path from 
unsaturated edges from v to s. Similarly as 
before: a path starts in a height 2n, it finishes in 
a height n, and it has at most n-1 edges. So 
some edge has a height difference at least 2 
and it has no reserve. A contradiction.

● L4: A count of lifts globally in the alg. is O n2
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Saturated shifts
● L5: Number of saturated shifts is globally n.m
● Pr: Let e=(u,v) be an edge. Sum of h(u) and h(v) is 

between 0 and 4n. A reserve of (u,v) is 0 and h(u) = 
h(v)+1 after a saturated shift. 

● A reserve must increase before next saturated shift on 
the same edge. It is possible only if a shift along an 
opposite edge (v,u) occurs. So h(v) increases by at 
least 2 (a shift along an opposite edge), then h(u) 
increases by at least 2. A sum h(u) + h(v) increases by 
at least 4 between any saturated shifts.
→ A count of saturated shifts per an edge is at most n 
and globally n.m, so we have O(n.m)
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Unsaturated shifts 
● L6: Number of unsaturated shifts is globally at 

most 
● Pr: (using a potential method):
● Let S be a sum of vertex heights with a positive 

excess, except s and t. 
● Boundary conditions for S:

– After initialization: S=0, as only s has a nonzero 
height

– At the end: S=0, as no internal vertex has an 
excess

2n22n2 .m
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 Unsaturated shift, cont'd
● Operations:
● A lift of a vertex increases S by 1.
● A saturated shift along (u,v) increases S by at most    

h(v) ≤ 2n, if v did not have an excess and u remains 
with an excess.
– A cumulative increase of S:                    (A)

● An unsaturated shift along (u,v) decreases S by at 
least 1. Heights are the same, a summand h(u) 
disappears and h(v) is possibly added, if it was not 
present before. As h(u)=h(v)+1, the value S 
decreases. Globally, (A) gives a bound for a step 
count. 

2n22n.nm
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Time complexity 
● Th2: A time complexity of a Goldberg algorithm 

is
● Pr: from Lemmas 4,5,6
● A strategy for a vertex selection: the highest 

vertex with an excess → # of unsaturated shifts 
is 
– Idea: Lower vertices wait for many shifts and then 

they propagate at once and maybe using a 
saturated shift 

● Best alg.: Goldberg, Tarjan 1996: 

O n2 .m

≤8n2 .m

O nm log n2/m
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Fast (Discrete) Fourier transform 
● Motivation: a fast multiplication of polynomials

                                        with 

– A multiplication in a lower part: using a point 
representation in O(n) (for carefully chosen points) vs.  
a multiplication in an upper part: O(n.n)
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 Motivation 2
● Df: A vector of coefficients                          is      

a convolution of vectors                           and      
                         .

● Evaluation of a polynomial in a given point 
using Horner method:

– Direct approach: Time complexity per point: O(n); 
for 2n points cummulatively O(n.n)

– For comparison: Polynomial multiplication using 
Divide et impera:

– FFT (and IFT):                  
O nlog2 3

b=b0 ,b1 , ... ,bn−1
a=a0 , a1 , ... , an−1
c=c0 , c1 , ... , c2n−2

x0

O n log n
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 Complex numbers
● Points chosen for evaluation: complex roots of 1
● We use Divide et impera method (so        )
● Arithmetic of complex numbers …

  ex:
– Complex n-th roots: roots of a polynomial 
– A number of roots: n, values                    for k=0..n-1 

and
● A primitive n-th root of 1 generates all other roots 

as its powers. We will use               . FFT can 
use any primitive root.

eiu=cosui.sin u

 8=
81 ,8=1 ; 4=

41=i , 2=−1

xn−1
 n=e2i k /n

 n=e2i /n

n=2l
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 About roots
● Equalities:

→ Squares of all n-th roots are only n/2 different 
n/2-th roots of 1 → recursive calls are evaluated 
in half of points; in two polynomials (but each 
result is used 2 times – it is an application of 
dynamic programming.)
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About roots 
● For n>=1 and k>=0, if n mod k ≠ 0 (not k|n):

● ..., if k|n:

– A sum of a geometric sequence.
● We evaluate a polynom A(x) of degree n-1 with 

coefs                         in points 
– It is a linear transformation, in a matrix form using 

Vandermonde matrix        of order nxn (next slide)
● A note about linearity: higher powers of roots are precomputed

n
0 ,n

1 ,n
2 , ... ,n

n−1a0 , a1 , a2 , ... , an−1 n
0 ,n

1 ,n
2 , ... ,n

n−1

F n
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Vandermonde matrix 

●                      - i-th root in a power j
– Different rows contain different roots
– The linear transformation from                   is a 

Discrete Fourier Transformation (DFT)
● A DFT is computed in O(n.n) using a definition

F n i , j =n
i  j

a i Ai
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Vandermonde matrix, example
● Vandermonde matrix, n=4, for FT (and IFT w/o ¼))

●                         ; two possible primitive roots
1  1  1  1             1  1  1  1
1  i  -1  -i             1  -i -1   i
1 -1  1 -1             1 -1  1  -1
1 -i  -1   i             1  i  -1  -i

● Lower rows represent higher frequencies

 4=i∨ 4=−i
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Inverse DFT 
● An inversion matrix      by a guess (no insight, 

no motivation, but with a check)
●                       , an inv. matrix has the same form

(up to a factor 1/n), but from primitive root
                  (a complex conjugate to the root ω)

● Th:      and      are inverse.

= 1, if i=j, and 0 otherwise (as in a unit matrix).
– Corollary: Time complexity of IFT is as FFT.

F n

−1= n−1

F n⋅F n
−1ij= k=0

n−1ik⋅
−kj

n
=1
n
k=0

n−1k i− j=

F n
−1F n
−1

F n
−1
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Algorithm: Fast FT
● We create new polynomials B(x) and C(x) for 

an input polynomial A(x).

                                                           (even coefs)

                                                           (odd coefs)
● It holds:                                          (1)

so evaluation of A(x) in n points reduces to
1. Evaluation of B(x) and C(x) in n/2 points each
2. Evaluation of A(x) from B(x), C(x) according to (1)
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Algorithm FFT
recursive_FFT(a)

 1 n:=length(a) 
 2 if n=1 then return(a)
 3 wn := exp(2*pi*i/n); w:=1 ; a primitive root+actual
 4 b:=(a[0],a[2]...a[n-2])   ; 
 5 c:=(a[1],a[3]...a[n-1])
 6 u:=recursive_FFT(b) 
 7 v:=recursive_FFT(c)
 8 for k:=0 to n/2-1 do
 9   y[k]    := u[k]+w*v[k] ; first half of a result
10   y[k+n/2]:= u[k]-w*v[k]   ; common results u,v
11   w := w * wn ; w is an actual root
12 return(y)

b :=a0 , a2 , ... , an−2
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Correctness 
● Base case: 

–

● Recursive case: for

● Result for k=0, 1, … n/2 – 1

● Result          for k=0, 1, … n/2 – 1

– Using −n
k=n

kn/2 ,n
n=1

ykn /2

k=0,1,...n /2−1

y0=a0

y0=a0⋅0
1=a0⋅1=a0

vk=C n/2
k =C n

2k

ykn /2=uk−n
k vk=ukn

kn/2v k=B n
2kn

kn /2C n
2k=An

kn/2

uk=B n/2
k =B n

2k 
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Complexity 
● Overhead Θ(n) in each recursive call (n is an 

actual size of data)
● Using Master theorem:



  72

 
● Ex. FFT and IFT
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 Notes
● Row vectors of Vandermonde matrix are 

independent (as vectors in    ) 
● There are other transformations: a cosine 

transform (in R^n, JPEG), a wavelet transform
● FFT can be done in finite fields (and weaker struct.)

– Ex. in       :                               , so           in 
– It needs an inverse element to n 
– No round-off errors

● (HW:) FFT for n=8, x=(abcdadcb), 
1.  x=(abcdefgh), all numbers are real
2.                                      

8=224≡16≡−1mod 17

a ,b , c , d∈R ;

Z 17Z 17

x=abcda dcb , a , b , c , d∈ℂ

ℂn
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 ● FFT is (also) a dynamic programming algorithm → 
● A transformation of recursion on an iteration

+ a lower (time) overhead
+ (sometimes) a lower memory consumption, compared 
to a tabelation 
- a more complex and longer program
● (Q: what is an usual complexity measure in practice?)

● In FFT: reordering of coefs, by a reverse bit notation

● FFT in hardware: A butterfly operation
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Butterfly operation
● Inputs (left): 
● Outputs (right):

uk , vk ,withn
k

yk=ukn
k . vk , ykn /2=uk−n

k .vk
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Applications of FT 
● A convolution of polynomials
● A signal analysis, a spectral analysis

● In a function space: each continuous (complex) function 
can be expressed in a basis of cos(nx) and sin(nx)

– Image, video, and audio processing
● A long numbers multiplication
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Dynamic programming 1/3
● It is a method for problem solving

– Usually optimisation problems, an instance 
decomposition gives common subproblems

● Classical problems:
– Fibonacci numbers (in 1D)
– The best matrix multiplication
– The longest increasing subsequence
– The longest peak subseq. (increasing and decreasing)
– The longest common subseq. of two seqs (in 2D)

● The best „match“ of two/n seqs (DTW: dynamic time warping)
– The shortest triangulation of a polygon



  78

Dynamic programming 2/3 
● Other problems

– Floyd-Warshall alg. for all minimal paths
– Fast Fourier transform
– Bitonic paths in TSP
– Optimal search tree
– Optimal print (min. sum of squares of line errors)
– Optimal coding (in QR codes)
– Two-player games with perfect information
– Existence of a derivation in context-free grammars
– Subset sum (both existence and approx. sol; nonpolynomial)
– Viterbi alg. (~ the most probable path in DAG)
– Search of an optimal strategy in a discrete optimisation
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 Dynamic programming 3/3
● Necessary properties, DP is usable only for some problems

1.  Optimal substructure
2.  Overlapping subproblems

● Bellman principle of optimality: An optimal solution consists only 
of optimal subsolutions.
– A possibility to reconstruct a solution; to remember or to 

recompute an optimal solution using Bellman equation
– No reconstruction, if only a value of opt. is needed (we can prune 

subresults) 
● Tabelation vs. Bottom-up vs. Top-down computation

– Tabelation (memoization) for direct use of a rec. alg.
● A bottom-up approach saves space for some problems

– Incomplete tabelation
● A various space of subproblems, lazy evaluation
● Ex: A longest path in a graph (DP in nonpolynomial time)
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Gate networks 
● Gate networks in a wider context: algorithms in a 

hardware implementation
– Usually represented by DAG (without loops)

● Arithmetic expressions: a term/tree structure vs. DAG
– Operations in parallel

● Architecture of computation does not depend on input data
● Gates can have more outputs, which can be used repeatedly

– Particular types of gates
● Comparator; And, Or, Xor; Plus, Minus, ...

– A nonuniform representation of algorithms
● Different networks for a various input size
● (Networks are generated/compiled from an abstract description)
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Comparison and Sorting networks 
● Comparison network: n inputs, n outputs over some 

linearly ordered type
– C.N. uses only one type of a gate: comparator

● 2 inputs, 2 outputs
– Sorting network: Outputs are sorted after computation
– Ex.: an insertion sort, 2-way bubble sort 
– (A counting sort is not implementable)
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Sorting networks 
● A formal representation:

–                               is a set of comparators
–                                            is a set of outputs
–                                            is a set of inputs
–                               , N is a sorting network, f is a 

partial mapping, f(u,i) ≠ f(v,j)
●  A network is acyclic; it has a size s(S) 

(~sequential time) and a depth d(S) (~parallel 
time)
– A comparator is in a depth d, if  it can run in a step 

d

C={C1 ,C2 , ... ,C s }
O={k , i ,1≤k≤s ,1≤i≤2 }
I={k , i  ,1≤k≤s ,1≤i≤2 }
S=C , f  , f :O I



  

Sorting network - representation 

1. Wires go from an input to an output
2. Comparators connect two wires
● Each sorting network can be represented in this 

fashion
● A network S is a set of comparators. A 

comparator is a triple (j,p,q), 1≤j≤d, 1≤p<q≤m, 
where d and m are a depth and a width of a 
network, respectively

● S4={1,1, 2 ,1,3, 4 ,2,1,3 ,2,2, 4 , 3, 2,3}

1 ,2 ,3 ,4

d=1
d=2
d=3
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Mergesort 
● A sorting network     of a width n is recursively 

defined using two sorting networks       and       
a merging network         of a width n;

● Recursion ends for n=2.     is an empty net.

for k=d S n /2

S n /2
n=2lM n /2

S1

S n
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Picture: Sorting network
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Merging network 
● A merging network       of a width 2n merges 

two sorted sequences of a length n to a single 
sorted sequence. A construction uses recursion 
and a base case is for n=1.

●       is a single comparator {(1,1,2)}

for k=d M n /2

M 1

M n
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Picture: Merging network 
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Merging network 
● Odd elements of both sequences are an input 

of the first copy of         with outputs     and even 
elements are an input of the second copy of       
with outputs    .

● Outputs of both copies are connected by a 
single comparator layer, 

ci

d i

M n /2

M n /2

y2i =d iwith y2i1=ci1
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Correctness proof: a preparation 
● L: Let f be a (nonstrictly) increasing function. If 

sorting network sorts a sequence                  ,
then it sorts a sequence

● Pr: By induction on #comparators. If a 
comparator has inputs u and v, then it returns 
min(u,v) and max(u,v) on its output wires. For 
an increasing function, a comparator returns 
min(f(u),f(v)) and max(f(u),f(v)), so the ordering 
is the same.

f a1 , f a2 , ... f an

a1 , a2 , ...an
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Zero-one principle 
● T: If a sorting network sorts correctly all possible inputs 

of zeros and ones, then it sorts correctly all inputs
● Idea: A threshold between any two elements of an 

input gives a zero-one sequence. 
● If an arbitrary sequence is not sorted, then for some u 

and v, u<v, the element v is before u.
● We construct f: 

– f(x)=0  if  x ≤ u and
– f(x)=1  if  x > u

● The corresponding 0-1 sequence after transformation 
by f is not sorted: a contradiction
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Correctness of merging network 
● Recall a construction of a merging network.
● For 0-1 input sequences: There are 4 cases depending 

on a parity of a count of 0 in a's and b's. We show 
configuration of c's and d's from last zeros in both c's 
and d's. (if any)

● In all cases the output is sorted or the last level of 
comparators sorts it. Comparators are shown as „-“. 

1. Even zeros in a's and b's: output „0 0-1 1“
2. Even zeros in a's and odd zeros in b's: 0 0-0 1-1 1
3. Odd zeros in a's and even zeros in b's: the same
4. Odd zeros in both: 0 0-0 1-0 1-1 1

→ a merging network sorts correctly
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 Size and depth of networks
● A merging network      of a width 2n: 

– A depth from recursion: 
– A depth explicitly:
– A size from recursion:
– A size explicitly:

● A sorting network      of a width n: 
– A depth from recursion: 
– A depth explicitly:
– A size from recursion:
– A size explicitly:

● Proofs by induction. A size of the sorting network is suboptimal.
s S n=n /4log2nlog2n−1n−1

Sn

s S n=2 sS n /2s M n/2 , sS1=0

d S n=d S n/2d M n/2 , d S 1=0
d S n=1/2 log2 nlog2n1

M n

d M n=d M n /21,d M 1=1

s M n=n log2n1
s M n=2 s M n/2n−1, sM 1=1

d M n=log2 n1
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A lower bound for a sorting network
● Each sorting network is a comparison network
● L1: Each comparison network returns a 

permutation of its input values
– Pr: By induction on a count of comparators. Each 

comparator swaps or does not swap its inputs
● L2: For a sorting network, all n! permutations 

are accessible.
– Pr: We can input an inverse permutation of a 

chosen permutation and a correct sorting network 
must  sort it.
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Sorting networks: a size
● Let C be a sorting network with a width n and 

let p be a count of accessible permutations in 
C. Then                  

● Corollary:                         and 

n!≤2s C 

s C ∈Ω n logn d C ∈Ω log n
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● HW: Can you restrict a sorting network to less 

wires? E.g. n=5.
● Can you add a comparator arbitrarily to a 

sorting network such that it remains a sorting 
network?
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Arithmetic networks 
● An implementation of arithmetic operations 

using boolean gates (And, Or, Not, Xor, Nand..). 
● We show an adder for n-bit numbers
● A single-bit adder: an input x,y,z; an output s,c 

(sum, carry)
–

–

● HW: To find a bigger number from two given 
numbers using also a „<“ gate. (2-way or 3-way)

c=majority  x , y , z = x∧ y∨ x∧z ∨ y∧z 
s=x xor y xor z



  97

 Adder
● An adder with carry: 

– An input:                       and 
●

– An output: 
●                           for i=0..n-1

                          where

● A depth of a network (corresponding to a 
parallel time) is Θ(n) and a size is also Θ(n).

ui , vi∈{0,1}
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Carry-lookahead alg.
● We don't have a carry bit quickly enough
● We create a tree structure instead of a linear 

one:
– A trick (usable in programming, in theory):
– Computing with functions (~a f. represents all 

possible computations) using composition
– We use 3 functions: Generate, Propagate, Kill

● Bigger segments are created using a composition of fnc's
● If we have carry bits, then we can compute         

in a constant depth
si
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Composition of functions
● 3 possible functions of the type: bit → bit

1. Generate (G): it sets an output bit; 
2. Propagate (P): it returns input bit;
3. Kill (K): it returns 0 everytime;

●  A composition (f1○ f2)(x) = f1(f2(x))
– A single composition                                                                        

enables to double                                                                            
a dependency length.

– Initial dependencies                                                                          
are computed from u                                                                         
and v.

● A representation of a fnc: using two bits: g, p

f1 ○ f2 f2: G f2: P f2: K

f1: G G G G

f1: P G P K

f1: K K K K

g i=ui∧vi
pi=ui xor vi

k i=¬g i∨ pi

g1, p1°g 2, p2=g1∨ p1∧g2 , p1∧ p2

g i , pi
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Computing all carry bits

● A direct approach of computing n carry bits 
independently needs ω(n) gates 
→ Computing in two phases to get an O(n) size

1. Computing segments of a length     ending on 
positions        , for an increasing length 

2. Computing remaining segments ending at         
 and starting at 0, for decreasing i-th powers

● Because an initial carry bit is 0, the Generate 
function returns 1 and other functions return 0

2i

k⋅2i

k⋅2i
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Computation of carry bits 
● The expression i-j means that the function f,       

               was computed. 
●       7-0       5-0      3-0                 last level
●             6-0
● ----------------------------------------
● 8-0
● 8-4                   4-0
● 8-6       6-4       4-2        2-0
● 8-7 7-6 6-5 5-4 4-3 3-2 2-1 1-0  first level
● A geometric sequence in both phases: size is 

O(n) ←  less than 4n gates

ci= f c j 
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(Multiplication) 
● HW: Show that a sum of three numbers can be 

reduced to a sum of two numbers in a constant 
depth!

● → We need only a logarithmic depth to sum n 
numbers to two numbers.

● Then we can use an adder of two numbers with 
a logarithmic depth
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(Time) Complexity of problems
● We analysed complexity of algorithms previously.
● We are interested in complexity of problems with 

respect to some classes of algorithms (e.g. 
sequential or parallel)

● Df: Complexity of a problem is complexity of the 
best algorithm which solves a given problem
– An upper bound of a problem complexity is 

complexity of any algorithm which solves a problem
– A lower bound is derived from some characteristics of 

a problem 
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Decision problems
● Df: A decision problem is a problem which returns an 

output YES/NO
– Is there a colouring of a graph G using k colours?
– Is there a clique of a size (at least) k in a graph G?
– Is there a solution to Travelling Salesman Problem in a 

graph G smaller than a threshold t?
● An optimisation problem reformulated as a decision problem.

● A particular input of a problem is called an instance 
● Note: A problem is taken as a set of true instances and 

an algorithm computes its characteristic function
– The multiplication problem             is formulated as 

a decision problem                           w.l.o.g. 
c=a⋅b

{a ,b ,c∣a⋅b=c }



  105

 Nondeterministic algorithm
● We use nondeterministic algorithm only for decision 

problems
● A nondeterministic algorithm can use nondeterninistic 

steps. If any branch returns YES, then the whole 
algorithm returns YES
– Ex: CLIQUE: We have an instance (G,k). An algorithm 

chooses k different vertices nondeterministically and 
then it verifies (in time O(k.k)) that they create a clique. 
● But: this problem is solvable in polynomial time for fixed k 
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(Polynomial) Reducibility 
● A decision problem P is reducible to a problem Q 

if we have a function f such that every instance L 
of P gives the same result as an instance f(L) of 
Q (f need not be „onto“ and „one-to-one“)
– In general, we need functions f:P_in → Q_in and g: 

Q_out → P_out for transforming an input and output
– We work with a polynomial reducibility: P ≤ Q (or      ) 

A function f (or f and g) runs in polynomial time
– Ex: A problem of finding of a spanning tree is 

reducible to a problem of a minimal spannig tree.
– Ex, for general problems: A multiplication for decimal 

 numbers is reducible to a binary multiplication.

≤p



  107

Classes of problems  
● The complexity class P (or PTIME) is a class of 

decision problems which are solvable by sequential 
deteministic algorithms in polynomial time.

● The class NP (or NPTIME) is a class of problems 
solvable by a nondeterministic sequential algorithm

● A problem Q belongs to NPComplete if it is from NP 
and every problem from NP is reducible to Q 

● Problems from NPC are the hardest problems from NP
● Problems form NPC are mutually reducible
● NPC    NP
● P    NP, but it is unknown if P=NP

● A YES solution of an NP-problem can be verified using 
a certificate deterministically and polynomially

⊂
⊂
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A class: NP Complete (NPC)
● Polynomial reducibility is transitive.
● How to find a first problem from the NPC class: 

using a definition. A construction depends on a 
particular computation model (...)

● Next NPC problems can be found using 
reducibility: if P ≤ Q and P is NPC and Q is NP, 
then Q is NPC
– If Q has a polynomial alg. then also P has a 

polynomial one
– If there is no polynomial alg. for P then there is no 

one for Q
– (Df: Q is NP hard if P ≤ Q for any P from NP)
– (If Q is NP hard and from NP then Q is NPC)
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 NPC problems
● Warning: A size of an input is measured in bits
● COLOURING: (G,k)
● 3SAT ≤ SAT , SAT ≤ 3SAT; SAT: a satisfiability 

of propositional formulas in CNF 
● HAM: Does a Hamiltonian cycle in G exist?
● Independent Set ≤ CLIQUE
● VertexCover
● SubsetSum ≤,≥ EqualSubsets; Backpack
● HW: HAM to SAT
● HW: polynomial solutions: 2COLOUR, 2SAT
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Easy example 
● HAM: a problem of a Hamiltonian cycle

– An instance: G
– A question: Does a cycle through all vertices  in G 

(called a Hamiltonian cycle) exist?
● uvHAMP: a problem of a fixed Hamiltonian path

– An instance: (G,u,v), a graph G and two vertices u,v
– A question: Does a path through all vertices from u to 

v (called a Hamiltonian path) exist?
● We show: uvHAMP      HAM

– If we know that uvHAMP is NPC and we want to 
prove that HAM is NPC, then we must also show that 
HAM is NP. 

≤p
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Easy example: a reduction
● Let (G,u,v) be an instance of uvHAMP ; G=(V,E)
● We construct 

– G' is an instance of HAM
1. A construction of G' is polynomial
2. A graph G has a Ham. path from u to v, then G' has a 

Ham. cycle from u to v to x to u
3. A graph G' has a Ham. cycle. It must go through x, so 

except x it must start in u then go through all vertices 
and visit v before it returns to x.

4. (HAM is in NP: we describe a nondeterministic 
polynomial algorithm) 

G'=V∪{x }, E∪{u , x  , x , v}
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Reduction 
● SAT ≤ CLIQUE
● SAT: An instance is a formula (in propositional 

logic) in conjunctive normal form. A question is 
if it exists a satisfying evaluation of variables

● CLIQUE: An instance is a graph G and a 
number k. A question is if a clique with k 
vertices exists in G

● Th: SAT in NP, CLIQUE in NP
– Pr: Directly, we describe relevant algorithms

● Note: Finding a solution of SAT by brute force
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Reduction 2 
● Syntax of formulas (in CNF):

– An atomic formula ~ a propositional variable 
– A conjunction  A.B
– A disjunction A+B
– A negation

● Semantics of formulas:
– An evaluation of variables v: Vars → {True, False} generates 

an evaluation of formulas e: Formulas → {True, False}
– e(x) = v(x) ; e(A.B) = e(A)    e(B) ; e(A+B) = e(A)    e(b) ;  

● A Conjunctive Normal Form: a negation has the highest priority, 
then a disjunction and then a conjunction. 

∧

xi

A

 x1x2. x2x3. x3x1

∨
eA=¬e A
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Reduction 3 
● Let a formula A be                      , where

                              and       is a variable or its 
negation

● A construction: we create 
– Vertices correspond to literals

● Edges E: ((i1,j1),(i2,j2)) is an edge, iff i1≠i2 and 
corresponding literals are not a negation of 
each other (i.e. they can be both satisfied)  

● A new instance of CLIQUE is  ((V,E),p); a size 
of a clique is p.

F i=Li ,1Li ,2..Li ,qi
Li , j

A=F 1 .F 2 ...F p

V={i , j  ;1≤i≤k ,1≤ j≤qi }
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Reduction 4, a proof
● A reduction is polynomial.
● Th: The answers for original and new instances 

are the same: A formula A is satisfiable iff there 
exists a clique of a size p in a graph (V,E)

● „→“ : A valid evaluation has some valid literal in 
each factor. Then a corresponding vertex 
belongs to a clique, because each two selected 
vertices are connected by an edge and we  
selected p vertices.
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Reduction 5, a proof 2
● „←“ : a p-clique fixes an evaluation for some 

variables. The evaluation is consistent, because 
possible multiple evaluations to a variable are 
the same. A formula is valid in this evaluation 
because a literal was selected and is true in 
each factor. Remaining variables can take any 
value. QED
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Notes 
● An instance belongs to a problem; a problem belongs 

to a complexity class
● If an instance I (written over an alphabet) is not syn- 

tactically correct for P, then        . An example: 3SAT 
● A problem is NPC if it has hard instances. Some 

instances can be easy (be carefull in cryptography).
– (Constraints. SAT solvers. A phase transition for 3SAT)

● Programming in CNF formulas: a (propositional) 
variable          represents „an object O has a value V in 
time T“ (e.g. HAM to SAT); an object ~ a domain var.

● Nonpolynomial            vs. exponential              
algorithms

I∉P

O 2n O 1n

xO ,V ,T



  118

 Approximation alg.
● Approximation algorithms vs. heuristics

– And how to combine them.
● We want to get an approximate solution to NPC 

problems in a polynomial time.
● Df: Approximation ratio. Let C* be an (unknown) 

optimal solution for an optimisation problem. An 
algorithm has an approximation ratio r(n), iff, for 
any input size, the cost C produced by an 
algorithm is within factor r(n) of the cost C* of 
the optimal solution: max(C*/C, C/C*) ≤ r(n) 
– (The definition is usable both for min. and max. 

problems.)
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Approximation scheme 
● Some problems have an approximation algorithm with 

a fixed approximation ratio
– Ex: Colouring of a graph with a ratio of 1,33 (~33% 

error). It enables a decision between 3 or 4 colours, but 
3Colouring is NPC 

● An approximation scheme for an optimisation problem 
is an approximation algorithm that takes an instance 
and a value eps>0 and the scheme is an (1+eps)-
approximation algorithm for any fixed eps.
– A polynomial-time approximation scheme (PTAS) 

runs in time polynomial in the size of n
– A fully PTAS runs in polynomial time in both the size 

n and 1/eps
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Example 
● A scheme of polynomial algorithms that solve a 

k-clique problems for a graph G for fixed k's.
● A scheme: We generate k nested cycles 

through vertices. We test in the innermost cycle 
that all vertices are different and they create k-
clique. (An unoptimized alg.)

● An algorithm is polynomial (       ) for a fixed 
value k. But the Clique problem is NPC for k 
given as a parameter

O nk 



  121

Overview 
● An approximation algorithm for Vertex Covering 

with an approximation ratio 2
● An approximation algorithm for a Travelling 

Salesman Problem (TSP) with a triangle 
inequality with an approximation ratio 2 

● A nonexistence of an approximation algorithm 
for a general TSP, without a triangle inequality.

● (Full) PTAS for a Subset Sum problem
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 Vertex covering
● We give an approximation alg. for a vertex covering with 

the approximation ratio 2.
● Df: A vertex covering is a subset V' of V, s.t. each edge 

has at least one vertex in V'
● Th: the problem of Vertex covering is NPC. (from 

Independent Set) 
● Idea: we repeatedly choose an edge e, we add both its 

vertices to C, and we delete all edges incident with e.
● C is vertex covering. C has an approximation ratio 2, 

because no two edges of C share a vertex and at least  
one vertex of a edge must be in an optimal covering C*.

● Note: A greedy algorithm selecting a vertex with max. 
degree does not have an approximation ratio 2. :-(
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Travelling Salesman Problem, TSP 
● Instance/input: a graph G=(V,E), a length 

l: E → R; l(e) are nonnegative values
● Question: we look for a shortest Hamiltonian 

cycle
● We give an approximation alg. for TSP with the 

ratio 2 for an undirected graph with the triangle 
inequality
– The triangle inequality for a function l: for all u,v,w: 

l(u,w) ≤ l(u,v)+l(v,w)
– An alg.: we find a minimal spanning tree (MST) in 

G. We choose a vertex r, traverse the MST from r 
by DFS, and remember a preorder list. A resulting 
list is an output Hamiltonian cycle H. 
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 Idea of a proof
● We use |x| for a length of x:
● Some spanning tree K is in H*: |K*| ≤ |K| ≤ |H*|
● The full cycle H+ which includes vertices for 

each visit is (exactly) 2 times longer than MST:  
|H+| ≤ 2|K*|

● A deletion of vertices from H+ decreases the 
length of a path because the triangle inequality 
holds: |H|≤|H+|

● Finally: |H| ≤ |H+| ≤ 2|K*| ≤ 2|H*| QED
– Note: a cycle H can be optimized later locally or 

during construction (e.g. it can have a cross)
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TSP without a triangle inequality
● A triangle inequality is important for TSP:
● Th: if P≠NP and r>1 then there is no polynomial 

approximation algorithm for TSP with an 
approximation ratio r.

● Proof: by a contradiction. We show that if exists 
an alg. A for the theorem then it can be used to 
solve a Hamiltonian cycle problem, which is 
NPC. 
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Transformation 
● Let G =(V,E) be an instance of HAM. We 

transform a graph G to a TSP instance G'=(V,E').
● G' is a complete graph, l(u,v) = 1 if (u,v)    E and 

l(u,v)= r.|V|+1 otherwise
● A construction of G' and l is polynomial in |V| and 

|E|
● Analysis: Let (G',l) be an instance of TSP. If G 

has a Hamiltonian cycle H then all edges of H 
have a length 1 and (G',l) has a cycle with the 
length |V|

∈
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Transformation 2 
● If G does not have a hamiltonian cycle then each cycle 

in G' has an edge outside E and the length of a cycle 
is at least
– Because edges outside E are expensive, there is a 

big difference between a Hamiltonian cycle in G (a 
length |V|) and any other cycle (a length at least    
r.|V|)

● An approximation algorithm must return a Hamiltonian 
cycle, if it exists, because it does not have any other 
possibility with a given error r.

● If a Hamiltonian cycle does not exist in G, then it 
returns a cycle with a length at least r.|V| → we solved 
HAM in a polynomial time, a contradiction

r⋅∣V∣1∣V∣−1r⋅∣V∣
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 Subset Sum
● Instance: (S,t), S is a set                    of positive 

integers and t is a positive integer.
● A decision problem: Does a subset          exist 

s.t.                 ? 
● An optimisation problem: We look for a subset 

S' of S, such that its sum is maximal, but not 
exceeding the value t.

● Notation:
● An algorithm for a decision problem based on a 

dynamic programming in an array of a size t. 

S '⊂S

{a1 , a2 , ... , an }

∑ai∈S '
ai=t
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 Alg.
● Alg: SubsetSum(S,t):
 
 1 n:=|S|;
 2 L[0]:= <0> ; a sequence
 3 for i:=1 to n do
 4   L[i] := mergeList(L[i-1],L[i-1].+.a[i])
 5   delete from L[i] all elements over t
 6 return(maximum of L[n]) 
● A procedure mergeList merges sorted sequences to a 

sorted sequence
● A length of L[i] is up to 
● An approximation scheme: we cut the list L[i] based on 

a parameter δ, 0<δ<1

2i
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An approximation scheme 
● Each deleted element y has an element z ≤ y in 

a shortened list L such that            , that is
                      . The z represents y with a 
„sufficiently small error“

●  We need a smaller element as a representant, 
because a greater one can overflow the 
threshold t.
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Algorithm
● Alg: SubsetSumApprox(S,t, eps)

 1 n:=|S|;
 2 L[0]:= <0> ; a sequence
 3 for i:=1 to n do
 4   L[i] := mergeList(L[i-1],L[i-1].+.a[i])
 5   L[i] := shorten(L[i],eps/n)
 5   delete from L[i] all elements over t
 6 return(z := maximum of L[n]) 
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Description 
● Elements of L[i] are sums of subsets
● We want: C*(1-eps)≤C for C* an optimal 

solution and C a found one
● We can have an error eps/n in each step. We 

can prove (using induction over i) that for each 
y*≤t from a full version there is z   L[i] such that  
                            . Because                           , 
we have

● Th: A scheme is a fully polynomial-time 
approximation scheme

∈
1−eps /nn y∗≤z≤ y∗

1−eps y∗≤z
1−eps≤1−eps /nn
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PTAS 
● Idea: a relative error eps/n divides an interval 

1..t to a polynomial count of sections and each 
section has ≤2 representants.

● Another point of view: a computation with the 
given precision means that we must represent 
exactly some initial segments of bits of a 
number in L[i]. (We start with higher precision 
(eps/n) because a cummulative error should be 
at most eps). But a fixed count of bits allows 
only a polynomial count of different represented 
numbers
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Note 
● There are other approaches: 
● Anytime algorithm: An optimisation algorithm 

which can be stopped at any time (after some 
initial period) and which returns better results if 
it spends more time on a problem.

● Heuristics, a combination of approx. alg. with 
heuristics, local optimisation as postprocessing.
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Probabilistic algorithms
● … postponed
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Cryptography, RSA 
● Algorithms are differentiated (in some context) as

1. Parallel: synchronous, a known number of 
processors

2. Distributed: asynchronous, heterogenous
– Cryptography belongs to distributed algs. in a 

previous division. Partners compute each their own 
part of a (complex) algorithm.

● Cryptography: partners: Alice (A), Bob (B); Eve 
(E, an enemy/eavesdropper); Certification 
Authority (CA) 
– … many different protocols and techniques



  137

 Motivation example - introduction
● Commuting ciphers. We use:

– An encryption function e(): {0..K} → {0..N}
– A decryption function d(): {0..N} → {0..K}
– d() is a left inversion of e(): 

● Alice has (her own confidential)      and       , 
Bob has       and       .

● Ciphers are commuting: 

∀m :d e m=m

eAeBm=eB eAm

d A 
d BeB 

eA 
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Commuting ciphers, cont'd
● A protocol for a sending of a message m:

1. Alice encrypts m and sends it to Bob:
2. Bob encrypts a message and sends                to Alice:
3. Alice deciphers and sends:

4. Bob deciphers: 
● A message was encrypted during each 

transmission with some key.
● Note: A message m can be a key for a (symmetric) 

communication, i.e. a session.

d BeBm=m
d AeBeAm=d AeAeBm=eBm

eBeAm
eAm
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 Public-key cryptosystems
● It is asymmetric cipher (e() and d() are different)
● It supports also a digital signature.
● Each participant X has a public key      and a 

secret key     . A secret key is known by X only. A 
public key can be publicly known (in some list).

● Keys P and S specify functions on a set of all 
messages (~a final sequences of bites) which are 
„one-to-one“ and „onto“ (~a permutation on D)
– In practice: Block ciphers, for various functions f:

– An advantage: The same plaintext is encrypted 
differently in different blocks i.

Cipher i= f Key , Plaini , {Cipher i−1 , Plaini−1 , i }

S X

P X
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„Public key“, properties
●

● Functions P() and S() are practically evaluable 
with a knowledge of a key. 

● A function        cannot be effectively evaluated 
with a knowledge of a key      (and of a function     
      )
– This is a hard part of a design
– Generally, algorithms for functions are known, only 

keys are kept secret (also it is supposed for a security 
analysis, vs. security by obscurity)

P X

∀m∈D :P X S X m=m∧S X P X m=m

S X 

P X 
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„Public key“, protocol 
● Sending a message M from Alice to Bob

1. Alice gets Bob's public key       (from Bob, from 
„web“ or from a Certification Authority)

2. Alice encrypts a plaintext M to a ciphertext 
3. Bob uses on C (from anybody)      and gets 
– Because Eve does not have a key, she cannot 

compute M from C.
● Note: Alice needs to know that      is Bob's key.
● Df/TT: A plaintext: a text to be encrypted
● Df/TT: A ciphertext: a text after an encryption

PB

C=PBM 

PB

M=S BC S B
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 Public key, digital signature
● Sending a signed message M' from A to B

1. Alice computed a digital signature
2. Alice sends a message and a signature: (M',s)

● The message M' is not encrypted here 
3. Bob gets      and checks
– If a decrypted message M' is the same as the sent 

one M', then Bob knows that a message is from Alice 
and was not altered

– Practically, messages are also encrypted in step 2. 
Here we describe only a scheme of a communication.

M '=P A sP A

s=S AM ' 
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Hybrid cipher 
● Asymmetric ciphers are slow, symmetric ones are 

quicker. A symmmetric cipher uses the same key K for 
encryption and decryption (i.e. AES and (unsecure) 
DES)
– A key K is short, hundreds or thousands of bits

● Instead of a (slow) asymmetric encryption               
Bob computes                                      and sends    
(C',K'). Alice decrypts a key                                     and 
then a message                  (and checks a digital 
signature).

● A key K is one-shot generated for a message or for a 
session. There are also other protocols for a secure 
sending of a key, which can be combined in hybrid c.

M=K C ' 
K=S AK ' =S AP AK 

C '=K M  , K '=P AK 
C=P AM 
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Hybrid authentication 
● It is slow to compute a digital signature of a whole 

message. Only a fingerprint is signed instead of a 
whole message.

● A fingerprint is computed using a (public one-way) 
hash function h (SHA-2, MD5), with a typical length of 
an output 128-512 bits.
– It is hard to find M and M' with                       , i.e.      

a collision.
hM =hM ' 
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Combined protocol: A to B  
1.  Alice gets Bob's key 
2.  Alice generates a symmetric key K, she computes              

     and encrypts
3.  Alice computes a fingerprint h(M) and its digital signature 
4.  She sends: 
5.  Bob reads: „from“: A. He gets 
6.  Bob gets                           and decrypts
7.  Bob computes a fingerprint h(M) and compares it with a 

deciphered s signed by A: 
8.  If a computed signature and a deciphered one are 

different then a signature is not from A or the message M 
was altered.

P As=P AS AhM =h M 

M=K C K=S BPBK 
P A

from :A ,C , P BK  , s 
s=S AhM 

PBK 
C=K M 

PB
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Notes 
● Ad 6: Only an owner of     can decrypt the key K.

– K should be selected from some big set to not enable 
a brute force search. (Do not select K from a subset)

● Ad 8: It is hard to forge a message M' because it 
is hard to find a (relevant) message with the 
same fingerprint as M.
– Moreover, if M is structured or formatted, then a 

forged message M' must be structured as well. 
● Ad 4: The first part „from:A“ can be encrypted 

using Bob's public key     , so Eve cannot 
recognise a sender. 

S B

PB
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Certification Authorities 
● Bob needs to know that the key     belongs to 

Alice (and is not a forgery)
● A basic solution, used in practice

– There exists a Certification Authority Z and its public 
key is known (a key came with an instalation or it 
can be verified on the web)

– Alice gets (using a safe way) a signed certificate for 
C=„Alice's public key is     “ from Z, i.e. 

– Alice appends this pair to any signed message, so 
Bob (and any owner of      ) can verify that C was 
issued by Z and the key      (in C) belongs to Alice.

PZ

C , S Z C P A

P A

P A
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Extended Euclid Alg.
● Df: A greatest common divisor (GCD) of a and b 

is the smallest positive number from a set           
                          , we call it gcd(a,b)

● Extended EA allows a computation of an 
inverse element in a ring 

● Input: a ≥ 0, b ≥ 0
● Output: d=gcd(a,b), x, y: d=a*x+b*y

{a⋅xb⋅y∣x , y∈ℕ}

Zm
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Extended Eucleid Alg.
 1 ExtendedEucleid(a,b)
 2 if b = 0 then
 3 return (a,1,0)
 4 (d',x',y') := ExtendedEucleid(b, a mod b)  
 5 (d, x, y):=(d',y', x'-(a div b)*y')
 6 return(d,x,y)
● Correctness: using induction through recursion:

– The result from recursion: d'=b.x'+ (a mod b).y'
– We want x and y, s.t. d=a.x+b.y. We get using algebraic operations:

2bh  x−1
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Eucleid alg.
● The alg. needs for n-bit numbers          bit 

operations
● Idea: The smallest numbers (that is the worst 

case) that need a given number of steps are 
Fibonacci numbers.

O n3
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Rings: Z modulo m
● We define a congruence relation modulo m for 

a fixed m:
● Df: a≡b (mod m) = m | (a-b).
● We can use representants {0.. m-1} of the factor 

set                 instead of classes
●

●

● A multiplicative inverse element x to a in      , 
denoted             , fulfills                     and is 
defined if a and m are relatively prime.

〈a 〉m〈b〉m=〈ab〉m

〈a 〉mZm=Z /≡

〈a 〉m⋅〈b〉m=〈a⋅b〉m

x=〈a 〉m
−1

Zm

a.x≡1mod m
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Euler function
● Df: The Euler function φ(n) is for n>1 a count of 

positive numbers up to n which are relatively 
prime to n

● Th: If n is a prime number, then φ(n) = n-1.  If 
n=p.q for different primes p and q, then φ(n) = 
(p-1)(q-1)

● Th (Euler): For a and n relatively prime 
(gcd(a,n) = 1) it holds

● Corollary: if gcd(a,n) =1 then  
an−1≡1mod n

〈a〉n
−1=〈an−2〉n
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RSA

1. Choose two big prime numbers p and q
2. Compute n=pq. Compute r=(p-1)(q-1)
3. Choose a (small) odd number e which is 
relatively prime to r
4. Compute a multiplicative inverse element d 
to e modulo r (using Extended EA). 
5. Publish (e,n) as a public RSA key and 
remember (d,n) as a private RSA key. (p, q and 
r are kept secret as well)
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Correctness of RSA
● Th: The functions                            and                  

                           are a pair of mutually inverse 
functions.

● Pr: it holds for all M<n: 
● As d and e are mutually inverse elements modulo 

r, we get 

● We used that e.d ≡ 1 mod r means e.d=1+c.r for some c.

P S M =S P M =M ed mod n

S M ≡M d mod n
P M =M e mod n

M ed mod n≡M 1c⋅rmod n
≡M⋅M c⋅nmod n
≡M⋅1mod n
≡M mod n.QED
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Notes
● ! We use both (mod r) and (mod n) in the proof.
● How to find big prime numbers?
● We can prepare P and S ourself and let the CA 

sign only the P key. CA does not have the key S
● A long message is divided to several blocks of 

an allowed size, depending on a bit-lenght of n.
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RSA: Properties
● Why is the RSA method safe?

– Nobody is (up to now) able to compute d effectively 
based on (e,n) without the knowledge of a 
decomposition n=p.q and also φ(n)=(p-1)(q-1).

– A factorisation of big numbers is a hard problem.
● (Both checking primality and checking composionality are 

 polynomially verifiable)
● We can use a quick exponentiation algorithm 

with an included modulo operation.
● There are other usable hard problems which 

can be used in a public key cryptography.
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Probabilistic algorithm 
● Motivation: how we can get an effective alg. for 

hard decision problems.
– We used approximation algorithms for optimisation 

problems.
● A probabilistic algorithm makes also random 

steps (compared to a deterministic alg.). It uses 
usually a random number generator (or a 
pseudorandom generator, to allow rerunning).
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Types of probabilistic algorithms 
● We describe

– 1. Algorithms of Las Vegas type
They return always a correct solution. Randomness 
 affects only a running time.
Ex: Randomisation of quicksort

– 2. Algorithms of Monte Carlo type
Randomness affects a running time as well as a 
correctness of results.
Ex: Rabin-Miller test for primality
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Randomisation of Quicksort
● A pivot is selected randomly and uniformly in 

each recursive call.
– (Combination of methods: Median of three)

● Advantages: 
– An algorithm has good average time (O(n log n)) for 

all inputs. No input is a priori bad, compared to a 
deterministic version. But for a particular input and 
particular random choices a running time can be 
O(n.n)

– We can run more copies in parallel and take a 
result from the first finished copy.
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Alg. Monte Carlo 
● Randomness in an alg. affects correctness of a 

result. An alg. can make an error, usually only 
single-sided (for decision problems) and with a 
limited probability.

● For a comparison: Primality testing with a brute 
force takes on t-bits numbers            stepsO 2t /2
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 Primality testing
● Th (small Fermat): Lets p be any prime number 

and c be a number relatively prime to p, c<p. 
Then 
– Application: a test of a primality
– If a conclusion of the Fermat theorem is not fulfilled 

for a number c then p is a composite number 
(definitely!) and c is a certificate of compositeness.

– An implication in the opposite direction is 
sometimes valid but not always.
→ we need a better test

c p−1≡1mod p
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Witnesses for composite numbers 
● Lets T be a set of tuples (k,n), k<n, such that 

some condition is fulfilled.
1)        is not congruent with 1 (mod n)
2) There are i, s.t.                     is a natural number 

and                          is between 1 and n
● Th 1.: A number n is a composite one if it exists 

k<n, s.t. (k,n) belongs to T
● Th 2.: Lets n be a composite number. Then 

there exists at least (n-1)/2 numbers k<n, s.t. 
(k,n) belongs to T

m=n−1/2i
k n−1

gcd km−1−1,n
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Primality test 
● Rabin-Miller algorithm:

– Choose m different probes k[i] randomly from (1,n-1)
– If T(k[i],n) for any k[i] then n is a composite number
– Otherwise n is a prime number

● A probability of an error
– If the alg. returns „n is composite“, then it is true 

(some k[i] is a witness)
– If the alg. returns „n is prime“, then it can be an error. 

But all k[i] must be non-witnesses for n in case of 
error. Then P(error) ≤            for m independent 
choices of k[i]

1 /2m
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 Convex hull
● … skipped
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2bh  x−1∈ ∪
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