
CLP approach to 2D angle placement

CLP approaches to 2D angle placements

Tomasz Szczygieł

Politechnika Śląska, Instytut Automatyki, Akademicka 16, 44-100 Gliwice, Poland
tszczygiel@inetia.pl

Abstract. The paper presents two CLP approaches to 2D angle placements,
implemented in CHIP v.5.3. The first is based on the classical (rectangular)
cumulative global constraint, the second on the new trapezoidal cumulative
global constraint. Both approaches are applied to a specific presented.

1 Introduction

The problem discussed has its roots in the packing and transportation of high-current
enclosed conductors and high-current enclosed bus bars in the most economical way.
The producer of those elements is interested in packing the largest number of elements
delivered to the customer in the space available. Sometimes the cost of transporting
those elements exceed the cost of producing them. The packing of those elements into
containers may be modeled as a three-dimensional angle packing problem; however
the problem of packing them into long-load trailer may best be modeled as two-
dimensional angle packing problem. This paper present four CHIP solutions for the
two-dimensional angle packing problem: the angles may be packed with or without
rotation, the packing may be done using either the rectangular or the trapezoidal cu-
mulative global constraint.

2 Angle packing with no rotation

The angles to be packed into a larger square or rectangle have fixed orientations. An
earlier paper [6] discussed the details. This angle packing problem may be formulated
as a puzzle problem or as a bin packing problem (see [8]). For the puzzle problem, a
CLP solution does not include a meta predicate for optimization of some cost. How-
ever for the bin packing problem, the CLP solution must rely upon predicates like
min_max. Because the last problem is more general, it will be discussed in detail.

Example I: 10 small angles are to be packed into a large rectangle so that none of
them is overlapping any other. Table 1 gives the data for the problem.

CLP approach to 2D angle placement

Table 1. Data for angle packing problem with no rotation

No List of angle sizes No List of angle sizes
1 [2,4,3,1] 6 [1,2,5,5]
2 [2,2,1,3] 7 [6,2,2,3]
3 [1,3,3,2] 8 [4,2,2,1]
4 [2,1,4,3] 9 [3,1,1,4]
5 [1,7,2,2] 10 [3,2,1,1]

Fig.1. A solution for the angle packing problem with no rotation.

2.1 Classical cumulative approach

The idea of solving the angle packing problem by the classical cumulative approach is
based on solution of the rectangle packing problem with some additional constrains
(more details - see [6]). At the beginning the angles are divided into rectangles. This
makes predicate gen_rect/4 as follows:

gen_rect([],[],[],[]).
gen_rect([DL|DT],[DXH1,DXH2|DXT],[DYH1,DYH2|DYT],[LLH|LLT]):-

position(DL,DXH1,DXH2,DYH1,DYH2,LLH),
gen_rect(DT,DXT,DYT,LLT).

Predicate position/6 transforms the list of angle sizes DL in the following way:
- it divides each angle into two rectangles and describes the sizes of the rectangles
- it fixed the angle orientation.

CLP approach to 2D angle placement

position([A,B,C,D],DXH1,DXH2,DYH1,DYH2,1):-
B #> D,A #< C,DXH1 is C, DXH2 is A,
DYH1 is D,DYH2 is B-D.

The discussed additional constrains merge two rectangles into an angle. These con-
strains are generated automatically by the predicate constr_rect/5. The predicate is
defined as follows:

constr_rect([],[],[],[],[]).
constr_rect([LXH1,LXH2|LXT],[LYH1,LYH2|LYT],

[DXH1,DXH2|DXT],[DYH1,DYH2|DYT],[LLH|LLT]):-
if LLH #= 1 then LXH1+DXH1 #= LXH2+DXH2,
if LLH #= 1 then LYH1 #= LYH2+DYH2,
if LLH #= 2 then LXH1 #= LXH2,
if LLH #= 2 then LYH1 #= LYH2+DYH2,
constr_rect(LXT,LYT,DXT,DYT,LLT).

The final program solving example I is given below:

run:-

EndX :: 1..9,
EndY :: 1..9,
High1:: 1..9,
High2:: 1..9,
min_max((data(Data),

gen_rect(Data,DX,DY,LL),
gen_lists(DX,DY,LX,LY,DF),
constr_rect(LX,LY,DX,DY,LL),
diffn(DF),
cumulative(LX,DX,DY,unused,unused,High1,EndX,unused),
cumulative(LY,DY,DX,unused,unused,High2,EndY,unused),
append(LX,LY,XY),
labeling(XY)),EndX+EndY).

2.2 Cumulative trapeze approach

The idea of solving the angle packing problem by cumulative trapeze approach is
based on the dividing angles into rectangles too. But in this approach additional con-
strains are not needed, because cumulative_trapeze is a standard predicate embedded
in CHIP and merging two rectangles into an angle is done automatically. Now the
program solving the same example I is as follows:

run:-

EndX :: 1..9,
EndY :: 1..9,
min_max((data(Data),

gen_lists(Data,1,LX,LY,EX,EY,TX,TY,TRX,TRY,DF),
diffn(DF),
cumulative_trapeze(TX,TRX,EndX),
cumulative_trapeze(TY,TRY,EndY),
append(LX,LY,XY),
labeling(XY)),EndX+EndY).

CLP approach to 2D angle placement

Next, the angles are divided into rectangles by the predicate gen_lists/11. This predi-
cate is generating terms for the global constrain cumulative_trapeze. The predicate is
defined as follows:

gen_lists([],_,[],[],[],[],[],[],[],[],[]).
gen_lists([DH|DT],N,[LXH|LXT],[LYH|LYT],

[EXH|EXT],[EYH|EYT],[TXH|TXT],[TYH|TYT],
[TRXH1,TRXH2|TRXT],[TRYH1,TRYH2|TRYT],
[DFH1,DFH2|DFT]):-

position(DH,DXH,DYH,SXH1,SXH2,SYH1,SYH2,
DX1,DX2,DY1,DY2,EXH1,EXH2,EYH1,EYH2),

LXH :: 0..9,
LYH :: 0..9,
EXH :: 1..9,
EYH :: 1..9,
[G1,G2,G3,G4] :: 0..9,
[F1,F2,F3,F4] :: 0..9,
TXH = task(N,LXH,DXH,EXH),
TYH = task(N,LYH,DYH,EYH),
TRXH1 = trap(N,1,SXH1,DX1,EXH1),
TRXH2 = trap(N,2,SXH2,DX2,EXH2),
TRYH1 = trap(N,1,SYH1,DY1,EYH1),
TRYH2 = trap(N,2,SYH2,DY2,EYH2),
DFH1 = [G1,G2,G3,G4],
DFH2 = [F1,F2,F3,F4],
list_diff(DH,LXH,LYH,DFH1,DFH2),
N1 is N+1,

gen_lists(DT,N1,LXT,LYT,EXT,EYT,TXT,TYT,TRXT,TRYT,DFT).

The predicate position/15 is – as a result of analyzing the list of angle sizes - assigning
values of variables in the global constrain cumulative_trapeze.

position([A,B,C,D],DXH,DYH,SXH1,SXH2,SYH1,SYH2,DX1,DX2,

DY1,DY2,EXH1,EXH2,EYH1,EYH2):-
B #< D, A #< C, DXH is C, DYH is D, SXH1 is D,
SXH2 is B, DX1 is A, DX2 is C-A, EXH1 is D,
EXH2 is B, SYH1 is A, SYH2 is C, DY1 is D-B,
DY2 is B, EYH1 is A, EYH2 is C.

The predicate list_diff/5 prepare list of variables for standard predicate diffn.

list_diff([A,B,C,D],LXH,LYH,[G1,G2,G3,G4],[F1,F2,F3,F4]):-
A #< C, B #> D, G1 is LXH, G2 is LYH+B-D,
G3 is C-A, G4 is D, F1 is LXH+C-A,
F2 is LYH, F3 is A, F4 is B.

To keep this paper short , only one definition of predicate position/15 and list_diff/5
are presented.

CLP approach to 2D angle placement

3 Angle packing with rotation n*90°°°°

Now, the rectangles may be rotated before placement. The problem is considered hard
since the angle orientation are initially not fixed. In this section problem may be for-
mulated similarly way as a puzzle problem or as a bin packing problem. The solutions
of this problem has been supported by detailed study of Examples II.

Example II: 4 small angles are to be packed with rotation n*90° and mirror reflection
into a large rectangle so that none of them is overlapping any other. Table 2 gives the
data for the problem.

Table 2. Data for angle packing problem with no rotation

No List of angle sizes No List of angle sizes
1 [3,7,7,2] 3 [2,5,4,3]
2 [2,10,3,7] 4 [3,8,5,2]

Fig.2. A solution for the angle packing problem with rotation.

3.1 Classical cumulative approach

The idea of solving the angle packing problem with rotation by the classical cumula-
tive approach is based on the fact that each angle is included in a rectangle. At the
beginning the angle are divided into two rectangles (more details - see [6]). This
makes predicate gen_rect/3 as follows:

gen_rect([],[],[]).
gen_rect([D0L|D0T],[DH1,DH2|DT],[DX,DY|DXY]):-

div_angle(D0L,DH1,DH2,DX,DY),
gen_rect(D0T,DT,DXY).

div_angle([A,B,C,D],DH1,DH2,DX,DY):-

CLP approach to 2D angle placement

DX is C,
DY is B,
E is B-D,
DH1 = C*D,
DH2 = A*E.

Then those rectangles are placed with rotation on the plane; and additional constraint
merge two rectangles into an angle. This is done by the predicates constrain_rect/5
and gen_lists/6 as follows.

constrain_rect([],[],[],[],[]).
constrain_rect([LXH1,LXH2|LXT],[LYH1,LYH2|LYT],

[DXH1,DXH2|DXT],[DYH1,DYH2|DYT],[DX,DY|DT]):-
STX :: 0..9,
STY :: 0..9,
ENX :: 1..10,
ENY :: 1..10,
dll_y(LYH1,LYH2,DYH1,DYH2,STY,ENY),
dll_x(LXH1,LXH2,DXH1,DXH2,STX,ENX),
[A,B] :: [DX,DY],
(DX \= DY -> A #\= B; true),
ENX #= A+STX,
ENY #= B+STY,
constrain_rect(LXT,LYT,DXT,DYT,DT).

dll_x(LXH1,LXH2,DXH1,DXH2,STX,ENX):-
LXH1 #<= LXH2,
LXH1+DXH1 #>= LXH2+DXH2,
STX #= LXH1,
ENX #= LXH1+DXH1.

dll_y(LYH1,LYH2,DYH1,DYH2,STY,ENY):-
LYH1 #<= LYH2,
LYH1+DYH1 #>= LYH2+DYH2,
STY #= LYH1,
ENY #= LYH1+DYH1.

Only one definition of predicate dll_x/6 and dll_y/6 are presented.

gen_lists([],[],[],[],[],[]).
gen_lists([X1*Y1,X2*Y2|T],[LXH1,LXH2|LXT],[LYH1,LYH2|LYT],

[DXH1,DXH2|DXT],[DYH1,DYH2|DYT],[DFH1,DFH2|DFT]):-
LXH1 :: 0..9,
LYH1 :: 0..9,
LXH2 :: 0..9,
LYH2 :: 0..9,
[DXH1,DYH1] :: [X1,Y1],
[DXH2,DYH2] :: [X2,Y2],
(X1 \= Y1 -> DXH1 #\= DYH1; true),
(X2 \= Y2 -> DXH2 #\= DYH2; true),
(DXH1 = X1 -> DXH2 #= X2; DXH2 #= Y2),
(DYH1 = Y1 -> DYH2 #= Y2; DYH2 #= X2),
append([LXH1,LYH1],[DXH1,DYH1],DFH1),
append([LXH2,LYH2],[DXH2,DYH2],DFH2),
gen_lists(T,LXT,LYT,DXT,DYT,DFT).

CLP approach to 2D angle placement

Program solving the example II is as follows:

run:-
data(Data0),
gen_rect(Data0,Data,DXY),
EndX :: 1..10,
EndY :: 1..10,
HighX :: 1..10,
HighY :: 1..10,
min_max((gen_lists(Data,LX,LY,DX,DY,DF),

constrain_rect(LX,LY,DX,DY,DXY),
diffn(DF,unused,unused,[EndX,EndY]),

cumulative(LX,DX,DY,unused,unused,HighX,EndX,unused),
cumulative(LY,DY,DX,unused,unused,HighY,EndY,unused),

append(LX,LY,LXY),
append(DX,DY,DDXY),
append(LXY,DDXY,XY),
labeling(XY)),EndX+EndY).

3.2 Cumulative trapeze approach

Now the program solving the same example II is as follows:

run:-

EndX :: 1..10,
EndY :: 1..10,
min_max((data(Data),

gen_lists(Data,1,LX,LY,TX,TY,TRX,TRY,DF),
diffn(DF),
cumulative_trapeze(TX,TRX,EndX),
cumulative_trapeze(TY,TRY,EndY),
append(LX,LY,XY),
labeling(XY)),EndX+EndY).

In this point predicate gen_lists/9 simultaneously:
- divides the angles into the rectangles
- generates terms for the global constrain cumulative_trapeze.
- merges two rectangles into an angle
- generates list for global constrain diffn.
The predicate is defined as follows:

gen_lists([],_,[],[],[],[],[],[],[]).
gen_lists([[A,B,C,D]|DT],N,

[LXH|LXT],[LYH|LYT],[TXH|TXT],[TYH|TYT],
[TRXH1,TRXH2|TRXT],[TRYH1,TRYH2|TRYT],
[[LX1,LY1,DDX1,DDY1],[LX2,LY2,DDX2,DDY2]|DFT]):-

F is B-D,
E is C-A,
LXH :: 0..9, LYH :: 0..9, DXH :: 1..10, DYH :: 1..10,
EXH :: 1..10, EYH :: 1..10,
SXH1 :: 1..10, DX1 :: 1..10, EXH1 :: 1..10,
SXH2 :: 1..10, DX2 :: 1..10, EXH2 :: 1..10,

CLP approach to 2D angle placement

SYH1 :: 1..10, DY1 :: 1..10, EYH1 :: 1..10,
SYH2 :: 1..10, DY2 :: 1..10, EYH2 :: 1..10,
DDX1 :: 1..10, DDY1 :: 1..10,
DDX2 :: 1..10, DDY2 :: 1..10,
LX1 :: 0..9, LY1 :: 0..9,
LX2 :: 0..9, LY2 :: 0..9,
pozition(A,B,C,D,E,F,LXH,DXH,EXH,LYH,DYH,EYH,

SXH1,DX1,EXH1,SXH2,DX2,EXH2,
SYH1,DY1,EYH1,SYH2,DY2,EYH2,
LX1,LY1,DDX1,DDY1,LX2,LY2,DDX2,DDY2),

TXH = task(N,LXH,DXH,EXH),
TYH = task(N,LYH,DYH,EYH),
TRXH1 = trap(N,1,SXH1,DX1,EXH1),
TRXH2 = trap(N,2,SXH2,DX2,EXH2),
TRYH1 = trap(N,1,SYH1,DY1,EYH1),
TRYH2 = trap(N,2,SYH2,DY2,EYH2),
N1 is N+1,
gen_lists(DT,N1,LXT,LYT,TXT,TYT,TRXT,TRYT,DFT).

The predicate pozition/32 is a definition of all angle orientation on the plane and de-
termines all variables in the global constrain cumulative_trapeze and diffn by the co-
ordinates of a chosen point of the rectangle including angles. The predicate is given
below:

pozition(A,B,C,D,E,F,LXH,DXH,EXH,LYH,DYH,EYH,
SXH1,DX1,EXH1,SXH2,DX2,EXH2,SYH1,DY1,EYH1,
SYH2,DY2,EYH2,LX1,LY1,DDX1,DDY1,
LX2,LY2,DDX2,DDY2):-

DXH is C, EXH is LXH+C, DYH is B, EYH is LYH+B,
SXH1 is D, DX1 is E, EXH1 is D,
SXH2 is B, DX2 is A, EXH2 is B,
SYH1 is A, DY1 is F, EYH1 is A,
SYH2 is C, DY2 is D, EYH2 is C,
LX1 is LXH, LY1 is LYH+F, DDX1 is E, DDY1 is D,
LX2 is LXH+E, LY2 is LYH, DDX2 is A, DDY2 is B.

To keep this presentation short, only one definition of the predicate position/32 is
presented. Other cases may be formulated in a similar way.

4 Conclusions

Table 3 shows the time needed for finding the solution for the ten angle packing prob-
lem with no rotation. In both cases programs using the classical cumulative constraint
and additional constr_rect/5 predicate need less time to get the solution than programs
with only the cumulative trapeze constraint.

CLP approach to 2D angle placement

Table 3. Times for 10 angle with no rotation

Without optimization With optimization
Cumulative
[hh:mm:ss.ms]

Cumultive_trapeze
[hh:mm:ss.ms]

Cumulative
[hh:mm:ss.ms]

Cumulative_trapeze
[hh:mm:ss.ms]

00:00:02.033 00:00:04.306 00:00:02.083 00:00:05.208

The Table 4 shows the time needed for finding the solution for various angle packing
problem with rotation and without optimization. For the program using the classical
cumulative constraint less time is needed to get the solution than for the programs with
the cumulative trapeze constraint. The program using the classical cumulative exceed
2 hours limit in case with ten angles. The programs using cumulative_trapeze exceed
this limit earlier – for nine angles.

Table 4. Times for various angles with rotation- without optimization

Number of angle Cumulative
[hh:mm:ss.ms]

Cumulative_trapeze
[hh:mm:ss.ms]

4 00:00:00.000 00:00:00.030
5 00:00:00.130 00:00:00.711
6 00:00:00.661 00:00:02.724
7 00:00:16.774 00:01:28.347
8 00:04:29.407 00:27:00.460
9 01:58:33.940 >02:00:00.000
10 >02:00:00.000 >02:00:00.000

The Table 5 shows the time needed for finding the solution for various angle packing
problem with rotation and with optimization. Now too, the programs including classi-
cal cumulative constraint works quicker than programs including the cumulative tra-
peze constraint.

Table 5. Times for various angles with rotation- with optimization

Number of angle Cumulative
[hh:mm:ss.ms]

Cumulative_trapeze
[hh:mm:ss.ms]

4 00:00:01.221 00:00:08.532
5 00:00:22.973 00:00:59.596
6 00:03:29.976 00:21:01.414
7 00:13:45.908 >02:00:00.000
8 >02:00:00.000 >02:00:00.000
9 >02:00:00.000 >02:00:00.000
10 >02:00:00.000 >02:00:00.000

Presented results support the thesis: that more simple constraints (like cumulative)

work faster, but more sophisticated constraints (like cumulative trapeze) make pro-
gram writing easier. All computation experiments were based on Pentium II / 300MHz
with 128MB RAM station.

CLP approach to 2D angle placement

5 Acknowledgment

The author is grateful to Prof. A. Niederliński for his support, help and encourage-
ment.

References

1. Aggoun A., Beldiceanu N.: Extending CHIP in order to solve complex scheduling and
placement problems, Journal Mathematical and Computer Modeling Vol. 17, No. 7, 1993,
57-73

2. Dell’Amico M., Maffioli F., Martello S., Annotated bibliographies in combinatorial opti-
mization, John Wiley & Sons, Chichester, New York, Weinheim, Brisbane, Toronto, Sin-
gapore 1997

3. Dincbas M., Simonis H., Van Hentenryck P.: Solving a Cutting-Stock Problem in Con-
straint Logic Programming, Logic Programming 1, Proc. 5 Inf. Conf. and Symp., MIT
Press Cambridge, Massachusetts, London England 1998

4. Elion S., Christofides N.: The loading problem, Management Science Vol. 17, No. 4,
1971, 259-268

5. Niederliński A.: Constraint logic programming - from Prolog to Chip, Proceedings of
the CPDC’99 Workshop on Constraint Programming for Decision and Control, Gliwice,
1999, 27-34

6. Szczygieł T.: Solving a two-dimensional angle packing problem in CHIP, Proceedings of
the CPDC’99 Workshop on Constraint Programming for Decision and Control, Gliwice,
1999, 65-72

7. Szczygieł T.: Solving a three-dimensional angle packing problem in CHIP, Proceedings of
the CPDC’2000 Workshop on Constraint Programming for Decision and Control, Gli-
wice, 2000, 59-66

8. Szczygieł T.: Rozwiązywanie problemów upakowania na płaszczyźnie i w przestrzeni,
(Solving a two-dimensional and three-dimensional packing problem) Zeszyty Naukowe
Politechniki Śląskiej 2000 – seria Automatyka z.131, Gliwice, 2000

