
1

2FoundationsFoundations
of constraint satisfactionof constraint satisfaction

Roman Barták
Charles University in Prague

bartak@ktiml.mff.cuni.cz
http://ktiml.mff.cuni.cz/~bartak

Foundations of constraint satisfaction, Roman Barták

Binary constraintsBinary constraints

World is not binary …
but it could be transformed to a binary one!

Each CSP can be transformed to an equivalent binary CSP
– many CSP algorithms designed for binary problems
– still open efficiency issues

Projection technique (Montanary 1974):

x1

x2

x3

• straightforward but
• does not give an equivalent problem
• bound consistency

• better efficiency
• weaker pruning

Foundations of constraint satisfaction, Roman Barták

Dual encodingDual encoding

Swapping variables and constraints.

k- ary constraint c is converted to
a dual variable vc with the domain consisting of compatible tuples

for each pair of constraints c a c‘ sharing some variables there is
a binary constraint between vc a vc’ restricting the dual variables
to tuples in which the original shared variables take the same value

Example:
variables x1,…,x6

with domain {0,1}

c1: x1+x2+x6=1
c2: x1-x3+x4=1
c3: x4+x5-x6>0
c4: x2+x5-x6=0

(0,0,1), (0,1,0),
(1,0,0)

(0,0,0), (0,1,1),
(1,0,1)

(0,0,1), (1,0,0),
(1,1,1)

(0,1,0), (1,0,0),
(1,1,0), (1,1,1)

v1 v4

v2 v3

R21 & R33

R11 R22 & R33

R31

R33

Foundations of constraint satisfaction, Roman Barták

Hidden variable encodingHidden variable encoding

New dual variables for (non-binary) constraints.

k- ary constraint c is translated to
a dual variable vc with the domain consisting of compatible tuples

for each variable x in the constraint c there is a constraint between
x a vc restricting tuples of dual variable to be compatible with x

Example:
variables x1,…,x6

with domains {0,1}

c1: x1+x2+x6=1
c2: x1-x3+x4=1
c3: x4+x5-x6>0
c4: x2+x5-x6=0

(0,0,1), (0,1,0),
(1,0,0)

(0,0,0), (0,1,1),
(1,0,1)

(0,0,1), (1,0,0),
(1,1,1)

(0,1,0), (1,0,0),
(1,1,0), (1,1,1)

v1 v4

v2 v3

r1

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1

r1

r3 r1
r2

r2 r3 r1
r2

r3

r3r2
x1 x2 x3

x4 x6x5

Foundations of constraint satisfaction, Roman Barták

OtherOther encodings encodings

Hybrid encoding
transformation between dual and

hidden variable encoding
contains parts of both encodings

(0,0,1), (0,1,0),
(1,0,0)

(0,0,0), (0,1,1),
(1,0,1)

(0,0,1), (1,0,0),
(1,1,1)

(0,1,0), (1,0,0),
(1,1,0), (1,1,1)

v1 v4

v2 v3

0, 1 0, 1 0, 1

r3 r1
r2

r3

r3r2
x4 x6

x5

R11

R21 & R33

r3

(0,0,1), (0,1,0),
(1,0,0)

(0,0,0), (0,1,1),
(1,0,1)

(0,0,1), (1,0,0),
(1,1,1)

(0,1,0), (1,0,0),
(1,1,0), (1,1,1)

v1 v4

v2 v3

r1

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1

r1

r3 r1
r2

r2
r3 r1 r2 r3

r3r2
x1 x2 x3 x4 x6x5

R21 & R33

R33

R31

R22 & R33R11

Double encoding
hidden and original variables

are included
constraints from both

encodings are used
improved propagation

Foundations of constraint satisfaction, Roman Barták

BacktrackingBacktracking

Probably the most widely used systematic search algorithm
basically it is depth-first search

Using backtracking to solve CSP
1) assign values gradually to variables
2) after each assignment test the constraints over the assigned

variables (and backtrack upon failure)

Extends a partial consistent assignment until a complete consistent
assignment is found.

Open questions:
what is the order of variables?

• variables with a smaller domain first
• variables participating in more constraints first
• “key” variables first

what is the order of values?
• problem dependent

2

Foundations of constraint satisfaction, Roman Barták

Algorithm chronological backtrackingAlgorithm chronological backtracking

A recursive definition

Algorithm BT(X:variables, V:assignment, C:constraints)
if X={} thenreturn V
x ←← select a not-yet assigned variable from X
for each value h from the domain of x do

if constraints C are satisfied over V+x/h then
 R ←← BT(X-x, V+x/h, C)
 if R≠≠fail then return R

end for
return fail

top call BT(X, {}, C)

Backtracking is always better than generate and test!
Foundations of constraint satisfaction, Roman Barták

Weaknesses of backtrackingWeaknesses of backtracking

thrashing
throws away the reason of the conflict
Example: A,B,C,D,E:: 1..10, A>E

BT tries all the assignments for B,C,D before finding that A≠≠1

Solution: backjumping (jump to the source of the failure)

redundant work
unnecessary constraint checks are repeated
Example: A,B,C,D,E:: 1..10, B+8<D, C=5*E

when labelling C,E the values 1,..,9 are repeatedly checked for D

Solution: backmarking, backchecking (remember (no-)good assignments)

late detection of the conflict
constraint violation is discovered only when the values are known
Example: A,B,C,D,E::1..10, A=3*E

the fact that A>2 is discovered when labelling E

Solution: forward checking (forward check of constraints)

Foundations of constraint satisfaction, Roman Barták

BackjumpingBackjumping ((GaschnigGaschnig 19791979))

Backjumping is used to remove thrashing.
How?

1) identify the source of the conflict (impossible to assign a value)
2) jump to the past variable in conflict

The same run like in backtracking, only the back-jump can be longer,
i.e. irrelevant assignments are skipped!

How to find a jump position? What is the source of the
conflict?
select the constraints containing just the currently assigned

variable and the past variables
select the closest variable participating in the selected constraints

Graph-directed backjumping

Enhancement: use only the violated constraints

x
1 2 3 4 5

Foundations of constraint satisfaction, Roman Barták

Conflict-directedConflict-directed backjumping backjumping in practice in practice

N-queens problem

1

2

3

4

5

6

7

8

A B C D E F G H
Queens in rows are allocated
to columns.

1. Write a number of conflicting
queens to each position.

1 3,4 2,5 4,5 3,5 1 2 3 2. Select the farthest conflicting
queen for each position.

3. Select the closest conflicting
queen among positions.

Note:
Graph-directed backjumping has no effect here (due to complete graph)!

6th queen cannot be allocated!

Foundations of constraint satisfaction, Roman Barták

Identification of the conflicting variableIdentification of the conflicting variable

How to find out the conflicting variable?
Situation:

assume that the variable no. 7 is being assigned (values are 0, 1)
the symbol •• marks the variables participating the violated

constraints (two constraints for each value)

Neither 0 nor 1 can be assigned to
the seventh variable!

conflict
with value 0

conflict
with value 1

•
•

•

•

•

•

•

•

•

•

•

•

1
2
3
4
5
6
7

O
rd

er
 o

f
as

si
g

n
m

en
t

1. Find the closest variable in each
violated constraint (o).

2. Select the farthest variable from
the above chosen variables for each
value (✗).

3. Choose the closest variable from
the conflicting variables selected for
each value and jump to it.

✗
✗

Foundations of constraint satisfaction, Roman Barták

Consistency check forConsistency check for backjumping backjumping

In addition to the test of satisfaction of the constraints, the closest
conflicting level is computed

procedure consistent(Labelled, Constraints, Level)
J ←← Level % the level to which we will jump
NoConflict ←← true % remember if there is any conflict
for each C in Constraints do
 if all variables from C are Labelled then

if C is not satisfied by Labelled then
 NoConflict ←← false
 J ←← min {J, max{L | X in C & X/V/L in Labelled & L<Level}}
end if

 end if
end for
if NoConflict then return true

 else return fail(J)
end consistent

3

Foundations of constraint satisfaction, Roman Barták

AlgorithmAlgorithm backjumping backjumping

procedure BJ(Unlabelled, Labelled, Constraints, PreviousLevel)
if Unlabelled = {} then return Labelled
pick first X from Unlabelled

Level ←← PreviousLevel+1
Jump ←← 0
for each value V from DX do

C ←← consistent({X/V/Level} ∪∪ Labelled, Constraints, Level)
if C = fail(J) then
 Jump ←← max {Jump, J}
else

 Jump ←← PreviousLevel
 R ←← BJ(Unlabelled-{X},{X/V/Level} ∪∪ Labelled,Constraints, Level)
 if R ≠≠ fail(Level) then return R % success or back-jump
end if

end for
return fail(Jump) % jump to the conflicting variable

end BJ

top call BJ(Variables,{},Constraints,0)
Foundations of constraint satisfaction, Roman Barták

Weakness ofWeakness of backjumping backjumping

When jumping back the in-between assignment is lost!

Example:
colour the graph in such a way that the connected vertices have different

colours

1
2
1 2
1 2 3
1 2 3

AC B

D

E

node vertex
 A
 B
 C
 D
 E

backjump

1
21
1 2
1 2
1 2 3

During the second attempt to label C superfluous work is done
- it is enough to leave there the original value 2, the change of B
does not influence C.

Foundations of constraint satisfaction, Roman Barták

Dynamic backtracking - exampleDynamic backtracking - example

The same graph (A,B,C,D,E), the same colours (1,2,3) but a
different approach.

AC B

D

E

node 1 2 3
 A ••
 B A ••
 C A ••
 D A B ••
 E A B D

node 1 2 3
 A ••
 B A ••
 C A ••
 D A B AB
 E A B

node 1 2 3
 A ••
 C A ••
 B •• A
 D A ••
 E A B ••

jump back
+ carry the conflict source

jump back
+ carry the conflict source
+ change the order of B, C

Backjumping
+ remember the source of the conflict
+ carry the source of the conflict
+ change the order of variables

= DYNAMIC BACKTRACKING

The vertex C (and the possible sub-graph connected to C) is
not re-coloured.

•• selected colour

AB a source of the conflict

Foundations of constraint satisfaction, Roman Barták

Algorithm dynamic backtracking (Algorithm dynamic backtracking (GinsbergGinsberg 19931993))
procedure DB(Variables, Constraints)

Labelled ←← {}; Unlabelled ←← Variables
while Unlabelled ≠≠ {} do

select X in Unlabelled
ValuesX ←← DX - {values inconsistent with Labelled using Constraints}
if ValuesX = {} then

let E be an explanation of the conflict (set of conflicting variables)
if E = {} then failure
else

let Y be the most recent variable in E
unassign Y (from Labelled) with eliminating explanation E-{Y}
remove all the explanations involving Y

end if
else

select V in ValuesX

Unlabelled ←← Unlabelled - {X}
Labelled ←← Labelled ∪∪ {X/V}

end if
end while
return Labelled

end DB

Foundations of constraint satisfaction, Roman Barták

Redundant work in backtrackingRedundant work in backtracking

What is redundant work?
repeated computation whose result has already been obtained

Example:
A,B,C,D :: 1..10, A+8<C, B=5*D

B

B=1 B=2 B=3 B=4 B=5

A
A=1

C
C=1 C=10 C=10 C=10 C=10

D
D=1 D=10 D=10 D=10 D=10

C=1

C

D=1

D

C=1

C

D=1

D

C=1

C

D=1

D

C=1

C

D=1
D

... C=10... ... … ...

Redundant computations:
it is not necessary to repeat them
because the change of B
does not influence C.

Foundations of constraint satisfaction, Roman Barták

BackmarkingBackmarking ((HaralickHaralick, Elliot , Elliot 19801980))

Removes redundant constraint checks by memorising
negative and positive tests:
– Mark(X,V) is the farthest (instantiated) variable in conflict with

the assignment X=V
– BackTo(X) is the farthest variable to which we backtracked since

the last attempt to instantiate X
Now, some constraint checks can be omitted:

Mark<BackTo Mark≥≥BackTo

Y

X=a

Y=b

X

Y=b

Y/b is inconsistent
with X/a (and
consistent with all
variables above X)

Y/b is still in conflict with
X/a, we do not need to
check it

Mark(Y,b)

BackTo(Y)

Y/b is inconsistent with
X/a (and consistent with
all variables above X)

Mark(Y,b)

BackTo(Y)

Y=b

X=?

Y/b is OK
here

Y/b must be
checked with
these variables

X=a

Y=b

X

Y

4

Foundations of constraint satisfaction, Roman Barták

BackmarkingBackmarking in practice in practice

N-queens problem

1

2

3

4

5

6

7

8

A B C D E F G H
1. Queens in rows are allocated to
columns.

3. Farthest conflict queen at each
position (MarkTo). At beginning 1s.

1 3 2 4 3 1 2 3

2. Latest choice level is written next to
chessboard (BackTo). At beginning 1s.

5. Backtrack to 5, change BackTo.

Note:
backmarking can be combined with backjumping (for free)

4. 6th queen cannot be allocated!

1 1

1 2 1 2

1

1 4 2

1

1

1

1

1

1

1

1
6. When allocating 6th queen, all the
positions are still wrong
(MarkTo<BackTo).

1 2 3

5

Foundations of constraint satisfaction, Roman Barták

Consistency check for Consistency check for backmarkingbackmarking

Only the constraints where any value is changed are re-checked,
and the farthest conflicting level is computed.

procedure consistent(X/V, Labelled, Constraints, Level)
for each Y/VY/LY in Labelled such that LY≥≥BackTo(X) do

% only possible changed variables Y are explored
% in the increasing order of LY (first the oldest one)

if X/V is not compatible with Y/VY using Constraints then
Mark(X,V) ←← LY
return fail

end if
end for
Mark(X,V) ←← Level-1
return true

end consistent

BackTo

1 2 3 4 5 6

It is not necessary
to test it again
(it is satisfied)

1

2

Foundations of constraint satisfaction, Roman Barták

AlgorithmAlgorithm backmarking backmarking

procedure BM(Unlabelled, Labelled, Constraints, Level)
 if Unlabelled = {} then return Labelled
 pick first X from Unlabelled % fix order of variables

 for each value V from DX do
 if Mark(X,V) ≥≥ BackTo(X) then % re-check the value
 if consistent(X/V, Labelled, Constraints, Level) then

 R ←← BM(Unlabelled-{X}, Labelled ∪∪{X/V/Level}, Constraints, Level+1)
 if R ≠≠ fail then return R % solution found
 end if
 end if

 end for
 BackTo(X) ←← Level-1 % jump will be to the previous variable
 for each Y in Unlabelled do % tell everyone about the jump

 BackTo(Y) ←← min {Level-1, BackTo(Y)}
 end for
 return fail % return to the previous variable
end BM

Foundations of constraint satisfaction, Roman Barták

Tree search and heuristicsTree search and heuristics
Observation 1:

The search space for real-life problems is so huge that it cannot be
fully explored.

Heuristics - a guide of search
– they recommend a value for assignment
– quite often leads to solution

What to do upon a failure of the heuristics?
BT cares about the end of search (a bottom part of the search tree)
– so it rather repairs later assignments than the earliest ones
– it assumes that the heuristic guides it well in the top part

Observation 2:
The heuristics are less reliable in the earlier parts of the search (as
search proceeds, more information for better decision is available).

Observation 3:
The number of heuristic violations is usually small.

Foundations of constraint satisfaction, Roman Barták

Limited Discrepancy SearchLimited Discrepancy Search
Discrepancy = heuristic is not followed

(a value different from the heuristic is chosen)
Idea of Limited Discrepancy Search (LDS):

– first, follow the heuristic
– when a failure occurs then explore the paths when the heuristic

is not followed maximally once (start with earlier violations)
– after next failure occurs then explore the paths when the

heuristic is not followed maximally twice...

Example:
the heuristic proposes to use the left branches

Foundations of constraint satisfaction, Roman Barták

Algorithm LDS (Harvey,Algorithm LDS (Harvey, Ginsberg Ginsberg 19951995))
procedure LDS-PROBE(Unlabelled,Labelled,Constraints,D)

if Unlabelled = {} then return Labelled
select X in Unlabelled
ValuesX ←← DX - {values inconsistent with Labelled using Constraints}
if ValuesX = {} then return fail
else select HV in ValuesX using heuristic

if D=0 then return LDS-PROBE(Unlabelled-{X}, Labelled∪∪{X/HV}, Constraints, 0)
for each value V from ValuesX -{HV} do

R ←← LDS-PROBE(Unlabelled-{X}, Labelled∪∪{X/V}, Constraints, D-1)
if R≠≠ fail then return R

end for
return LDS-PROBE(Unlabelled-{X}, Labelled∪∪{X/HV}, Constraints, D)

end if
end LDS-PROBE

procedure LDS(Variables,Constraints)
for D=0 to |Variables| do % D is a number of allowed discrepancies

R ←← LDS-PROBE(Variables,{},Constraints,D)
if R≠≠ fail then return R

end for
return fail

end LDS

