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Abstract. The paper  presents two CLP approaches to 2D angle placements, 
implemented in CHIP v.5.3. The first is based on the classical (rectangular) 
cumulative global constraint, the second on the new trapezoidal cumulative 
global constraint. Both approaches are applied to a specific presented.  

1   Introduction 

The problem discussed has its roots in the packing and transportation of high-current 
enclosed conductors and high-current enclosed bus bars in the most economical way. 
The producer of those elements is interested in packing the largest number of elements 
delivered to the customer in the space available. Sometimes the cost of transporting 
those elements exceed the cost of producing them. The packing of those elements into 
containers may be modeled as a three-dimensional angle packing problem; however 
the problem of packing them into long-load trailer may best be modeled as two-
dimensional angle packing problem. This paper present four CHIP solutions for the 
two-dimensional angle packing problem: the angles may be packed with or without 
rotation, the packing may be done using either the rectangular or the trapezoidal cu-
mulative global constraint.  

2   Angle packing with no rotation 

The angles to be packed into a larger square or rectangle have fixed orientations. An 
earlier paper [6] discussed the details. This angle packing problem may be formulated 
as a puzzle problem or as a bin packing problem (see [8]). For the puzzle problem, a 
CLP solution does not include a meta predicate for optimization of some cost. How-
ever for the bin packing problem, the CLP solution must rely upon predicates like 
min_max. Because the last problem is more general, it will be discussed in detail.  

Example I: 10 small angles are to be packed into a large rectangle so that none of 
them is overlapping any other. Table 1 gives the data for the problem. 
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Table 1. Data for angle packing problem with no rotation 

No List of angle sizes No List of angle sizes 
1 [2,4,3,1] 6 [1,2,5,5] 
2 [2,2,1,3] 7 [6,2,2,3] 
3 [1,3,3,2] 8 [4,2,2,1] 
4 [2,1,4,3] 9 [3,1,1,4] 
5 [1,7,2,2] 10 [3,2,1,1] 

 

 
 

Fig.1. A solution for the angle packing problem with no rotation. 

2.1 Classical cumulative approach 

The idea of solving the angle packing problem by the classical cumulative approach is 
based on solution of the rectangle packing problem with some additional constrains 
(more details - see [6]). At the beginning the angles are divided into rectangles. This 
makes predicate gen_rect/4 as follows:  

 
gen_rect([],[],[],[]).
gen_rect([DL|DT],[DXH1,DXH2|DXT],[DYH1,DYH2|DYT],[LLH|LLT]):-

position(DL,DXH1,DXH2,DYH1,DYH2,LLH),
gen_rect(DT,DXT,DYT,LLT).

Predicate position/6 transforms the list of angle sizes DL in the following way: 
- it divides each angle into two rectangles and describes the sizes of the rectangles 
- it fixed the angle orientation. 
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position([A,B,C,D],DXH1,DXH2,DYH1,DYH2,1):-
B #> D,A #< C,DXH1 is C, DXH2 is A,
DYH1 is D,DYH2 is B-D.

The discussed additional constrains merge two rectangles into an angle. These con-
strains are generated automatically by the predicate constr_rect/5. The predicate is 
defined as follows: 

 
constr_rect([],[],[],[],[]).
constr_rect([LXH1,LXH2|LXT],[LYH1,LYH2|LYT],

[DXH1,DXH2|DXT],[DYH1,DYH2|DYT],[LLH|LLT]):-
if LLH #= 1 then LXH1+DXH1 #= LXH2+DXH2,
if LLH #= 1 then LYH1 #= LYH2+DYH2,
if LLH #= 2 then LXH1 #= LXH2,
if LLH #= 2 then LYH1 #= LYH2+DYH2,
constr_rect(LXT,LYT,DXT,DYT,LLT).

The final program solving example I is given below: 
 
run:-

EndX :: 1..9,
EndY :: 1..9,
High1:: 1..9,
High2:: 1..9,
min_max((data(Data),

gen_rect(Data,DX,DY,LL),
gen_lists(DX,DY,LX,LY,DF),
constr_rect(LX,LY,DX,DY,LL),
diffn(DF),
cumulative(LX,DX,DY,unused,unused,High1,EndX,unused),
cumulative(LY,DY,DX,unused,unused,High2,EndY,unused),
append(LX,LY,XY),
labeling(XY)),EndX+EndY).

2.2   Cumulative trapeze approach 

The idea of solving the angle packing problem by cumulative trapeze approach is 
based on the dividing angles into rectangles too. But in this approach additional con-
strains are not needed, because cumulative_trapeze is a standard predicate embedded 
in CHIP and merging two rectangles into an angle is done automatically. Now the 
program solving the same example I is as follows:  

 
run:-

EndX :: 1..9,
EndY :: 1..9,
min_max((data(Data),

gen_lists(Data,1,LX,LY,EX,EY,TX,TY,TRX,TRY,DF),
diffn(DF),
cumulative_trapeze(TX,TRX,EndX),
cumulative_trapeze(TY,TRY,EndY),
append(LX,LY,XY),
labeling(XY)),EndX+EndY).
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Next, the angles are divided into rectangles by the predicate gen_lists/11. This predi-
cate is generating terms for the global constrain cumulative_trapeze. The predicate is 
defined as follows: 

gen_lists([],_,[],[],[],[],[],[],[],[],[]).
gen_lists([DH|DT],N,[LXH|LXT],[LYH|LYT],

[EXH|EXT],[EYH|EYT],[TXH|TXT],[TYH|TYT],
[TRXH1,TRXH2|TRXT],[TRYH1,TRYH2|TRYT],
[DFH1,DFH2|DFT]):-

position(DH,DXH,DYH,SXH1,SXH2,SYH1,SYH2,
DX1,DX2,DY1,DY2,EXH1,EXH2,EYH1,EYH2),

LXH :: 0..9,
LYH :: 0..9,
EXH :: 1..9,
EYH :: 1..9,
[G1,G2,G3,G4] :: 0..9,
[F1,F2,F3,F4] :: 0..9,
TXH = task(N,LXH,DXH,EXH),
TYH = task(N,LYH,DYH,EYH),
TRXH1 = trap(N,1,SXH1,DX1,EXH1),
TRXH2 = trap(N,2,SXH2,DX2,EXH2),
TRYH1 = trap(N,1,SYH1,DY1,EYH1),
TRYH2 = trap(N,2,SYH2,DY2,EYH2),
DFH1 = [G1,G2,G3,G4],
DFH2 = [F1,F2,F3,F4],
list_diff(DH,LXH,LYH,DFH1,DFH2),
N1 is N+1,

gen_lists(DT,N1,LXT,LYT,EXT,EYT,TXT,TYT,TRXT,TRYT,DFT).

The predicate position/15 is – as a result of analyzing the list of angle sizes - assigning 
values of variables in the global constrain cumulative_trapeze. 
 
position([A,B,C,D],DXH,DYH,SXH1,SXH2,SYH1,SYH2,DX1,DX2,

DY1,DY2,EXH1,EXH2,EYH1,EYH2):-
B #< D, A #< C, DXH is C, DYH is D, SXH1 is D,
SXH2 is B, DX1 is A, DX2 is C-A, EXH1 is D,
EXH2 is B, SYH1 is A, SYH2 is C, DY1 is D-B,
DY2 is B, EYH1 is A, EYH2 is C.

The predicate list_diff/5 prepare list of variables for standard predicate diffn. 
 

list_diff([A,B,C,D],LXH,LYH,[G1,G2,G3,G4],[F1,F2,F3,F4]):-
A #< C, B #> D, G1 is LXH, G2 is LYH+B-D,
G3 is C-A, G4 is D, F1 is LXH+C-A,
F2 is LYH, F3 is A, F4 is B.

 
To keep this paper short , only one definition of predicate position/15 and list_diff/5 
are presented.  
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3   Angle packing with rotation n*90°°°° 

Now, the rectangles may be rotated before placement. The problem is considered hard 
since the angle orientation are initially not fixed. In this section problem may be for-
mulated similarly way as a puzzle problem or as a bin packing problem. The solutions 
of this problem has been supported by detailed study of Examples II. 
 
Example II: 4 small angles are to be packed with rotation n*90° and mirror reflection 
into a large rectangle so that none of them is overlapping any other. Table 2 gives the 
data for the problem. 

Table 2. Data for angle packing problem with no rotation 

No List of angle sizes No List of angle sizes 
1 [3,7,7,2] 3 [2,5,4,3] 
2 [2,10,3,7] 4 [3,8,5,2] 

 

 
 

Fig.2. A solution for the angle packing problem with rotation. 

3.1   Classical cumulative approach 

The idea of solving the angle packing problem with rotation by the classical cumula-
tive approach is based on the fact that each angle is included in a rectangle. At the 
beginning the angle are divided into two rectangles (more details - see [6]). This 
makes predicate gen_rect/3 as follows:  

 
gen_rect([],[],[]).
gen_rect([D0L|D0T],[DH1,DH2|DT],[DX,DY|DXY]):-

div_angle(D0L,DH1,DH2,DX,DY),
gen_rect(D0T,DT,DXY).

div_angle([A,B,C,D],DH1,DH2,DX,DY):-
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DX is C,
DY is B,
E is B-D,
DH1 = C*D,
DH2 = A*E.

Then those rectangles are placed with rotation on the plane; and additional constraint 
merge two rectangles into an angle. This is done by the predicates constrain_rect/5 
and gen_lists/6 as follows. 
 

constrain_rect([],[],[],[],[]).
constrain_rect([LXH1,LXH2|LXT],[LYH1,LYH2|LYT],

[DXH1,DXH2|DXT],[DYH1,DYH2|DYT],[DX,DY|DT]):-
STX :: 0..9,
STY :: 0..9,
ENX :: 1..10,
ENY :: 1..10,
dll_y(LYH1,LYH2,DYH1,DYH2,STY,ENY),
dll_x(LXH1,LXH2,DXH1,DXH2,STX,ENX),
[A,B] :: [DX,DY],
(DX \= DY -> A #\= B; true),
ENX #= A+STX,
ENY #= B+STY,
constrain_rect(LXT,LYT,DXT,DYT,DT).

dll_x(LXH1,LXH2,DXH1,DXH2,STX,ENX):-
LXH1 #<= LXH2,
LXH1+DXH1 #>= LXH2+DXH2,
STX #= LXH1,
ENX #= LXH1+DXH1.

dll_y(LYH1,LYH2,DYH1,DYH2,STY,ENY):-
LYH1 #<= LYH2,
LYH1+DYH1 #>= LYH2+DYH2,
STY #= LYH1,
ENY #= LYH1+DYH1.

Only one definition of predicate dll_x/6 and dll_y/6 are presented.  
 
gen_lists([],[],[],[],[],[]).
gen_lists([X1*Y1,X2*Y2|T],[LXH1,LXH2|LXT],[LYH1,LYH2|LYT],

[DXH1,DXH2|DXT],[DYH1,DYH2|DYT],[DFH1,DFH2|DFT]):-
LXH1 :: 0..9,
LYH1 :: 0..9,
LXH2 :: 0..9,
LYH2 :: 0..9,
[DXH1,DYH1] :: [X1,Y1],
[DXH2,DYH2] :: [X2,Y2],
(X1 \= Y1 -> DXH1 #\= DYH1; true),
(X2 \= Y2 -> DXH2 #\= DYH2; true),
(DXH1 = X1 -> DXH2 #= X2; DXH2 #= Y2),
(DYH1 = Y1 -> DYH2 #= Y2; DYH2 #= X2),
append([LXH1,LYH1],[DXH1,DYH1],DFH1),
append([LXH2,LYH2],[DXH2,DYH2],DFH2),
gen_lists(T,LXT,LYT,DXT,DYT,DFT).
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Program solving the example II is as follows:  
 

run:-
data(Data0),
gen_rect(Data0,Data,DXY),
EndX :: 1..10,
EndY :: 1..10,
HighX :: 1..10,
HighY :: 1..10,
min_max((gen_lists(Data,LX,LY,DX,DY,DF),

constrain_rect(LX,LY,DX,DY,DXY),
diffn(DF,unused,unused,[EndX,EndY]),

cumulative(LX,DX,DY,unused,unused,HighX,EndX,unused),
cumulative(LY,DY,DX,unused,unused,HighY,EndY,unused),

append(LX,LY,LXY),
append(DX,DY,DDXY),
append(LXY,DDXY,XY),
labeling(XY)),EndX+EndY).

3.2   Cumulative trapeze approach 

Now the program solving the same example II is as follows:  
 
run:-

EndX :: 1..10,
EndY :: 1..10,
min_max((data(Data),

gen_lists(Data,1,LX,LY,TX,TY,TRX,TRY,DF),
diffn(DF),
cumulative_trapeze(TX,TRX,EndX),
cumulative_trapeze(TY,TRY,EndY),
append(LX,LY,XY),
labeling(XY)),EndX+EndY).

In this point predicate gen_lists/9 simultaneously: 
- divides the angles into the rectangles  
- generates terms for the global constrain cumulative_trapeze.  
- merges two rectangles into an angle 
- generates list for global constrain diffn.  
The predicate is defined as follows:

gen_lists([],_,[],[],[],[],[],[],[]).
gen_lists([[A,B,C,D]|DT],N,

[LXH|LXT],[LYH|LYT],[TXH|TXT],[TYH|TYT],
[TRXH1,TRXH2|TRXT],[TRYH1,TRYH2|TRYT],
[[LX1,LY1,DDX1,DDY1],[LX2,LY2,DDX2,DDY2]|DFT]):-

F is B-D,
E is C-A,
LXH :: 0..9, LYH :: 0..9, DXH :: 1..10, DYH :: 1..10,
EXH :: 1..10, EYH :: 1..10,
SXH1 :: 1..10, DX1 :: 1..10, EXH1 :: 1..10,
SXH2 :: 1..10, DX2 :: 1..10, EXH2 :: 1..10,
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SYH1 :: 1..10, DY1 :: 1..10, EYH1 :: 1..10,
SYH2 :: 1..10, DY2 :: 1..10, EYH2 :: 1..10,
DDX1 :: 1..10, DDY1 :: 1..10,
DDX2 :: 1..10, DDY2 :: 1..10,
LX1 :: 0..9, LY1 :: 0..9,
LX2 :: 0..9, LY2 :: 0..9,
pozition(A,B,C,D,E,F,LXH,DXH,EXH,LYH,DYH,EYH,

SXH1,DX1,EXH1,SXH2,DX2,EXH2,
SYH1,DY1,EYH1,SYH2,DY2,EYH2,
LX1,LY1,DDX1,DDY1,LX2,LY2,DDX2,DDY2),

TXH = task(N,LXH,DXH,EXH),
TYH = task(N,LYH,DYH,EYH),
TRXH1 = trap(N,1,SXH1,DX1,EXH1),
TRXH2 = trap(N,2,SXH2,DX2,EXH2),
TRYH1 = trap(N,1,SYH1,DY1,EYH1),
TRYH2 = trap(N,2,SYH2,DY2,EYH2),
N1 is N+1,
gen_lists(DT,N1,LXT,LYT,TXT,TYT,TRXT,TRYT,DFT).

The predicate pozition/32 is a definition of all angle orientation on the plane and de-
termines all variables in the global constrain cumulative_trapeze and diffn by the co-
ordinates of a chosen point of the rectangle including angles. The predicate is given 
below: 

pozition(A,B,C,D,E,F,LXH,DXH,EXH,LYH,DYH,EYH,
SXH1,DX1,EXH1,SXH2,DX2,EXH2,SYH1,DY1,EYH1,
SYH2,DY2,EYH2,LX1,LY1,DDX1,DDY1,
LX2,LY2,DDX2,DDY2):-

DXH is C, EXH is LXH+C, DYH is B, EYH is LYH+B,
SXH1 is D, DX1 is E, EXH1 is D,
SXH2 is B, DX2 is A, EXH2 is B,
SYH1 is A, DY1 is F, EYH1 is A,
SYH2 is C, DY2 is D, EYH2 is C,
LX1 is LXH, LY1 is LYH+F, DDX1 is E, DDY1 is D,
LX2 is LXH+E, LY2 is LYH, DDX2 is A, DDY2 is B.

To keep this presentation short, only one definition of the predicate position/32 is 
presented. Other cases may be formulated in a similar way. 

4   Conclusions 

Table 3 shows the time needed for finding the solution for the ten angle packing prob-
lem  with no rotation. In both cases programs using the classical cumulative constraint 
and additional constr_rect/5 predicate need less time to get the solution than programs 
with only the cumulative trapeze constraint.  
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Table 3. Times for 10 angle with no rotation   

Without optimization  With optimization 
Cumulative 
[hh:mm:ss.ms] 

Cumultive_trapeze 
[hh:mm:ss.ms] 

Cumulative 
[hh:mm:ss.ms] 

Cumulative_trapeze 
[hh:mm:ss.ms] 

00:00:02.033 00:00:04.306 00:00:02.083 00:00:05.208 
 
The Table 4 shows the time needed for finding the solution for various angle packing 
problem with rotation and without optimization. For the  program using the classical 
cumulative constraint less time is needed to get the solution than for the programs with 
the cumulative trapeze constraint. The program using the classical cumulative exceed 
2 hours limit in case with ten angles. The programs using cumulative_trapeze exceed 
this limit earlier – for  nine angles. 

Table 4. Times for various angles with rotation- without optimization   

Number of angle Cumulative 
[hh:mm:ss.ms] 

Cumulative_trapeze 
[hh:mm:ss.ms] 

4 00:00:00.000 00:00:00.030 
5 00:00:00.130 00:00:00.711 
6 00:00:00.661 00:00:02.724 
7 00:00:16.774 00:01:28.347 
8 00:04:29.407 00:27:00.460 
9 01:58:33.940 >02:00:00.000 
10 >02:00:00.000 >02:00:00.000 

 
The Table 5 shows the time needed for finding the solution for various angle packing 
problem with rotation and with optimization. Now too, the programs including classi-
cal cumulative constraint works quicker than programs including the cumulative tra-
peze constraint.  

Table 5. Times for various angles with rotation- with optimization   

Number of angle Cumulative 
[hh:mm:ss.ms] 

Cumulative_trapeze 
[hh:mm:ss.ms] 

4 00:00:01.221 00:00:08.532 
5 00:00:22.973 00:00:59.596 
6 00:03:29.976 00:21:01.414 
7 00:13:45.908 >02:00:00.000 
8 >02:00:00.000 >02:00:00.000 
9 >02:00:00.000 >02:00:00.000 
10 >02:00:00.000 >02:00:00.000 

 
Presented results support the thesis: that more simple constraints (like cumulative) 

work faster, but more sophisticated constraints (like cumulative trapeze) make pro-
gram writing easier. All computation experiments were based on Pentium II / 300MHz 
with 128MB RAM station.  
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