
Algorithms and Data Structures 2

TIN061

Jan Hric

Lectures, part 1, v. 1.12.2019/f

 2

Syllabus ADS2
● A string search: alg. Aho-Corasick, …
● Flow networks
● Fast (discrete) Fourier transform
● Gate networks, sorting networks, ...
● Problem classes P, NP, NPC, reducibility
● Approximation algorithms
● Cryptographic protocols
● Probabilistic algorithms, primality testing
● Algorithms in plane, convex hull
● (Dynamic programming)

~ Algorithms in a wider sense

 3

A string search: Aho-Corasick alg.
● A search of multiple patterns in a text
● An alphabet Σ, finite words Σ*, length,

concatenation, empty word ε (or λ)
● A problem: Given an alphabet Σ, a word

 , searched patterns
● Output: All instances of patterns from K in x, i.e.

 , is a suffix of (tricky: only pointers)
● Parameter l = |K| =

x=x1 x2 ... xnx=x1 x2 ... xn K={ y1 , ... , yk }

[i , p] y p x1 ... xi

∑i=1

k
length  yi

 4

Naive alg.
● For all patterns p, for all valid positions i:

 match a pattern p from the beginning with a
text at a position i
 if the whole pattern successfully matches, then
Report(i,p)

● Complexity: in the worst case O(l.n)
– Without counting of an output writing

● It is the same for all (correct) algorithms
● It depends on input data

 5

An idea of AC alg.
● We construct an algorithm dependent on patterns

(≈ Finite Deterministic Automaton) in time O(l),
which finds patterns in a text in O(n).

● Alg. 1 – an interpret of a searching machine
● Alg. 2 – a compilation of patterns, a creation of a

forward function
● Alg. 3 – a compilation of patterns, a creation of a

backward func.

 6

Wider context
● A compiler, a generation of a machine and a

code
● DSL: Domain Specific Languages

● Different views on a search machine
(interpretation)
– An abstract machine: data structure or bytecode
– Source code or executable code

● Use of a runtime library for specific operations

 7

Search AC machine
● The machine (over Σ) is a tuple (Q, g, f, out)

– Q = {0..q} is a set of states
– g: Q x Σ → Q { ┴ } ; a (forward) goto function

● g(0,c) Q, a step from state 0 is defined for all letters
– f: Q → Q ; a backward fail function

● f(0) = 0
● f is used, when g returns ┴

– out: Q → P(K) ; an output function
● As multiple patterns can be finished on the same place,

we must return a subset of patterns

∪
∈

 8

Properties of a search: g
● A graph of the function g, excluding a loop in 0,

is a tree
– State 0 is the root of the tree
– Each path from the root is valuated by some prefix

of a pattern
– Each prefix of each pattern describes a path from

the root to a (single) state s; a prefix u represents a
state s. Particularly, the word ε represents the state
0
● Each step using g goes one level deeper in the tree.

 9

Properties of a search: f and out
● The backward function f:

– For each state s represented by a word u, the value
f(s) is represented by the longest proper suffix of u,
which is also a prefix of a pattern from K
● f(s) is defined for all states, because an empty suffix

ε is a possible value
● The output function out

– If u represents s and y K, then y out(s)
whenever y is a suffix of u.

 10

AC: alg. 1
● Input: Σ ⃰ , M=(Q,g,f,out)
● Output: pairs (i,y) … (a position i, a pattern y)
1 state := 0
2 for i := 1 to n do ; through letters
3 while g(state,x[i]) = do
4 state := f(state)
5 state := g(state,x[i])
6 forall y ϵ out(state) do
7 Report((i,y)).

x=x1 x2 ... xn∈

 11

Notes on searching
● A pattern is reported on a final position
● A pattern can be a suffix of another pattern →

the function out reports a set of patterns
● Patterns are reported only after g-step (line 6)
● Conditions on f and g are „boundary conditions“
● The function g creates a data structure for

search: TRIE

● Ex: SLICE, SLICES, ICE, SCENE

 12

Correctness
● Invariant (declaratively): The algorithm visits

states each representing the longest suffix of a
processed part of the text, which is also a prefix
from K.
– Proof: using property of f

● The algorithm returns all patterns found
– Proof: using property of out

 13

Complexity of interpretation
● A hard part: the number of f-steps (lines 3,4)

– A separate count gives too loose approx. O(n.l)
– → we must count f-steps globally (to reach O(n))

● A potential method:
– A depth of a current state is a potential. A g-step

increases a potential, an f-step decreases a
potential.

– We want to show that globally a count of f-steps is
O(n).

● Note: this is an example of an amortized
complexity. (It counts complexity of sequences of ops.)

 14

Complexity 2
● Th: The count of f-steps is less than n.
● Pr: n = a count of g-steps {g is increased by at most 1}

>= a cummulative increase of potential {alg. starts at 0}
= cummulative decrease of potential + final depth
>= cummulative decrease of potential

{f is decreased by at least 1}
>= a cummulative count of f-steps

● Therefore globally a complexity of the search is
O(n)

 15

Algorithm 2 for g and o
In: patterns K; Out: states Q, g, o: Q → P(K)

1 procedure Enter(c[1]..c[m]) ; adds the pattern y[p]
2 state:=0; j := 1
3 while j<m and g(state, c[j]) ≠ do
4 state := g(state, c[j]) ; repeated chars
5 j++
6 for p:= j to m do ; new branch
7 q++; Q:=Q {q} ; new state
8 forall x in Σ do g(q,x) := ; undef. implicitly
9 g(state,c[p]) := q ; adding a character
10 state := q ; shift to a new state
11 o(state)= y[p] ; a preliminary output

∪

 16

Alg 2, main

12 Q := {0}; q:=0 ; init of states count
13 forall x in Σ do ; for all letters
14 g(0,x) := ;
15 for i:=1 to k do ; through all patterns
16 Enter(y[k]) ; add pattern to a trie
17 forall x in Σ do
18 if g(0,x) = then g(0,x):=0 ; a boundary cond.

 17

Alg. 3 for f and out

In: Q={0..q}, g: , o: Q → P(K)
Out: f: Q → Q, out: Q → P(K)
● Using queue for unprocessed states
01 queue := empty ; init
02 f(0) := 0; out(0) := Ø ;
03 forall x in Σ do
04 if (s:=g(0,x)) ≠ then ; nodes below root
05 f(s):=0; out(s):=o(s) ; trivial init
06 queue := queue {s} ; a new state to the end∪

 18

Alg. 3 cont'd
07 while queue is not empty do
08 r:= take the first element of queue (and delete)
09 forall x in Σ do
10 if g(r,x) ≠ then ;process descendants of r
11 s:=g(r,x); t:=f(r)
12 while g(t,x) ≠ do t:=f(t) ;through suffixes
13 f(s) := g(t,x) ; a valid node (~prefix) found
14 out(s):=o(s) out(f(s)) ; out() from suffixes
15 insert s to queue.

∪

 19

Alg 3: comments
● We must use a queue in the alg. 3

– We may need an arbitrary f(t) for a lower depth
state

● The line 12 stops because g(0,.) is defined
● A value of f(s) can be the state 0, as ε is a valid

prefix of any pattern.

 20

Properties: Correctness
● The output of alg. 3 is a correct AC search

machine
– Used f is defined

● Due to a queue and a lower depth
– f points to the longest possible suffix
– out includes shorter patterns

● A patterns p can be embedded in a longer pattern r, so a
machine can visit only states of r, but must report also p.

 21

Complexity
● It is nontrivial to count f-steps on line 12

– We can have O(l) patterns with max. length O(l)
giving naively .
● (Practically, a correctly implemented machine is quick also

without a proof – O(l), but ...)
● For each pattern p, a cumulative count of f-steps

on prefixes of p is bounded by the length of p.
● So globally we have O(l) f-steps. If is not

taken as a constant, then steps. O l⋅∣∣

O l 2

∣∣

 22

Implementation
● We can use a sparse (or implicit) representation

of and g(0,.) = 0: values are not in a
memory and need not be inicialised.
– A sparse representation needs O(l) cells

● It does not have O(1) access, but O(log |Σ|).
– A dense representation (e.g. using arrays) needs

 cells. It is a standard representation for a
finite automaton (from another lecture Automata
and grammars).

O l⋅∣∣

 23

Alg. Knuth -Morris-Pratt
● An alg. for a search of 1 pattern.
● In our context, it is a simplified AC alg.
● A graph of g is not a tree but a string. So a state

corresponds to a count of characters being read
(including 0) and we can use g implicitly.

● An asymptotic complexity is instead of

● We use the prefix function π instead of f: π(s) is
the length of the longest proper suffix of the
state represented by s, which is also a prefix of
the pattern.

nl⋅∣∣

nl 

 24

Alg. Rabin-Karp
● Idea: take a pattern of a length l as l-digit

number with a base
● We compute a signature of a pattern as well as

a signature of a section from the text of the
same length (called a window) modulo a
(prime) number q.
– It is a hash function, but not for a table search

● If a signature v of p doesn't match a signature
at a position i, then p is definitely not at a pos. i.
– The signature at a pos. i is denoted by

a=∣∣

t i

 25

Implementation
● We compute v and using Horner schema

● A time complexity O(l), where l is the length of p
● A shift of the window

● is the first deleted digit and is a newly
appended digit.

● ! if we use exact numbers (without modulo),
then their length is O(l) bits. :-(

t1

i il

 26

Implementation 2
● A choice of q: such a prime number that a.q can be

computed in a register
→ arithmetic operations in time O(1) instead of O(l)

● We used precomputed in O(l)
● But: Equality of signatures modulo q causes a false

hit when a pattern p doesn't equal a relevant text
window

h=a l−1mod q

 27

Time complexity
● The worst case:
● Expected complexity:

– OK is a count of found positions (we must verify it)
– F is a count of false hits: (supposing a uniform

distribution of) F = O(n/q)
→ O(n)+O(l.(1+n/q))

● HW: more patterns of the same length, of a
different length

n−l1⋅l 

t i

O nO l⋅OK O l⋅F 

 28

Flow networks
● A flow network is S = (G, c, s, t) where

– G=(V,E) is a directed graph (if (u,v) in E → (v,u) in E)
– c: E → represents a capacity of edges
– : the source vertex
– : the sink vertex (t as a „target“)

● Notation: |V|=n, |E|=m ; c(h)=c(u,v) for h=(u,v)...
● Without loss of generality

1. Single source and single sink
2. Capacity only for edges, not for vertices

 HW: using transformation/reduction (and the same sw)

R0


t∈V , s≠t
s∈V

 29

Flow
● A flow f in the network S = (G,c,s,t) is a function

f: V x V → R, such that
1. Symetry: f(u,v) = -f(v,u) for all u,v
2. Capacity: f(u,v) =< c(u,v) for all u,v
3. Flow conservation: d(f,u)=0 for

where d(f,u) = (a divergence of f in u)
● Df: An edge e is saturated iff c(e) = f(e)
● Df: A flow size of f is d(f,s) for a source s; a

notation |f|

∀ u∈V ∖{s , t }
∑v∈V

f u , v 

 30

Maximum flow problem
● A problem: To find a flow of a maximal size in a

given network, i.e. a maximal flow f*.
– We denote f*, it is not unique, but its size is unique

● Df: a cut in a graph is a disjunctive pair of sets, s.t.

● Df: A capacity of a cut:
● Df. A flow over a cut:
● Df: A minimal cut is a cut with a minimal capacity

X∪Y=V , s∈X , t∈Y

cX ,Y =∑u∈X , v∈Y
cu , v

f X ,Y =∑u∈X , v∈Y
f u , v

 31

Flows and cuts
● Lemma 1: It is valid for each flow f and each cut

(X,Y), that a flow over a cut (X,Y) is equal to |f|
– Proof: By induction over |X| with a base X={s}

● Corollary: As f(X,Y) <= c(X,Y) for each cut
(X,Y), the size of a max. flow is at most the
capacity of a minimal cut. → We show equality.

● Df: A residual capacity of f is a function r:
V x V → R defined r(u,v) = c(u,v) – f(u,v)

 32

Residual net
● Df: A residual net R for a net S and a flow f is

R= (G',r,s,t), where (u,v) is in G' whenever
r(u,v) > 0.
– The value r(u,v) is an edge capacity in a residual graph
– (We want only potentially usable edges in the residual graph)

● Df: An augmenting path P is a path from s to t in R.
● Df: A residual capacity of P is r(P) = min{r(u,v),

 (u,v) P }
– A size of a flow can be increased by r(P) on edges of the

augmenting (improving) path P

∈

 33

Max-flow min-cut theorem
● The following conditions are equivalent:

1. A flow f is maximal
2. There is no augmenting path for f
3. |f|=c(X,Y) for some cut (X,Y)

● Pr: 1 → 2: by contradiction: If f is maximal, but
an augmenting path P exists, then |f| increases
after improving. A contradiction.

 34

Cont. 2
● 2 → 3: We suppose that no augmenting path

exists in G from s to t. Define X =
{v | an augmenting path from s to v exists}
and Y = V \ X. A division (X,Y) is a cut because
s and t are in different parts (by construction)

● Each edge from X to Y is saturated, otherwise
we can extend X. Using lemma 1:
|f| = f(X,Y) = c(X,Y), second eq. from saturation

 35

Cont. 3
● 3 → 1: We have |f| <= c(X,Y) for all cuts (X,Y)

by corollary.
So the condition |f| = c(X,Y) implies that |f| is
maximal

 36

Ford-Fulkerson method
● Also known as: an augmenting path method

– It is a generic algorithm with a strategy for a path
finding (line 2)

1 Initialize a flow f to 0
2 while an augmenting path exists do ;found by a strat.
3 improve f on edges of P by r(P)
4 return f

 37

Properties

1. We can construct a minimal cut in O(m) based
on a maximal flow. (using Theorem, more cuts)

2. If capacities are irrational numbers, then
implementation can diverge. The size of a flow
converges but possibly to a suboptimal flow
● Informally: a strategy is not fair: a path is not selected

3. Rational capacities can be transformed to integer
capacities

4. Each augmenting path improves a flow at least
by 1 for integer capacities. So |f*| steps are
enough. The f* has integer values on edges.

 38

Properties 2

5. The F-F alg. is generic. An augmenting path
can be found by any algorithm for a graph
search.
– It is an advantage for a proof of the correctness and

a disadvantage for proving a complexity bound.
● Ex: a graph with long computation
● Th: The constructed function f is a flow.

– Pr: by induction on cycle iterations. A zero flow is a
flow. Changing a flow along the whole path does
not change a flow conservation except s,t
The new flow is allowed using r(P)

 39

Properties 3
● A time complexity of the F-F alg. with integer

capacities is O(|f*| . m) → Alg. finishes
– Note: Time is not polynomial wrt. a binary size of an

input
● Partial correctness: If the F-F alg. finishes, it

has not found an augmenting path and so the
found flow is a maximal flow, by Theorem.

● Best complexity: A max. flow can be
constructed by m augmenting paths. (HW)

 40

Strategies for path choosing
● (A maximal augmenting path)

– A variant of the Dijkstra alg. for a minimal path finding
● A shortest augmenting path

– Based on a breadth-first search
– globally : n phases, m edges in a phase to

be saturated, O(n+m) for finding an augmenting path
● An improvement: All shortest paths in „a batch“
● HW: to find a time complexity bound for a graph

with capacities 1

O n⋅m2

 41

Dinic alg: A level graph
● Idea: Based on a level graph and a blocking flow
● Df: A level graph has a finite number of levels and

directed edges are only between adjacent levels.
A level of a vertex is the length of a shortest path from s.
The first level is {s} and the last one is {t}
– A level graph is usually pruned: each edge and vertex are

on some shortest path (this simplyfies a complexity analysis)
– Let d(u,v) denote the shortest path from u to v. It is true that

d(s,v) +d(v,t) = d(s,t)
● Df: A blocking flow has a saturated edge on each shortest

path
– There can be augmenting paths but they must be longer.

 42

Blocking flow
● We look (only) for a blocking flow in a level

graph
– Longer augmenting paths are processed and

saturated in next iterations with new level graphs

 43

Dinic alg.
● In: A network G=((V,E), c, s, t)
● Out: a maximal flow f from s to t
1 Initialize f(e) = 0 for all edges
2 Construct level graph Gl of a residual graph
3 if dist(t) = ∞ then stop and output f
4 find a blocking flow f' in Gl
5 improve f by f' and continue at 2

 44

Properties of Dinic Alg.
● L: A distance d(s,t) increases during alg.

– Idea: New paths have some new edge in an opposite
direction
=>We have n phases, so complexity is O(n.h(n,m)),
where h(n.m) is a time necessary to find a blocking flow.

● We have a pruned network: we can use any edge
(greedy) for prolongation of any partial aug. path
– As backtracking is not needed, we have O(n) for a

single path, so a phase takes O(n.m)
– Globally: O n2⋅m

 45

Implementation 1

1. A creation of a level graph
● To get d(s,x) and d(x,t) for all vertices x, in O(n+m)
● A vertex u stays in R: d(s,u)+d(u,t)=d(s,t)
● An egde (u,v) stays in R: d(s,u)+1+d(v,t)=d(s,t)

● An invariant of a pruned net: each vertex and edge are
on some minimal path => any edge can be used for a
path

2. Pruning (after augmenting vs. during a search)
1. A net is pruned after each augmenting => invariant
2. Backtracking: unsuccessful vertices and edges are

deleted once (from a level graph per phase)

 46

Implementation 2
● A network pruning: we need a good

implementation. We need only constant time per
an edge and a vertex

● A possible technique: a cascade pruning
– Store a count of in- and out-degrees of vertices
– Decrement counts for all saturated edges. If any

count is zero, propagate through vertices and edges
● Note: A selection of a vertex with a minimal inflow

and a change propagation from it by levels gives
 globallyO n3

 47

Goldberg alg., a preflow-push alg.
● Idea of an alg.: it uses a preflow and a height f.
● Df: A preflow is a function: V x V → R, that fulfills

conditions of a capacity and a symmetry, but it is
allowed an excess: V → R for all vertices except
a source s.

● excess(v) ≥ 0, excess(v) =
● A vertex (except s and t) is active, if excess(v)>0

∑w∈V
f w ,v 

 48

Height function
● Df: Let f be a preflow and R is a residual graph

for f. A function h: V → N is a height function if:
1. h(s) = |V|
2. h(t) = 0
3.

● An edge (u,v) is available if equality holds in 3.
● Idea: we construct a preflow, not a flow along a

whole augmenting path. We shift an excess
along an unsaturated edge – if an edge goes
„down“ and a height difference is exactly 1.

∀u , v∈E R : hu≤hv1

 49

Alg.
Goldberg alg. - generic;
01 h(s)=n ; h(v)=0 for other vertices except s
02 f(s,v)=c(s,v) for all edges (s,v) //f from s is satur.
03 f(e)=0 for other edges
04 while an vertex v ≠ s with positive excess exists do
05 if ex. e=(v,w) with positive reserve and h(v)>h(w) then
06 choose (v,w) as an edge from v
07 d=min(excess(v), r(v,w))
08 we shift an excess of size d from v to w
09 else h(v) := h(v)+1 // increasing a height of v
10 end
● A choice of a vertex v (line 4) and an edge e (l. 5,6) is given by a strategy

 50

Steps of an alg.
● A main loop execution (dependent on an order):
1. A saturated shift of an excess (d=r(v,w))

 → an edge changes to saturated
2. An unsaturated shift of an excess (d<r(v,w))

 → an excess of v changes to zero
3. Increasing a height of v (line 9)
● Note: A vertex can get higher than a source

height n = h(s), so it can return an excess to the
source

 51

Partial correctness 1

● L1: After an initialisation, there is no edge (v,w) s.t.
h(v) > h(w)+1 and its edge reserve is positive

● Pr: A condition holds after an initialisation, as all
edges with a height difference start in a source
and all edges from source have zero reserve

● A main loop does not create such edge, because:
– Increase of v: If v has an excess (by choice in an alg.) and

an edge has a positive reserve (a precondition), then v is
not increased (a contradiction), but an excess is shifted. So
edges have zero reserve.

– A shift of an excess along an opposite edge (w,v) means
h(w)>h(v)

 52

Partial correctness 2
● Th: (a partial correctness) If Goldberg alg. finishes,

then it has found a maximal flow.
● Pr: if a while cycle finishes, then all vertices except s

have zero excess and a preflow is a flow as well.
● It remains to prove: a found flow f is maximal ← there

is no augmenting path ← each path (from s to t) has a
saturated edge

● Any path from s to t starts at height n=h(s), ends at
0=h(t) and it has n-1 edges. So an edge with a height
difference 2 exists. We proved in Lemma 1 that this
edge has zero reserve.

 53

Time complexity: idea
● We give upper bounds on 3 operations:

1. The maximal height of a vertex → number of a
height increasing

2. Number of saturated shifts
3. Number of unsaturated shifts

● It is a generic algorithm and a generic proof (of
worst-case complexity). A particular strategy
can have a better time complexity.

 54

Height count - preparation
● L2: If vertex v has a positive excess after an

initialisation, then there exists a directed path
from v to s, such that all edges on a path have
a positive reserve.

● Pr: Let v to have a positive excess. Let A be a
set of vertices, which have a directed path from
v consisting of edges with a positive reserve.
 → an inflow to A is zero → an excess of A is
nonpositive → as s is the only vertex with
a nonpositive excess, it belongs to A. QED

 55

Height count
● L3: The height of any vertex is bounded by 2n.
● Pr: Suppose we want to lift a vertex over 2n.

Then it is in a height 2n and has a positive
excess. Using Lemma 2, we have a path from
unsaturated edges from v to s. Similarly as
before: a path starts in a height 2n, it finishes in
a height n, and it has at most n-1 edges. So
some edge has a height difference at least 2
and it has no reserve. A contradiction.

● L4: A count of lifts globally in the alg. is O n2

 56

Saturated shifts
● L5: Number of saturated shifts is globally n.m
● Pr: Let e=(u,v) be an edge. Sum of h(u) and h(v) is

between 0 and 4n. A reserve of (u,v) is 0 and h(u) =
h(v)+1 after a saturated shift.

● A reserve must increase before next saturated shift on
the same edge. It is possible only if a shift along an
opposite edge (v,u) occurs. So h(v) increases by at
least 2 (a shift along an opposite edge), then h(u)
increases by at least 2. A sum h(u) + h(v) increases by
at least 4 between any saturated shifts.
→ A count of saturated shifts per an edge is at most n
and globally n.m, so we have O(n.m)

 57

Unsaturated shifts
● L6: Number of unsaturated shifts is globally at

most
● Pr: (using a potential method):
● Let S be a sum of vertex heights with a positive

excess, except s and t.
● Boundary conditions for S:

– After initialization: S=0, as only s has a nonzero
height

– At the end: S=0, as no internal vertex has an
excess

2n22n2 .m

 58

 Unsaturated shift, cont'd
● Operations:
● A lift of a vertex increases S by 1.
● A saturated shift along (u,v) increases S by at most

h(v) ≤ 2n, if v did not have an excess and u remains
with an excess.
– A cumulative increase of S: (A)

● An unsaturated shift along (u,v) decreases S by at
least 1. Heights are the same, a summand h(u)
disappears and h(v) is possibly added, if it was not
present before. As h(u)=h(v)+1, the value S
decreases. Globally, (A) gives a bound for a step
count.

2n22n.nm

 59

Time complexity
● Th2: A time complexity of a Goldberg algorithm

is
● Pr: from Lemmas 4,5,6
● A strategy for a vertex selection: the highest

vertex with an excess → # of unsaturated shifts
is
– Idea: Lower vertices wait for many shifts and then

they propagate at once and maybe using a
saturated shift

● Best alg.: Goldberg, Tarjan 1996:

O n2 .m

≤8n2 .m

O nm log n2/m

 60

Fast (Discrete) Fourier transform
● Motivation: a fast multiplication of polynomials

 with

– A multiplication in a lower part: using a point
representation in O(n) (for carefully chosen points) vs.
a multiplication in an upper part: O(n.n)

 61

 Motivation 2
● Df: A vector of coefficients is

a convolution of vectors and
 .

● Evaluation of a polynomial in a given point
using Horner method:

– Direct approach: Time complexity per point: O(n);
for 2n points cummulatively O(n.n)

– For comparison: Polynomial multiplication using
Divide et impera:

– FFT (and IFT):
O nlog2 3

b=b0 ,b1 , ... ,bn−1
a=a0 , a1 , ... , an−1
c=c0 , c1 , ... , c2n−2

x0

O n log n

 62

 Complex numbers
● Points chosen for evaluation: complex roots of 1
● We use Divide et impera method (so)
● Arithmetic of complex numbers …

 ex:
– Complex n-th roots: roots of a polynomial
– A number of roots: n, values for k=0..n-1

and
● A primitive n-th root of 1 generates all other roots

as its powers. We will use . FFT can
use any primitive root.

eiu=cosui.sin u

 8=
81 ,8=1 ; 4=

41=i , 2=−1

xn−1
 n=e2i k /n

 n=e2i /n

n=2l

 63

 About roots
● Equalities:

→ Squares of all n-th roots are only n/2 different
n/2-th roots of 1 → recursive calls are evaluated
in half of points; in two polynomials (but each
result is used 2 times – it is an application of
dynamic programming.)

 64

About roots
● For n>=1 and k>=0, if n mod k ≠ 0 (not k|n):

● ..., if k|n:

– A sum of a geometric sequence.
● We evaluate a polynom A(x) of degree n-1 with

coefs in points
– It is a linear transformation, in a matrix form using

Vandermonde matrix of order nxn (next slide)
● A note about linearity: higher powers of roots are precomputed

n
0 ,n

1 ,n
2 , ... ,n

n−1a0 , a1 , a2 , ... , an−1 n
0 ,n

1 ,n
2 , ... ,n

n−1

F n

 65

Vandermonde matrix

● - i-th root in a power j
– Different rows contain different roots
– The linear transformation from is a

Discrete Fourier Transformation (DFT)
● A DFT is computed in O(n.n) using a definition

F n i , j =n
i  j

a i Ai

 66

Vandermonde matrix, example
● Vandermonde matrix, n=4, for FT (and IFT w/o ¼))

● ; two possible primitive roots
1 1 1 1 1 1 1 1
1 i -1 -i 1 -i -1 i
1 -1 1 -1 1 -1 1 -1
1 -i -1 i 1 i -1 -i

● Lower rows represent higher frequencies

 4=i∨ 4=−i

 67

Inverse DFT
● An inversion matrix by a guess (no insight,

no motivation, but with a check)
● , an inv. matrix has the same form

(up to a factor 1/n), but from primitive root
 (a complex conjugate to the root ω)

● Th: and are inverse.

= 1, if i=j, and 0 otherwise (as in a unit matrix).
– Corollary: Time complexity of IFT is as FFT.

F n

−1= n−1

F n⋅F n
−1ij= k=0

n−1ik⋅
−kj

n
=1
n
k=0

n−1k i− j=

F n
−1F n
−1

F n
−1

 68

Algorithm: Fast FT
● We create new polynomials B(x) and C(x) for

an input polynomial A(x).

 (even coefs)

 (odd coefs)
● It holds: (1)

so evaluation of A(x) in n points reduces to
1. Evaluation of B(x) and C(x) in n/2 points each
2. Evaluation of A(x) from B(x), C(x) according to (1)

 69

Algorithm FFT
recursive_FFT(a)

 1 n:=length(a)
 2 if n=1 then return(a)
 3 wn := exp(2*pi*i/n); w:=1 ; a primitive root+actual
 4 b:=(a[0],a[2]...a[n-2]) ;
 5 c:=(a[1],a[3]...a[n-1])
 6 u:=recursive_FFT(b)
 7 v:=recursive_FFT(c)
 8 for k:=0 to n/2-1 do
 9 y[k] := u[k]+w*v[k] ; first half of a result
10 y[k+n/2]:= u[k]-w*v[k] ; common results u,v
11 w := w * wn ; w is an actual root
12 return(y)

b :=a0 , a2 , ... , an−2

 70

Correctness
● Base case:

–

● Recursive case: for

● Result for k=0, 1, … n/2 – 1

● Result for k=0, 1, … n/2 – 1

– Using −n
k=n

kn/2 ,n
n=1

ykn /2

k=0,1,...n /2−1

y0=a0

y0=a0⋅0
1=a0⋅1=a0

vk=C n/2
k =C n

2k

ykn /2=uk−n
k vk=ukn

kn/2v k=B n
2kn

kn /2C n
2k=An

kn/2

uk=B n/2
k =B n

2k 

 71

Complexity
● Overhead Θ(n) in each recursive call (n is an

actual size of data)
● Using Master theorem:

 72

● Ex. FFT and IFT

 73

 Notes
● Row vectors of Vandermonde matrix are

independent (as vectors in)
● There are other transformations: a cosine

transform (in R^n, JPEG), a wavelet transform
● FFT can be done in finite fields (and weaker struct.)

– Ex. in : , so in
– It needs an inverse element to n
– No round-off errors

● (HW:) FFT for n=8, x=(abcdadcb),
1. x=(abcdefgh), all numbers are real
2.

8=224≡16≡−1mod 17

a ,b , c , d∈R ;

Z 17Z 17

x=abcda dcb , a , b , c , d∈ℂ

ℂn

 74

 ● FFT is (also) a dynamic programming algorithm →
● A transformation of recursion on an iteration

+ a lower (time) overhead
+ (sometimes) a lower memory consumption, compared
to a tabelation
- a more complex and longer program
● (Q: what is an usual complexity measure in practice?)

● In FFT: reordering of coefs, by a reverse bit notation

● FFT in hardware: A butterfly operation

 75

Butterfly operation
● Inputs (left):
● Outputs (right):

uk , vk ,withn
k

yk=ukn
k . vk , ykn /2=uk−n

k .vk

 76

Applications of FT
● A convolution of polynomials
● A signal analysis, a spectral analysis

● In a function space: each continuous (complex) function
can be expressed in a basis of cos(nx) and sin(nx)

– Image, video, and audio processing
● A long numbers multiplication

 77

Dynamic programming 1/3
● It is a method for problem solving

– Usually optimisation problems, an instance
decomposition gives common subproblems

● Classical problems:
– Fibonacci numbers (in 1D)
– The best matrix multiplication
– The longest increasing subsequence
– The longest peak subseq. (increasing and decreasing)
– The longest common subseq. of two seqs (in 2D)

● The best „match“ of two/n seqs (DTW: dynamic time warping)
– The shortest triangulation of a polygon

 78

Dynamic programming 2/3
● Other problems

– Floyd-Warshall alg. for all minimal paths
– Fast Fourier transform
– Bitonic paths in TSP
– Optimal search tree
– Optimal print (min. sum of squares of line errors)
– Optimal coding (in QR codes)
– Two-player games with perfect information
– Existence of a derivation in context-free grammars
– Subset sum (both existence and approx. sol; nonpolynomial)
– Viterbi alg. (~ the most probable path in DAG)
– Search of an optimal strategy in a discrete optimisation

 79

 Dynamic programming 3/3
● Necessary properties, DP is usable only for some problems

1. Optimal substructure
2. Overlapping subproblems

● Bellman principle of optimality: An optimal solution consists only
of optimal subsolutions.
– A possibility to reconstruct a solution; to remember or to

recompute an optimal solution using Bellman equation
– No reconstruction, if only a value of opt. is needed (we can prune

subresults)
● Tabelation vs. Bottom-up vs. Top-down computation

– Tabelation (memoization) for direct use of a rec. alg.
● A bottom-up approach saves space for some problems

– Incomplete tabelation
● A various space of subproblems, lazy evaluation
● Ex: A longest path in a graph (DP in nonpolynomial time)

 80

Gate networks
● Gate networks in a wider context: algorithms in a

hardware implementation
– Usually represented by DAG (without loops)

● Arithmetic expressions: a term/tree structure vs. DAG
– Operations in parallel

● Architecture of computation does not depend on input data
● Gates can have more outputs, which can be used repeatedly

– Particular types of gates
● Comparator; And, Or, Xor; Plus, Minus, ...

– A nonuniform representation of algorithms
● Different networks for a various input size
● (Networks are generated/compiled from an abstract description)

 81

Comparison and Sorting networks
● Comparison network: n inputs, n outputs over some

linearly ordered type
– C.N. uses only one type of a gate: comparator

● 2 inputs, 2 outputs
– Sorting network: Outputs are sorted after computation
– Ex.: an insertion sort, 2-way bubble sort
– (A counting sort is not implementable)

 82

Sorting networks
● A formal representation:

– is a set of comparators
– is a set of outputs
– is a set of inputs
– , N is a sorting network, f is a

partial mapping, f(u,i) ≠ f(v,j)
● A network is acyclic; it has a size s(S)

(~sequential time) and a depth d(S) (~parallel
time)
– A comparator is in a depth d, if it can run in a step

d

C={C1 ,C2 , ... ,C s }
O={k , i ,1≤k≤s ,1≤i≤2 }
I={k , i  ,1≤k≤s ,1≤i≤2 }
S=C , f  , f :O I

Sorting network - representation

1. Wires go from an input to an output
2. Comparators connect two wires
● Each sorting network can be represented in this

fashion
● A network S is a set of comparators. A

comparator is a triple (j,p,q), 1≤j≤d, 1≤p<q≤m,
where d and m are a depth and a width of a
network, respectively

● S4={1,1, 2 ,1,3, 4 ,2,1,3 ,2,2, 4 , 3, 2,3}

1 ,2 ,3 ,4

d=1
d=2
d=3

 84

Mergesort
● A sorting network of a width n is recursively

defined using two sorting networks and
a merging network of a width n;

● Recursion ends for n=2. is an empty net.

for k=d S n /2

S n /2
n=2lM n /2

S1

S n

 85

Picture: Sorting network

 86

Merging network
● A merging network of a width 2n merges

two sorted sequences of a length n to a single
sorted sequence. A construction uses recursion
and a base case is for n=1.

● is a single comparator {(1,1,2)}

for k=d M n /2

M 1

M n

 87

Picture: Merging network

 88

Merging network
● Odd elements of both sequences are an input

of the first copy of with outputs and even
elements are an input of the second copy of
with outputs .

● Outputs of both copies are connected by a
single comparator layer,

ci

d i

M n /2

M n /2

y2i =d iwith y2i1=ci1

 89

Correctness proof: a preparation
● L: Let f be a (nonstrictly) increasing function. If

sorting network sorts a sequence ,
then it sorts a sequence

● Pr: By induction on #comparators. If a
comparator has inputs u and v, then it returns
min(u,v) and max(u,v) on its output wires. For
an increasing function, a comparator returns
min(f(u),f(v)) and max(f(u),f(v)), so the ordering
is the same.

f a1 , f a2 , ... f an

a1 , a2 , ...an

 90

Zero-one principle
● T: If a sorting network sorts correctly all possible inputs

of zeros and ones, then it sorts correctly all inputs
● Idea: A threshold between any two elements of an

input gives a zero-one sequence.
● If an arbitrary sequence is not sorted, then for some u

and v, u<v, the element v is before u.
● We construct f:

– f(x)=0 if x ≤ u and
– f(x)=1 if x > u

● The corresponding 0-1 sequence after transformation
by f is not sorted: a contradiction

 91

Correctness of merging network
● Recall a construction of a merging network.
● For 0-1 input sequences: There are 4 cases depending

on a parity of a count of 0 in a's and b's. We show
configuration of c's and d's from last zeros in both c's
and d's. (if any)

● In all cases the output is sorted or the last level of
comparators sorts it. Comparators are shown as „-“.

1. Even zeros in a's and b's: output „0 0-1 1“
2. Even zeros in a's and odd zeros in b's: 0 0-0 1-1 1
3. Odd zeros in a's and even zeros in b's: the same
4. Odd zeros in both: 0 0-0 1-0 1-1 1

→ a merging network sorts correctly

 92

 Size and depth of networks
● A merging network of a width 2n:

– A depth from recursion:
– A depth explicitly:
– A size from recursion:
– A size explicitly:

● A sorting network of a width n:
– A depth from recursion:
– A depth explicitly:
– A size from recursion:
– A size explicitly:

● Proofs by induction. A size of the sorting network is suboptimal.
s S n=n /4log2nlog2n−1n−1

Sn

s S n=2 sS n /2s M n/2 , sS1=0

d S n=d S n/2d M n/2 , d S 1=0
d S n=1/2 log2 nlog2n1

M n

d M n=d M n /21,d M 1=1

s M n=n log2n1
s M n=2 s M n/2n−1, sM 1=1

d M n=log2 n1

 93

A lower bound for a sorting network
● Each sorting network is a comparison network
● L1: Each comparison network returns a

permutation of its input values
– Pr: By induction on a count of comparators. Each

comparator swaps or does not swap its inputs
● L2: For a sorting network, all n! permutations

are accessible.
– Pr: We can input an inverse permutation of a

chosen permutation and a correct sorting network
must sort it.

 94

Sorting networks: a size
● Let C be a sorting network with a width n and

let p be a count of accessible permutations in
C. Then

● Corollary: and

n!≤2s C 

s C ∈Ω n logn d C ∈Ω log n

 95

● HW: Can you restrict a sorting network to less

wires? E.g. n=5.
● Can you add a comparator arbitrarily to a

sorting network such that it remains a sorting
network?

 96

Arithmetic networks
● An implementation of arithmetic operations

using boolean gates (And, Or, Not, Xor, Nand..).
● We show an adder for n-bit numbers
● A single-bit adder: an input x,y,z; an output s,c

(sum, carry)
–

–

● HW: To find a bigger number from two given
numbers using also a „<“ gate. (2-way or 3-way)

c=majority  x , y , z = x∧ y∨ x∧z ∨ y∧z 
s=x xor y xor z

 97

 Adder
● An adder with carry:

– An input: and
●

– An output:
● for i=0..n-1

 where

● A depth of a network (corresponding to a
parallel time) is Θ(n) and a size is also Θ(n).

ui , vi∈{0,1}

 98

Carry-lookahead alg.
● We don't have a carry bit quickly enough
● We create a tree structure instead of a linear

one:
– A trick (usable in programming, in theory):
– Computing with functions (~a f. represents all

possible computations) using composition
– We use 3 functions: Generate, Propagate, Kill

● Bigger segments are created using a composition of fnc's
● If we have carry bits, then we can compute

in a constant depth
si

 99

Composition of functions
● 3 possible functions of the type: bit → bit

1. Generate (G): it sets an output bit;
2. Propagate (P): it returns input bit;
3. Kill (K): it returns 0 everytime;

● A composition (f1○ f2)(x) = f1(f2(x))
– A single composition

enables to double
a dependency length.

– Initial dependencies
are computed from u
and v.

● A representation of a fnc: using two bits: g, p

f1 ○ f2 f2: G f2: P f2: K

f1: G G G G

f1: P G P K

f1: K K K K

g i=ui∧vi
pi=ui xor vi

k i=¬g i∨ pi

g1, p1°g 2, p2=g1∨ p1∧g2 , p1∧ p2

g i , pi

 100

Computing all carry bits

● A direct approach of computing n carry bits
independently needs ω(n) gates
→ Computing in two phases to get an O(n) size

1. Computing segments of a length ending on
positions , for an increasing length

2. Computing remaining segments ending at
 and starting at 0, for decreasing i-th powers

● Because an initial carry bit is 0, the Generate
function returns 1 and other functions return 0

2i

k⋅2i

k⋅2i

 101

Computation of carry bits
● The expression i-j means that the function f,

 was computed.
● 7-0 5-0 3-0 last level
● 6-0
● --
● 8-0
● 8-4 4-0
● 8-6 6-4 4-2 2-0
● 8-7 7-6 6-5 5-4 4-3 3-2 2-1 1-0 first level
● A geometric sequence in both phases: size is

O(n) ← less than 4n gates

ci= f c j 

 102

(Multiplication)
● HW: Show that a sum of three numbers can be

reduced to a sum of two numbers in a constant
depth!

● → We need only a logarithmic depth to sum n
numbers to two numbers.

● Then we can use an adder of two numbers with
a logarithmic depth

 103

(Time) Complexity of problems
● We analysed complexity of algorithms previously.
● We are interested in complexity of problems with

respect to some classes of algorithms (e.g.
sequential or parallel)

● Df: Complexity of a problem is complexity of the
best algorithm which solves a given problem
– An upper bound of a problem complexity is

complexity of any algorithm which solves a problem
– A lower bound is derived from some characteristics of

a problem

 104

Decision problems
● Df: A decision problem is a problem which returns an

output YES/NO
– Is there a colouring of a graph G using k colours?
– Is there a clique of a size (at least) k in a graph G?
– Is there a solution to Travelling Salesman Problem in a

graph G smaller than a threshold t?
● An optimisation problem reformulated as a decision problem.

● A particular input of a problem is called an instance
● Note: A problem is taken as a set of true instances and

an algorithm computes its characteristic function
– The multiplication problem is formulated as

a decision problem w.l.o.g.
c=a⋅b

{a ,b ,c∣a⋅b=c }

 105

 Nondeterministic algorithm
● We use nondeterministic algorithm only for decision

problems
● A nondeterministic algorithm can use nondeterninistic

steps. If any branch returns YES, then the whole
algorithm returns YES
– Ex: CLIQUE: We have an instance (G,k). An algorithm

chooses k different vertices nondeterministically and
then it verifies (in time O(k.k)) that they create a clique.
● But: this problem is solvable in polynomial time for fixed k

 106

(Polynomial) Reducibility
● A decision problem P is reducible to a problem Q

if we have a function f such that every instance L
of P gives the same result as an instance f(L) of
Q (f need not be „onto“ and „one-to-one“)
– In general, we need functions f:P_in → Q_in and g:

Q_out → P_out for transforming an input and output
– We work with a polynomial reducibility: P ≤ Q (or)

A function f (or f and g) runs in polynomial time
– Ex: A problem of finding of a spanning tree is

reducible to a problem of a minimal spannig tree.
– Ex, for general problems: A multiplication for decimal

 numbers is reducible to a binary multiplication.

≤p

 107

Classes of problems
● The complexity class P (or PTIME) is a class of

decision problems which are solvable by sequential
deteministic algorithms in polynomial time.

● The class NP (or NPTIME) is a class of problems
solvable by a nondeterministic sequential algorithm

● A problem Q belongs to NPComplete if it is from NP
and every problem from NP is reducible to Q

● Problems from NPC are the hardest problems from NP
● Problems form NPC are mutually reducible
● NPC NP
● P NP, but it is unknown if P=NP

● A YES solution of an NP-problem can be verified using
a certificate deterministically and polynomially

⊂
⊂

 108

A class: NP Complete (NPC)
● Polynomial reducibility is transitive.
● How to find a first problem from the NPC class:

using a definition. A construction depends on a
particular computation model (...)

● Next NPC problems can be found using
reducibility: if P ≤ Q and P is NPC and Q is NP,
then Q is NPC
– If Q has a polynomial alg. then also P has a

polynomial one
– If there is no polynomial alg. for P then there is no

one for Q
– (Df: Q is NP hard if P ≤ Q for any P from NP)
– (If Q is NP hard and from NP then Q is NPC)

 109

 NPC problems
● Warning: A size of an input is measured in bits
● COLOURING: (G,k)
● 3SAT ≤ SAT , SAT ≤ 3SAT; SAT: a satisfiability

of propositional formulas in CNF
● HAM: Does a Hamiltonian cycle in G exist?
● Independent Set ≤ CLIQUE
● VertexCover
● SubsetSum ≤,≥ EqualSubsets; Backpack
● HW: HAM to SAT
● HW: polynomial solutions: 2COLOUR, 2SAT

 110

Easy example
● HAM: a problem of a Hamiltonian cycle

– An instance: G
– A question: Does a cycle through all vertices in G

(called a Hamiltonian cycle) exist?
● uvHAMP: a problem of a fixed Hamiltonian path

– An instance: (G,u,v), a graph G and two vertices u,v
– A question: Does a path through all vertices from u to

v (called a Hamiltonian path) exist?
● We show: uvHAMP HAM

– If we know that uvHAMP is NPC and we want to
prove that HAM is NPC, then we must also show that
HAM is NP.

≤p

 111

Easy example: a reduction
● Let (G,u,v) be an instance of uvHAMP ; G=(V,E)
● We construct

– G' is an instance of HAM
1. A construction of G' is polynomial
2. A graph G has a Ham. path from u to v, then G' has a

Ham. cycle from u to v to x to u
3. A graph G' has a Ham. cycle. It must go through x, so

except x it must start in u then go through all vertices
and visit v before it returns to x.

4. (HAM is in NP: we describe a nondeterministic
polynomial algorithm)

G'=V∪{x }, E∪{u , x  , x , v}

 112

Reduction
● SAT ≤ CLIQUE
● SAT: An instance is a formula (in propositional

logic) in conjunctive normal form. A question is
if it exists a satisfying evaluation of variables

● CLIQUE: An instance is a graph G and a
number k. A question is if a clique with k
vertices exists in G

● Th: SAT in NP, CLIQUE in NP
– Pr: Directly, we describe relevant algorithms

● Note: Finding a solution of SAT by brute force

 113

Reduction 2
● Syntax of formulas (in CNF):

– An atomic formula ~ a propositional variable
– A conjunction A.B
– A disjunction A+B
– A negation

● Semantics of formulas:
– An evaluation of variables v: Vars → {True, False} generates

an evaluation of formulas e: Formulas → {True, False}
– e(x) = v(x) ; e(A.B) = e(A) e(B) ; e(A+B) = e(A) e(b) ;

● A Conjunctive Normal Form: a negation has the highest priority,
then a disjunction and then a conjunction.

∧

xi

A

 x1x2. x2x3. x3x1

∨
eA=¬e A

 114

Reduction 3
● Let a formula A be , where

 and is a variable or its
negation

● A construction: we create
– Vertices correspond to literals

● Edges E: ((i1,j1),(i2,j2)) is an edge, iff i1≠i2 and
corresponding literals are not a negation of
each other (i.e. they can be both satisfied)

● A new instance of CLIQUE is ((V,E),p); a size
of a clique is p.

F i=Li ,1Li ,2..Li ,qi
Li , j

A=F 1 .F 2 ...F p

V={i , j  ;1≤i≤k ,1≤ j≤qi }

 115

Reduction 4, a proof
● A reduction is polynomial.
● Th: The answers for original and new instances

are the same: A formula A is satisfiable iff there
exists a clique of a size p in a graph (V,E)

● „→“ : A valid evaluation has some valid literal in
each factor. Then a corresponding vertex
belongs to a clique, because each two selected
vertices are connected by an edge and we
selected p vertices.

 116

Reduction 5, a proof 2
● „←“ : a p-clique fixes an evaluation for some

variables. The evaluation is consistent, because
possible multiple evaluations to a variable are
the same. A formula is valid in this evaluation
because a literal was selected and is true in
each factor. Remaining variables can take any
value. QED

 117

Notes
● An instance belongs to a problem; a problem belongs

to a complexity class
● If an instance I (written over an alphabet) is not syn-

tactically correct for P, then . An example: 3SAT
● A problem is NPC if it has hard instances. Some

instances can be easy (be carefull in cryptography).
– (Constraints. SAT solvers. A phase transition for 3SAT)

● Programming in CNF formulas: a (propositional)
variable represents „an object O has a value V in
time T“ (e.g. HAM to SAT); an object ~ a domain var.

● Nonpolynomial vs. exponential
algorithms

I∉P

O 2n O 1n

xO ,V ,T

 118

 Approximation alg.
● Approximation algorithms vs. heuristics

– And how to combine them.
● We want to get an approximate solution to NPC

problems in a polynomial time.
● Df: Approximation ratio. Let C* be an (unknown)

optimal solution for an optimisation problem. An
algorithm has an approximation ratio r(n), iff, for
any input size, the cost C produced by an
algorithm is within factor r(n) of the cost C* of
the optimal solution: max(C*/C, C/C*) ≤ r(n)
– (The definition is usable both for min. and max.

problems.)

 119

Approximation scheme
● Some problems have an approximation algorithm with

a fixed approximation ratio
– Ex: Colouring of a graph with a ratio of 1,33 (~33%

error). It enables a decision between 3 or 4 colours, but
3Colouring is NPC

● An approximation scheme for an optimisation problem
is an approximation algorithm that takes an instance
and a value eps>0 and the scheme is an (1+eps)-
approximation algorithm for any fixed eps.
– A polynomial-time approximation scheme (PTAS)

runs in time polynomial in the size of n
– A fully PTAS runs in polynomial time in both the size

n and 1/eps

 120

Example
● A scheme of polynomial algorithms that solve a

k-clique problems for a graph G for fixed k's.
● A scheme: We generate k nested cycles

through vertices. We test in the innermost cycle
that all vertices are different and they create k-
clique. (An unoptimized alg.)

● An algorithm is polynomial () for a fixed
value k. But the Clique problem is NPC for k
given as a parameter

O nk 

 121

Overview
● An approximation algorithm for Vertex Covering

with an approximation ratio 2
● An approximation algorithm for a Travelling

Salesman Problem (TSP) with a triangle
inequality with an approximation ratio 2

● A nonexistence of an approximation algorithm
for a general TSP, without a triangle inequality.

● (Full) PTAS for a Subset Sum problem

 122

 Vertex covering
● We give an approximation alg. for a vertex covering with

the approximation ratio 2.
● Df: A vertex covering is a subset V' of V, s.t. each edge

has at least one vertex in V'
● Th: the problem of Vertex covering is NPC. (from

Independent Set)
● Idea: we repeatedly choose an edge e, we add both its

vertices to C, and we delete all edges incident with e.
● C is vertex covering. C has an approximation ratio 2,

because no two edges of C share a vertex and at least
one vertex of a edge must be in an optimal covering C*.

● Note: A greedy algorithm selecting a vertex with max.
degree does not have an approximation ratio 2. :-(

 123

Travelling Salesman Problem, TSP
● Instance/input: a graph G=(V,E), a length

l: E → R; l(e) are nonnegative values
● Question: we look for a shortest Hamiltonian

cycle
● We give an approximation alg. for TSP with the

ratio 2 for an undirected graph with the triangle
inequality
– The triangle inequality for a function l: for all u,v,w:

l(u,w) ≤ l(u,v)+l(v,w)
– An alg.: we find a minimal spanning tree (MST) in

G. We choose a vertex r, traverse the MST from r
by DFS, and remember a preorder list. A resulting
list is an output Hamiltonian cycle H.

 124

 Idea of a proof
● We use |x| for a length of x:
● Some spanning tree K is in H*: |K*| ≤ |K| ≤ |H*|
● The full cycle H+ which includes vertices for

each visit is (exactly) 2 times longer than MST:
|H+| ≤ 2|K*|

● A deletion of vertices from H+ decreases the
length of a path because the triangle inequality
holds: |H|≤|H+|

● Finally: |H| ≤ |H+| ≤ 2|K*| ≤ 2|H*| QED
– Note: a cycle H can be optimized later locally or

during construction (e.g. it can have a cross)

 125

TSP without a triangle inequality
● A triangle inequality is important for TSP:
● Th: if P≠NP and r>1 then there is no polynomial

approximation algorithm for TSP with an
approximation ratio r.

● Proof: by a contradiction. We show that if exists
an alg. A for the theorem then it can be used to
solve a Hamiltonian cycle problem, which is
NPC.

 126

Transformation
● Let G =(V,E) be an instance of HAM. We

transform a graph G to a TSP instance G'=(V,E').
● G' is a complete graph, l(u,v) = 1 if (u,v) E and

l(u,v)= r.|V|+1 otherwise
● A construction of G' and l is polynomial in |V| and

|E|
● Analysis: Let (G',l) be an instance of TSP. If G

has a Hamiltonian cycle H then all edges of H
have a length 1 and (G',l) has a cycle with the
length |V|

∈

 127

Transformation 2
● If G does not have a hamiltonian cycle then each cycle

in G' has an edge outside E and the length of a cycle
is at least
– Because edges outside E are expensive, there is a

big difference between a Hamiltonian cycle in G (a
length |V|) and any other cycle (a length at least
r.|V|)

● An approximation algorithm must return a Hamiltonian
cycle, if it exists, because it does not have any other
possibility with a given error r.

● If a Hamiltonian cycle does not exist in G, then it
returns a cycle with a length at least r.|V| → we solved
HAM in a polynomial time, a contradiction

r⋅∣V∣1∣V∣−1r⋅∣V∣

 128

 Subset Sum
● Instance: (S,t), S is a set of positive

integers and t is a positive integer.
● A decision problem: Does a subset exist

s.t. ?
● An optimisation problem: We look for a subset

S' of S, such that its sum is maximal, but not
exceeding the value t.

● Notation:
● An algorithm for a decision problem based on a

dynamic programming in an array of a size t.

S '⊂S

{a1 , a2 , ... , an }

∑ai∈S '
ai=t

 129

 Alg.
● Alg: SubsetSum(S,t):

 1 n:=|S|;
 2 L[0]:= <0> ; a sequence
 3 for i:=1 to n do
 4 L[i] := mergeList(L[i-1],L[i-1].+.a[i])
 5 delete from L[i] all elements over t
 6 return(maximum of L[n])
● A procedure mergeList merges sorted sequences to a

sorted sequence
● A length of L[i] is up to
● An approximation scheme: we cut the list L[i] based on

a parameter δ, 0<δ<1

2i

 130

An approximation scheme
● Each deleted element y has an element z ≤ y in

a shortened list L such that , that is
 . The z represents y with a
„sufficiently small error“

● We need a smaller element as a representant,
because a greater one can overflow the
threshold t.

 131

Algorithm
● Alg: SubsetSumApprox(S,t, eps)

 1 n:=|S|;
 2 L[0]:= <0> ; a sequence
 3 for i:=1 to n do
 4 L[i] := mergeList(L[i-1],L[i-1].+.a[i])
 5 L[i] := shorten(L[i],eps/n)
 5 delete from L[i] all elements over t
 6 return(z := maximum of L[n])

 132

Description
● Elements of L[i] are sums of subsets
● We want: C*(1-eps)≤C for C* an optimal

solution and C a found one
● We can have an error eps/n in each step. We

can prove (using induction over i) that for each
y*≤t from a full version there is z L[i] such that
 . Because ,
we have

● Th: A scheme is a fully polynomial-time
approximation scheme

∈
1−eps /nn y∗≤z≤ y∗

1−eps y∗≤z
1−eps≤1−eps /nn

 133

PTAS
● Idea: a relative error eps/n divides an interval

1..t to a polynomial count of sections and each
section has ≤2 representants.

● Another point of view: a computation with the
given precision means that we must represent
exactly some initial segments of bits of a
number in L[i]. (We start with higher precision
(eps/n) because a cummulative error should be
at most eps). But a fixed count of bits allows
only a polynomial count of different represented
numbers

 134

Note
● There are other approaches:
● Anytime algorithm: An optimisation algorithm

which can be stopped at any time (after some
initial period) and which returns better results if
it spends more time on a problem.

● Heuristics, a combination of approx. alg. with
heuristics, local optimisation as postprocessing.

 135

Probabilistic algorithms
● … postponed

 136

Cryptography, RSA
● Algorithms are differentiated (in some context) as

1. Parallel: synchronous, a known number of
processors

2. Distributed: asynchronous, heterogenous
– Cryptography belongs to distributed algs. in a

previous division. Partners compute each their own
part of a (complex) algorithm.

● Cryptography: partners: Alice (A), Bob (B); Eve
(E, an enemy/eavesdropper); Certification
Authority (CA)
– … many different protocols and techniques

 137

 Motivation example - introduction
● Commuting ciphers. We use:

– An encryption function e(): {0..K} → {0..N}
– A decryption function d(): {0..N} → {0..K}
– d() is a left inversion of e():

● Alice has (her own confidential) and ,
Bob has and .

● Ciphers are commuting:

∀m :d e m=m

eAeBm=eB eAm

d A 
d BeB 

eA 

 138

Commuting ciphers, cont'd
● A protocol for a sending of a message m:

1. Alice encrypts m and sends it to Bob:
2. Bob encrypts a message and sends to Alice:
3. Alice deciphers and sends:

4. Bob deciphers:
● A message was encrypted during each

transmission with some key.
● Note: A message m can be a key for a (symmetric)

communication, i.e. a session.

d BeBm=m
d AeBeAm=d AeAeBm=eBm

eBeAm
eAm

 139

 Public-key cryptosystems
● It is asymmetric cipher (e() and d() are different)
● It supports also a digital signature.
● Each participant X has a public key and a

secret key . A secret key is known by X only. A
public key can be publicly known (in some list).

● Keys P and S specify functions on a set of all
messages (~a final sequences of bites) which are
„one-to-one“ and „onto“ (~a permutation on D)
– In practice: Block ciphers, for various functions f:

– An advantage: The same plaintext is encrypted
differently in different blocks i.

Cipher i= f Key , Plaini , {Cipher i−1 , Plaini−1 , i }

S X

P X

 140

„Public key“, properties
●

● Functions P() and S() are practically evaluable
with a knowledge of a key.

● A function cannot be effectively evaluated
with a knowledge of a key (and of a function
)
– This is a hard part of a design
– Generally, algorithms for functions are known, only

keys are kept secret (also it is supposed for a security
analysis, vs. security by obscurity)

P X

∀m∈D :P X S X m=m∧S X P X m=m

S X 

P X 

 141

„Public key“, protocol
● Sending a message M from Alice to Bob

1. Alice gets Bob's public key (from Bob, from
„web“ or from a Certification Authority)

2. Alice encrypts a plaintext M to a ciphertext
3. Bob uses on C (from anybody) and gets
– Because Eve does not have a key, she cannot

compute M from C.
● Note: Alice needs to know that is Bob's key.
● Df/TT: A plaintext: a text to be encrypted
● Df/TT: A ciphertext: a text after an encryption

PB

C=PBM 

PB

M=S BC S B

 142

 Public key, digital signature
● Sending a signed message M' from A to B

1. Alice computed a digital signature
2. Alice sends a message and a signature: (M',s)

● The message M' is not encrypted here
3. Bob gets and checks
– If a decrypted message M' is the same as the sent

one M', then Bob knows that a message is from Alice
and was not altered

– Practically, messages are also encrypted in step 2.
Here we describe only a scheme of a communication.

M '=P A sP A

s=S AM ' 

 143

Hybrid cipher
● Asymmetric ciphers are slow, symmetric ones are

quicker. A symmmetric cipher uses the same key K for
encryption and decryption (i.e. AES and (unsecure)
DES)
– A key K is short, hundreds or thousands of bits

● Instead of a (slow) asymmetric encryption
Bob computes and sends
(C',K'). Alice decrypts a key and
then a message (and checks a digital
signature).

● A key K is one-shot generated for a message or for a
session. There are also other protocols for a secure
sending of a key, which can be combined in hybrid c.

M=K C ' 
K=S AK ' =S AP AK 

C '=K M  , K '=P AK 
C=P AM 

 144

Hybrid authentication
● It is slow to compute a digital signature of a whole

message. Only a fingerprint is signed instead of a
whole message.

● A fingerprint is computed using a (public one-way)
hash function h (SHA-2, MD5), with a typical length of
an output 128-512 bits.
– It is hard to find M and M' with , i.e.

a collision.
hM =hM ' 

 145

Combined protocol: A to B
1. Alice gets Bob's key
2. Alice generates a symmetric key K, she computes

 and encrypts
3. Alice computes a fingerprint h(M) and its digital signature
4. She sends:
5. Bob reads: „from“: A. He gets
6. Bob gets and decrypts
7. Bob computes a fingerprint h(M) and compares it with a

deciphered s signed by A:
8. If a computed signature and a deciphered one are

different then a signature is not from A or the message M
was altered.

P As=P AS AhM =h M 

M=K C K=S BPBK 
P A

from :A ,C , P BK  , s 
s=S AhM 

PBK 
C=K M 

PB

 146

Notes
● Ad 6: Only an owner of can decrypt the key K.

– K should be selected from some big set to not enable
a brute force search. (Do not select K from a subset)

● Ad 8: It is hard to forge a message M' because it
is hard to find a (relevant) message with the
same fingerprint as M.
– Moreover, if M is structured or formatted, then a

forged message M' must be structured as well.
● Ad 4: The first part „from:A“ can be encrypted

using Bob's public key , so Eve cannot
recognise a sender.

S B

PB

 147

Certification Authorities
● Bob needs to know that the key belongs to

Alice (and is not a forgery)
● A basic solution, used in practice

– There exists a Certification Authority Z and its public
key is known (a key came with an instalation or it
can be verified on the web)

– Alice gets (using a safe way) a signed certificate for
C=„Alice's public key is “ from Z, i.e.

– Alice appends this pair to any signed message, so
Bob (and any owner of) can verify that C was
issued by Z and the key (in C) belongs to Alice.

PZ

C , S Z C P A

P A

P A

 148

Extended Euclid Alg.
● Df: A greatest common divisor (GCD) of a and b

is the smallest positive number from a set
 , we call it gcd(a,b)

● Extended EA allows a computation of an
inverse element in a ring

● Input: a ≥ 0, b ≥ 0
● Output: d=gcd(a,b), x, y: d=a*x+b*y

{a⋅xb⋅y∣x , y∈ℕ}

Zm

 149

Extended Eucleid Alg.
 1 ExtendedEucleid(a,b)
 2 if b = 0 then
 3 return (a,1,0)
 4 (d',x',y') := ExtendedEucleid(b, a mod b)
 5 (d, x, y):=(d',y', x'-(a div b)*y')
 6 return(d,x,y)
● Correctness: using induction through recursion:

– The result from recursion: d'=b.x'+ (a mod b).y'
– We want x and y, s.t. d=a.x+b.y. We get using algebraic operations:

2bh  x−1

 150

Eucleid alg.
● The alg. needs for n-bit numbers bit

operations
● Idea: The smallest numbers (that is the worst

case) that need a given number of steps are
Fibonacci numbers.

O n3

 151

Rings: Z modulo m
● We define a congruence relation modulo m for

a fixed m:
● Df: a≡b (mod m) = m | (a-b).
● We can use representants {0.. m-1} of the factor

set instead of classes
●

●

● A multiplicative inverse element x to a in ,
denoted , fulfills and is
defined if a and m are relatively prime.

〈a 〉m〈b〉m=〈ab〉m

〈a 〉mZm=Z /≡

〈a 〉m⋅〈b〉m=〈a⋅b〉m

x=〈a 〉m
−1

Zm

a.x≡1mod m

 152

Euler function
● Df: The Euler function φ(n) is for n>1 a count of

positive numbers up to n which are relatively
prime to n

● Th: If n is a prime number, then φ(n) = n-1. If
n=p.q for different primes p and q, then φ(n) =
(p-1)(q-1)

● Th (Euler): For a and n relatively prime
(gcd(a,n) = 1) it holds

● Corollary: if gcd(a,n) =1 then
an−1≡1mod n

〈a〉n
−1=〈an−2〉n

 153

RSA

1. Choose two big prime numbers p and q
2. Compute n=pq. Compute r=(p-1)(q-1)
3. Choose a (small) odd number e which is
relatively prime to r
4. Compute a multiplicative inverse element d
to e modulo r (using Extended EA).
5. Publish (e,n) as a public RSA key and
remember (d,n) as a private RSA key. (p, q and
r are kept secret as well)

 154

Correctness of RSA
● Th: The functions and

 are a pair of mutually inverse
functions.

● Pr: it holds for all M<n:
● As d and e are mutually inverse elements modulo

r, we get

● We used that e.d ≡ 1 mod r means e.d=1+c.r for some c.

P S M =S P M =M ed mod n

S M ≡M d mod n
P M =M e mod n

M ed mod n≡M 1c⋅rmod n
≡M⋅M c⋅nmod n
≡M⋅1mod n
≡M mod n.QED

 155

Notes
● ! We use both (mod r) and (mod n) in the proof.
● How to find big prime numbers?
● We can prepare P and S ourself and let the CA

sign only the P key. CA does not have the key S
● A long message is divided to several blocks of

an allowed size, depending on a bit-lenght of n.

 156

RSA: Properties
● Why is the RSA method safe?

– Nobody is (up to now) able to compute d effectively
based on (e,n) without the knowledge of a
decomposition n=p.q and also φ(n)=(p-1)(q-1).

– A factorisation of big numbers is a hard problem.
● (Both checking primality and checking composionality are

 polynomially verifiable)
● We can use a quick exponentiation algorithm

with an included modulo operation.
● There are other usable hard problems which

can be used in a public key cryptography.

 157

Probabilistic algorithm
● Motivation: how we can get an effective alg. for

hard decision problems.
– We used approximation algorithms for optimisation

problems.
● A probabilistic algorithm makes also random

steps (compared to a deterministic alg.). It uses
usually a random number generator (or a
pseudorandom generator, to allow rerunning).

 158

Types of probabilistic algorithms
● We describe

– 1. Algorithms of Las Vegas type
They return always a correct solution. Randomness
 affects only a running time.
Ex: Randomisation of quicksort

– 2. Algorithms of Monte Carlo type
Randomness affects a running time as well as a
correctness of results.
Ex: Rabin-Miller test for primality

 159

Randomisation of Quicksort
● A pivot is selected randomly and uniformly in

each recursive call.
– (Combination of methods: Median of three)

● Advantages:
– An algorithm has good average time (O(n log n)) for

all inputs. No input is a priori bad, compared to a
deterministic version. But for a particular input and
particular random choices a running time can be
O(n.n)

– We can run more copies in parallel and take a
result from the first finished copy.

 160

Alg. Monte Carlo
● Randomness in an alg. affects correctness of a

result. An alg. can make an error, usually only
single-sided (for decision problems) and with a
limited probability.

● For a comparison: Primality testing with a brute
force takes on t-bits numbers stepsO 2t /2

 161

 Primality testing
● Th (small Fermat): Lets p be any prime number

and c be a number relatively prime to p, c<p.
Then
– Application: a test of a primality
– If a conclusion of the Fermat theorem is not fulfilled

for a number c then p is a composite number
(definitely!) and c is a certificate of compositeness.

– An implication in the opposite direction is
sometimes valid but not always.
→ we need a better test

c p−1≡1mod p

 162

Witnesses for composite numbers
● Lets T be a set of tuples (k,n), k<n, such that

some condition is fulfilled.
1) is not congruent with 1 (mod n)
2) There are i, s.t. is a natural number

and is between 1 and n
● Th 1.: A number n is a composite one if it exists

k<n, s.t. (k,n) belongs to T
● Th 2.: Lets n be a composite number. Then

there exists at least (n-1)/2 numbers k<n, s.t.
(k,n) belongs to T

m=n−1/2i
k n−1

gcd km−1−1,n

 163

Primality test
● Rabin-Miller algorithm:

– Choose m different probes k[i] randomly from (1,n-1)
– If T(k[i],n) for any k[i] then n is a composite number
– Otherwise n is a prime number

● A probability of an error
– If the alg. returns „n is composite“, then it is true

(some k[i] is a witness)
– If the alg. returns „n is prime“, then it can be an error.

But all k[i] must be non-witnesses for n in case of
error. Then P(error) ≤ for m independent
choices of k[i]

1 /2m

 164

 Convex hull
● … skipped

 165

2bh  x−1∈ ∪

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165

