Programming

Logic and Constraints

Roman Bartak
Charles University, Prague (C2)

roman.bartak@mff.cuni.cz
http://ktiml .mfF.cuni.cz/~bartak

“ Lists

m How to represent a list of elements?

m Using terms:
a pointer-like structure III—‘ IIIJ o] ni
list(a,list(b,list(c,nil))) |£| |£

m Prolog provides this structure directly:
[Head|Tail]
[a.b,c] =[al[bl[cl[111]
Elements can be anything, e.g. a list again
w[[g.2], 12, f(a,b), [[11]
m This is a syntactic sugar only!

ESSLLI 2005 - Programming with Logic and Constraints

" Membership

m How to check membership in a list?

m Explore the list from start until the element is
found.

member (X, [X]_1) -
member (X, [_|T]) :- member(X,T).

?-member(a,[a,b,a])- -> ves

?-member(X,[a,b,a]). > x=a; x=b; x=a
?-member(a,L). -> L=[a]_]; L=[_,al_],

ESSLLI 2005 - Programming with Logic and Constraints

" Deleting element

m Delete the first occurrence of X from the list.
delete(List,X,ListWithoutX)

delete([1._.[1)-
delete([X]T].X,T).
delete([Y|T],.X,[Y[NewT]):-
X\=Y, delete(T,X,NewT).
A .
| X and Y cannot be unified |

m The part of the list before X is duplicated!
orlglnalllst—>| I H I |—>| I

new list after deleting ¢

ESSLLI 2005 - Programming with Logic and Constraints

" Deleting

m Delete all occurrences of X from the list.

delete_all([]1. X,[D-
delete_all([X]|T],.X,NewT):-

del ete_al | (T S X, NeWT) -ﬁ difference from delete

delete_all([Y|T].X,[Y|NewT]):-
X\=Y,delete_all(T,X,NewT).

m The list is completely duplicated in memory.

originallist—>|oI-'—»l-I.'—»J_TI.'—»l.I.'—-loIniI|

delete_a||([a-b’c’b’e]’b'L])> |§| |f|

new list after deleting b .

ESSLLI 2005 - Programming with Logic and Constraints

" Inserting

m Insert X before the list insert(L,X,LStartWithX):
insert(L,X, [X|L]D)-
m Add X to the end of the list add(L, X, LEndWithX) :
add([YIT]1.X,[YINewT]):-
add(T,X,NewT).
Again, the list is completely duplicated!

The procedure can also remove the last element from
the list!

?-add(NewList,X,[a,b,c,d]).-

NewList=[a,b,c]

X=d

ESSLLI 2005 - Programming with Logic and Constraints

" Concatenating

m concatenate two lists
concat(L1,L2,L)

L1=[a,b,c], L2=[d,e] -> L=[a,b,c,d,e]

concat([],L,L).

concat([H|T],L2,[H|NewT]):-
concat(T,L2,NewT).

m Time and space complexity depends on the size
of the first list!

m The procedure can also be used to split the list.
?-concat(Listl,List2,[a,b,c,d]).
Listl=[], List2=[a,b,c,d] ;

Listl=[a], List2=[b,c,d]

ESSLLI 2005 - Programming with Logic and Constraints

" JEE Reverting
m Revert the list Much better solution is
revert(L,Rev) using accumulator!
L=[a,b,c] -> revertl(List,Rev):-
Rev=][c,b,a] rev(List,[].,Rev).
revert(L].[D- rev([],L,L)-
revert([H]T],Rev):- rev([HIT].Acc,Rev): -
revert(T,RT), rev(T,[H]Acc],Rev).
add(RT,H,Rev).
Slow and memory consuming! |jist revert |revertl
Try to omit add (concat) in length
your code. 50000 39s. Os.

ESSLLI 2005 - Programming with Logic and Constraints

" Operators

m writing everything as a term is not always
comfortable

compare '='(X,'+'(2,3)) and X=2+3
m a more human readable form of terms would be
appropriate

e.g. infix notation of “standard” operations
(provided by Prolog)

m moreover, user may define own operators via
- op(precedence, type, name).

m this is only a “syntactic sugar”

ESSLLI 2005 - Programming with Logic and Constraints

" AEEEEEERRRSArithmetic expressions

?2-X= _ —
2-X=1+2. > X=1+2 Number is a special type of atom.
2-3=1+2_. -> no It has a semantics (it is a number)!

m Term 1+2 is different from the term 3.
No semantics is associated with terms!

m We need a special procedure to evaluate the
numerical expression: “is”
?-X 1S 1+2.
X=3
m X 1s Expr works as arithmetic evaluator:
evaluate Expr and compare (unify) the result with X
m Be careful: “is” is not an assignment command!
?-X 1s 1+2, X 1s 7.

ESSLLI 2005 - Programming with Logic and Constraints

" ~EEEEEERRRSAithmetic comparison

m If we have numbers, can we compare them?
m Prolog provides standard comparison of

numbers:
X <Y
= The numeric value of X is less than the numeric value
of Y
?-1<2. -> yes
?-1+1<3. > yes
?-3<1+2. -~—= ho

X>Y, X=<Y, X>Y

ESSLLI 2005 - Programming with Logic and Constraints

" Cut

m Prolog uses depth-first search to cover
non-determinism of alternative rules.

use choice point when there is an alternative
m Can we prune alternatives explicitly?

Cut removes the choice point so no alternative
rules will be tried.

backtrack allowed! backtrack not allowed!
.
(jﬁ;;a??ﬁbdyl,!,sodyz.
Head:-Body3. Q i cut

ESSLLI 2005 - Programming with Logic and Constraints

" Practicing cuts

testl(X,Y):-
member(Y,[[1,2],[3.4]1]).,.member(X,Y).

testl(O0,[])-

test2(X,Y):- N\
I, member(Y,[[1,2].[3,4]1]).,member(X,Y).

test2(0,[])-

test3(X,Y):-
member(Y,[[1,2].[3.4]1]1).!.member(X,Y). >

test3(0,[])-

test4(X,Y):-
member(Y,[[1,2].,[3.4]1]).member(X,Y),!.

test4(0,[])-

X 1 2 3 4 0
Y [1,2] |[1,2] |[3,4] |[3.4]1 |I1

1
2
3
4 ————m—
ESSLLI 2005 - Programming with Logic and Constraints

Examples of red cuts
Their usage is discouraged because they change computation!

" -~EENNNNEC ut for determinism

m Prune branches that will not be visited (green cut).

Example:
split the list into a list with elements smaller than X
and a list with elements not smaller than X

split([1._.[0.[D:-!.
sphit([H|T],.X,[H]|T1],T2):-
H<X, I,
sphit(T,X,T1,T2).
sphit([H|T],.X, T, [H|T2]):-
sphit(T,X,T1,T2).

ESSLLI 2005 - Programming with Logic and Constraints

" N Negation

m How to prove non-existence of the solution?

m Useful for complex tests like non-member.
\+ :Goal

m No variable binding!

m Inside negation:
not(Query):-
call(Query),!,fail.

not(_Query):- “Ramp

true.

ESSLLI 2005 - Programming with Logic and Constraints

NS Practicing negation

m Negation in Prolog is negation-as-failure
O It is not a full logical negation!

p(a) -

p(b).

q(a) -
?2- \+ (p(X),q(X)), X=b. -> fail
?- X=b, \+ (p(X),q(X)). > X=b

m Be especially careful when negation is applied to non-
ground goal (contains variables)!

ESSLLI 2005 - Programming with Logic and Constraints

" All solutions

m How to find all answers to a Query?

findall (?Template, :Query,?List)

Collects all answers to Query in the form of Template
in a List.

Example:
Find all neighboring nodes of “a”.
?—findalI(X,edge(a,X),Neigborhood):’// [f(b).f(e)]
?-findal 1 (f(X),edge(a,X) ,Neigborhood) -
?—findalI(dzzz,edge(a,X),Neigborhood):—~\\

[b.c]

[dzzz,dzzz]

ESSLLI 2005 - Programming with Logic and Constraints

" Blackboard

m How to pass information back when
backtracking?

m How to pass information between search
branches?

m We can use the Prolog database!
assert the information in one branch
access it in the other branch

m It is better to use blackboard!
clear and efficient

ESSLLI 2005 - Programming with Logic and Constraints

" ———plackboard primitives

m Each information stored in the blackboard
Is identified by a unique atom called a key
(an atom defined by the user).

m bb put(:Key, +Term)

m bb _get(:Key, ?Term)

m bb delete(:Key, ?Term)

m bb_update(:Key, ?0ldTerm, 7?NewTerm)

SICSwis

ESSLLI 2005 - Programming with Logic and Constraints

" —————Blackboard example

m Test satisfiability of Query without binding variables.

sat(Query, Answer):-
bb_put(sat,no),
once(Query), % finds one solution (if any)
bb_put(sat,yes),
fail.
sat(_Query,Answer):-
bb_delete(sat,Answer).

Another solution using negation and if-then-else:

sat2(Query,Answer): -
(\+ call(Query) -> Answer=no ; Answer=yes).

ESSLLI 2005 - Programming with Logic and Constraints

10

" -SSpracticing blackboard

m Count the number of answers to Query
sat_num(:Query,-NumAnswers)

sat_num(Query, NumAnswers):-
bb_put(counter,0), 2:22:’23'
call(Query), arc(a:d)-
bb_get(counter,N),
N1 is N+1, ?-sat_num(arc(a,X),N).
bb_put(counter,N1), N=3;
fail. no
sat_num(_Query,NumAnswers): - 4

bb_delete(counter,NumAnswers).

m Another solution using findall:

sat_num(Query,NumAnswers): -
findall(x,Query,List),
length(List,NumAnswers).

ESSLLI 2005 - Programming with Logic and Constraints

" T Blackboard features

m Blackboard works as a global ,variable®.

m Be careful of nesting!
If Query in the previous examples calls sat then
the blackboard data are mishandled.
m Structure of the term is preserved but a
connection to the ,local“ variables is lost!!

?-A=term(X,f(X)), bb_put(test,A), X=a,
bb_get(test,B).

A = term(a,f(a)),

B = term(CA,T(A)),
X=a?;

no

ESSLLI 2005 - Programming with Logic and Constraints

11

" -EERRENEinal PROLOG practice

Compute (one of) the shortest path
between two nodes (avoid cycling).

m Database (graph): m Expected answers:
arc(a,b).
arc(a,c). ?—shcirtest_path (a,a,P).
arc(b,c). P =l
arc(b,e). ?- shortest_path(a,e,P).
arc(c,d). P = [a,b,e]
arc(d.b). ?- shortest_path(e,b,P).
arc(d,e). no

(®)
e
*’ o’@

ESSLLI 2005 - Programming with Logic and Constraints

- EERERNShortest path (naive)

m Find all paths in a DFS manner and then select
the shortest.

shortest_path(From,To, ShortestPath):-
findall(Path, path(From,To, [],Path),AllPaths),
shortest_list(AllPaths,ShortestPath).

path(From,From,Visited,Path):-1, o
revert([From|Visited],Path). @""@s@
path(From,To,Visited,Path):- e

arc(From, Through), % nex
\+ member(Through,Visited), % pre| [apcdel
path(Through,To, [From|Visited],Pa| [abej

[a,c,d,b,e]
[a,c,de]

ESSLLI 2005 - Programming with Logic and Constraints

12

" -E—————Shortest path (B&B)

m Branch&Bound exploring all paths in a DFS manner

shortest_pathBB(From,To, Path):-
bb_put(best,no_path),
spathBB(From,To,[],0)-

shortest_pathBB(_From,_To,Path):-
bb_get(best,path(_,Path)).

spathBB(From,From,Visited,Length):-1,
revert([From|Visited],Path), ~
bb_put(best,path(Length,Path)),% save sd =
fail.

spathBB(From,To,Visited,OldLength):-
NewLength is OldLength+1,
can_be_ shorter(NewLength), % check
arc(From,Through), % find t
\+ member(Through,Visited), % preven
spathBB(Through,To, [From|Visited],NewLength).

ESSLLI 2005 - Programming with Logic and Constraints

" -EE——————Shortest path (BFS)

m Breadth-first search with concatenation

shortest_pathBFS(From,To,Path):-
spathBFS([[From]],To,Path).

spathBFS([Visited]|Rest],To,Path):-
Visited = [N]_],

(N=To -> % we found the path
revert(Visited,Path)

; % expand the
findall([N1]Visited],

(arc(N,N1),
\+ member(N1,Visited),
\+ member([N1]_7],Rest)),
NewNodes),
concat(Rest,NewNodes, Nodes),
spathBFS(Nodes,To,Path)
).

ESSLLI 2005 - Programming with Logic and Constraints

13

" JE Homework

m Write procedures (rules) defining:
length(List,Length)
shortest list(ListOfLists,ShortestList)

m Write a Prolog program solving the water
pouring problem.

We have three (N) cups, each with a given capacity
and a given level of water. It is possible to pour
completely a cup into another cup (if capacity is not
exceeded) or pour part of a cup to fill another cup.
Find a shortest plan for reaching a given level of
water in each cup.

Tip: use the shortest path algorithms! 3

ESSLLI 2005 - Programming with Logic and Constraints

14

