
Theory and Practice of Constraint Propagation 

Roman Barták* 

Charles University, Faculty of Mathematics and Physics 
Malostranské námestí 2/25, 118 00 Praha 1, Czech Republic 
e-mail: bartak@kti.mff.cuni.cz 
 
Abstract: Despite successful application of constraint programming (CP) to solving many real-life 
problems there is still an indispensable group or researchers considering (wrongly) CP as a simple 
evaluation technique only. Even if sophisticated search algorithms play an important role in 
solving constraint-based models, the real power engine behind CP is called constraint propagation 
(domain filtering, pruning or consistency techniques). 

In the paper we give a survey of common consistency techniques for binary constraints. We 
describe the main ideas behind them, list their advantages and limitations, and compare their 
pruning power. Then we briefly explain how these techniques can be extended to non-binary 
constraints. Last part of the paper is devoted to modelling issues. We give some hints how the 
constraint propagation can be exploited more when solving real-life problems. This part is based 
on our experience with solving real-life programs and it is also supported by empirical 
observations of other researchers. 
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1 Introduction 
Thanks to many constraint satisfaction packages 
available for end users, constraint programming 
(CP) is becoming more widespread and CP 
technology is used to solve various mostly 
combinatorial problems. It means that there exists a 
growing group of users without deep knowledge 
how CP works inside but still able to model and 
solve problems by means of constraints. However, 
if difficulty of the problem increases then it is more 
and more complicated to design an appropriate 
constraint model that can then be successfully 
solved. We believe that better understanding of 
processes inside the constraint packages can help 
their users to design better models and thus to 
decrease development time (and expenses as well). 

Constraint satisfaction problem is defined by a 
finite set of variables, each variable has assigned a 
finite domain, i.e. a finite set of possible values, and 
by constraints restricting combinations of values 
that the variables can take together. The task is to 
find a value for each variable from its domain in 
such a way that all the constraints are satisfied. 
Usually, constraints are used actively to reduce 
domains by filtering values that cannot take part in 
any solution. This process is called constraint 
propagation, domain filtering, pruning or 
consistency technique, and it is the core of most 

constraint satisfaction packages. Constraint 
propagation can be used to solve fully the problem 
but this is rarely done due to efficiency issues.  It is 
more common to combine an efficient but 
incomplete consistency technique with non-
deterministic search. Such consistency technique 
does not remove all inconsistent values from the 
variables' domains, but it can still eliminate many 
"obvious" inconsistencies and, thus, simplify the 
problem and reduce the search space. To solve the 
problem to full-extent, incomplete consistency 
techniques are accompanied by non-deterministic 
search that explores possible value assignments. 

First, we show how a non-binary constraint can be 
translated to a set of binary constraints giving an 
equivalent solution set (Section2). Then, we survey 
basic consistency techniques for binary constraints 
(Section 3). In Section 4 we discuss some issues 
concerning non-binary constraints and techniques 
for solving them. Section 5 is devoted to some hints 
about using consistency techniques in practice. 

2 Binary Constraints 
It is well known that a non-binary CSP, i.e., the 
CSP with constraints of arity larger than 2, can be 
translated to an equivalent binary CSP. This fact is 
so absorbed that many research papers dealing with 
constraint satisfaction methods assume binary 
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constraints only and sometimes these methods are 
never extended to n-ary constraints. 

Projection. N-ary constraint can be easily 
approximated by binary constraints on the same set 
of variables by projecting the non-binary constraint 
onto the pairs of variables it contains [18]. For 
some n-ary constraints like all-different, this gives a 
set of binary constraints with the same solution set 
as the original n-ary constraint. Unfortunately, in 
general we get a network of binary constraints 
having a set of solutions that is a superset of the set 
of solutions of the original non-binary constraint as 
Figure 1 shows. Still studying such binary 
decomposition [13] is important because it allows 
us to achieve some level of consistency on the n-ary 
constraint, e.g. bound consistency, by making the 
set of binary constraints consistent. 

 

 

 

 

 

 

Figure 1: Projection of the n-ary constraint onto the pairs of 
variables provides a superset of the original solution set. 

There exist two basic general methods for 
converting a non-binary CSP to an equivalent 
binary CSP: the dual graph method and the hidden 
variable method. Both these methods change the set 
of variables of the original problem. 

Dual encoding. The dual encoding is based on 
swapping the variables for constraints and vice 
versa. There is a dual variable vc for each n-ary 
constraint c with the domain of consistent tuples of 
this constraints. For each pair of constraints c and c' 
sharing some variables in the original problem there 
is a binary compatibility constraint between the 
variables vc and vc'. This constraint restricts the dual 
variables to tuples in which the original shared 
variables take the same value. 

 

 

 

 

 

Figure 2: The dual variable encoding for the 0-1 variables 
x1…x6 and the constraint problem c1:x1+x2+x6=1, c2:x1-x3+x4=1, 
c3:x4+x5-x6>0, c4:x2+x5-x6=0. 

Hidden variable encoding. The hidden variable 
encoding uses the same dual variables vc like the 
dual encoding and, moreover, there are also the 
original variables xi. The compatibility constraints 

are defined between the dual variable vc and each 
variable xi in the constraint c. This constraint 
restricts the tuples assigned to vc to be consistent 
with the value assigned to xi. 

 

 

 

 

 

 

Figure 3: The dual variable encoding for the 0-1 variables 
x1…x6 and the constraint problem c1:x1+x2+x6=1, c2:x1-x3+x4=1, 
c3:x4+x5-x6>0, c4:x2+x5-x6=0. 

Various levels of equivalence of these encoding 
with the original non-binary problem are studied in 
[22]. Because of any non-binary constraint network 
can be polynomially converted into an equivalent 
binary one, many works on filtering algorithms are 
restricted to the binary case. However, in real-life 
problems the binary conversion is sometimes/often 
impracticable and therefore, recently several 
researchers turn attention to studying efficiency of 
such conversion [1], comparing and proposing new 
binary encodings [24,26] as well as dealing with 
non-binary constraints directly [5-8]. 

3 Consistency techniques - a survey 
In the previous section, we showed that an arbitrary 
CSP can be translated to an equivalent binary CSP. 
For simplicity reasons we will use binary CSP to 
explain ideas behind basic propagation algorithms. 
If the CSP is binary then it can represented as an 
undirected graph with the vertices corresponding to 
the variables and the edges corresponding to the 
constraints. Many names for the consistency 
techniques are then derived from graph notions. 

Node consistency. The easiest consistency 
technique called node consistency (NC) removes 
values inconsistent with unary constraints from the 
variables' domains. The node consistency algorithm 
is pretty straightforward: it goes though the 
variables and removes values inconsistent with any 
unary constraint on the variable. 

Arc consistency. We say that a constraint is arc 
consistent (AC) if for any value of the variable in 
the constraint there exists a value for the other 
variable in such a way that the constraint is 
satisfied. CSP is arc consistent if all the constraints 
are arc consistent. Usually, the constraint is made 
AC by propagating the domain from one variable to 
the other variable and vice versa. This is called 
revision of the (oriented) arc in the graph. CSP is 
made AC by repeated revisions of the arcs. The 
simplest algorithm for achieving arc consistency 
repeats the revisions until the domain of any 
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variable is changed. This algorithm is called AC-1 
and it suffers from the problem of non-necessary 
repetition of revisions. In particular, if a domain of 
any variable is changed then only the arcs going to 
this variable are affected by this reduction. 
Moreover the arc going from the variable that 
caused the domain reduction does not need to be 
revised again because it is not affected by this 
domain reduction. Figure 4 shows which arcs 
should be re-revised after domain reduction. 

 

 

 

 

 

Figure 4: Only some arcs (bold) need to be re-revised after 
domain reduction caused by another arc (dashed). 

The idea of repeating only the necessary revisions 
was included in the ancient Waltz algorithm for 
scene labelling [30]. This algorithm was 
generalised to solve arbitrary CSP and it is called 
AC-2. A more efficient version of this algorithm 
which keeps a single queue of arcs for re-revision is 
called AC-3 and it is probably the most widely used 
consistency algorithm. 

 

 

 

 

 

Figure 5: AC-3 algorithm 

AC-1 to AC-3 algorithms are described in [15], and 
their complexity is studied in [16]. AC-3 still 
repeats many constraint checks that can be avoided 
by better bookkeeping. Therefore Mohr and 
Henderson [17] proposed AC-4 algorithm that 
maintains a support set for each value. In particular, 
for each value of the variable i there is a counter 
indicating how many supporters this value has in 
the domain of the variable j, plus there is a structure 
keeping the pairs (variable, value) which are 
supported by the current value. By maintaining 
these structures constraint checks can be fully 
avoided during run of AC-4 algorithm. 

 

 

 

 

 

Figure 6: Data structures used by AC-4 

AC-4 is proved to have the optimal worst case 
complexity, unfortunately, in many cases its 
complexity is close to this worst case due to 
complexity of initialisation of the data structures 
(counters and support sets). Therefore Bessiere [4] 
proposed AC-6 algorithm that improves both 
memory consumption of AC-4 and average time 
complexity. Instead of keeping the complete 
support sets and counters, AC-6 algorithm 
remembers only one supporter for each value. If 
this supporter is lost by domain reduction then 
another supporter is looked for. Thus, complexity 
of the initialisation of AC-4 is spread over the 
propagation phase of AC-6 algorithm and no large 
data structures are necessary. AC-7 by Bessiere, 
Freuder, and Regin [9] is an extension of AC-6 that 
uses symmetry of the constraint: if the value v1 
supports another value v2 then v2 supports v1 as 
well. 

In the previous text we skipped AC-5 algorithm 
that was proposed by Hentenryck, Deville, and 
Teng in [29]. AC-5 is a generic arc consistency 
algorithm that can be reduced both to AC-3 with 
good average complexity or to AC-4 with the best 
worst complexity. Moreover, this algorithm may 
exploit semantic information during constraint 
revision, in particular it brings better complexity if 
functional, anti-functional, or monotonic 
constraints are used. 

Arc consistency algorithms need to re-revise some 
arcs after domain reduction due to non-directional 
character of AC causing cycles in the constraint 
network. If we order the variables in the constraint 
network then we can keep consistent only the arcs 
(i,j) where i<j. This is called directional arc 
consistency (DAC). Making the CSP directional arc 
consistent is much more efficient than full AC, each 
arc is revised exactly once, no re-revisions are 
necessary if the arcs are explored in a clever order 
(arc (i,m) should be revised before any arc (j,n), 
where m>n). DAC is strictly weaker than AC and, 
in general, it is not possible to achieve AC by 
making DAC in both directions (if the constraint 
network has a tree shape then AC can be achieved 
by two runs of DAC). 

Path consistency. It is known that arc consistency 
does not remove all inconsistencies from the 
constraint network meaning that even if the graph is 
AC then we still do not know if any solution exists. 
Therefore stronger consistency techniques were 
proposed and studied. A natural extension of arc 
consistency is path consistency (PC). 

We say that a path (V1,…,Vn) is path consistent if 
for every pair v1,vn of consistent values (i.e., this 
pair satisfies all binary constraints between V1 and 
Vn) there exist values v2,…vn-1 such that all the 
constraints Vi,Vi+1 are satisfied. Note, that this 
definition says nothing about satisfaction of 

procedure AC-3(G) 
Q ← {(i,j) | (i,j)∈arcs(G), i≠j} 
while Q non empty do 
select and delete (k,m) from Q 
if REVISE((k,m)) then 

Q ← Q ∪ {(i,k) | (i,k)∈arcs(G), i≠k, i≠m} 
end if 

end while 
end AC-3 

counter 

2 

1 

1 

support set 

(i,a1),(i,a2) 

(i,a1) 

(i,a2),(i,a3) 

i 

a1 

a2 

a3 

j 

b1 

b2 

b3 



constraints between Vi and Vj for |i-j|>1. CSP is 
path consistent if all paths are path consistent. 
Nevertheless, as Montanary showed in [18] it is 
enough to make paths of length two path consistent 
to make the CSP path consistent. Therefore path 
consistency algorithms work with paths of length 
two only and, like AC algorithms, they make these 
paths consistent by repeated revisions. Every 
constraint is represented extensionally using 0-1 
matrix and path revisions are performed using 
multiplication and conjunction of these matrices as 
Figure 7 shows. 

 

 

 

 

 

 

 

Figure 7: Revision of path (A,B,C) where the initial domain for 
the variables A,B,C is 1,…,3. 

PC-1 repeatedly updates all paths until a domain of 
any constraint is changed. Like AC-2 and AC-3, the 
PC-2 algorithm repeats revisions of only the paths 
affected by any previous revision and thus it 
significantly improves performance. Both PC-1 and 
PC-2 algorithms are described in [15] and their 
complexity is studied in [16]. Mohr and Henderson 
attempt to apply the AC-4 principle to a path 
consistency algorithm and in [17] they proposed the 
PC-3 algorithm. Visibly, this algorithm is not sound 
because it can remove consistent values from 
variables' domains. In [14] Han and Lee proposed a 
correction of this algorithm called PC-4. In [23] 
Singh proposes an extension of PC-4 called PC-5 
using the same principle as AC-6 has to AC-4 (only 
one support is computed and a new support is 
looked for when the current support is lost). 

Even if path consistency is strictly stronger than arc 
consistency, it is rarely used in practice. This is 
because PC suffers from several problems: 

§ PC eliminates more inconsistencies then AC 
but the performance/complexity ratio is much 
worse than for AC, 

§ PC requires an extensional representation of 
constraints and thus it has huge memory 
consumption even for small problems, 

§ PC changes connectivity of the constraint 
network by introducing derived constraints, 
and, thus, solving methods exploiting the 
network structure are not applicable, 

§ finally, PC still does not remove all 
inconsistencies. 

Restricted path consistency. Because PC 
algorithms suffer from many problems that 
disqualify them for practical applications, Pierre 
Berlandier proposed a mixture of AC and PC called 
restricted path consistency (RPC) [3]. RPC keeps 
the good features of AC, i.e., changing the domains 
of variables (rather than the domains of 
constraints), and increases pruning power of AC by 
doing PC when the value has only one support in 
the constraint. Algorithm for RPC is based on AC-4 
algorithm that counts supports for individual 
values. As soon as a value has only one support in 
another variable, PC is evoked for this pair of 
values, i.e., a support for this pair is looked for in 
the domain of other variables. If no such support 
exists then we can remove the value from the 
domain. RPC removes at least the same amount of 
inconsistent values as AC and also some values 
beyond. Thus, RPC is strictly stronger than any AC 
algorithm. However, because PC is called only 
under the condition of having a single support, RPC 
is weaker than full PC. 

 

 

 

 

 

Figure 8: Restricted path consistency removes more inconsistent 
values than arc consistency. 

k-consistency. Node, arc, and path consistency are 
instances of a general consistency notion k-
consistency. CSP is k-consistent if every consistent 
(k-1)-tuple can be extended to a consistent k-tuple. 
If the problem is j-consistent for every j≤k then we 
are speaking about strong k-consistency. Note that 
strong k-consistency implies k-consistency but not 
vice versa. Node consistency corresponds to 1-
consistency, arc consistency to 2-consistency and 
path consistency to 3-consistency. In fact, PC 
algorithms include NC as well as AC so they 
achieve strong path consistency (strong 3-
consistency). There exist algorithms for achieving 
k-consistency for k>3 but they are even more 
expensive than PC and thus they are not used in 
practice. Moreover, achieving k-consistency for the 
constraint network with n vertices where k<n does 
not remove (in general) all inconsistent values. On 
the other side, it is known that if the constraint 
graph has the width w and its is strongly k-
consistent for k>w then a solution can be found 
using backtrack-free search [11]. Unfortunately, k-
consistency for k≥3 changes the structure of the 
problem so it is hard/impossible to keep a constant 
width of the graph when achieving k-consistency. 
So, only 2-consistency (i.e., arc consistency) can be 
used in practice with trees (graphs of width 1) to 
get a solution without backtracking.  
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(i,j)-consistency. k-consistency can be further 
generalised to (i,j)-consistency. A binary CSP is 
(i,j)-consistent if any consistent instantiation of i 
different variables can be extended to a consistent 
instantiation including any j additional variables. 
Then k-consistency is equivalent to (k-1,1)-
consistency. It is also possible to define strong (i,j)-
consistency in an obvious way. The CSP is strongly 
(i,j)-consistent if it is (k,j)-consistent for every k≤i. 
Algorithms for achieving (i,j)-consistency needs to 
keep tuples of i values so they are not practical for 
i≥2 due to memory consumption and changes in the 
constraint network. 

Inverse consistency. If increasing i in the (i,j)-
consistency is not practical, then we can try to 
increase j while keeping i=1. We get (1,k-1)-
consistency which is called k-inverse consistency 
[11]. k-inverse consistency removes the values that 
cannot be extended to a consistent instantiation 
including k-1 additional variables. This technique 
does not change the constraint graph so it is space 
complexity is linear. The worst-case time 
complexity is polynomial in k, so when k grows, the 
inverse consistency becomes quickly prohibitive. 
Note that there is no inverse consistency to arc 
consistency (i.e., (1,1)-consistency) so the first 
level removing more values than AC is path inverse 
consistency (PIC). Growing k means more 
pruningful k-inverse consistency but its not 
practical due to time complexity. A good 
compromise is to make sure that each value can be 
extended to a consistent instantiation of its 
neighbourhood. This techniques proposed by 
Freuder and Elfe in [12] is called neighbourhood 
inverse consistency. Unfortunately its exponential 
worst-case time complexity cannot guarantee 
reasonable time efficiency. 

Singleton consistency. In the previous paragraphs 
we illustrate several attempts to design an efficient 
filtering algorithm that removes more 
inconsistencies than AC. There exists a generic 
technique that can improve pruning power of 
arbitrary consistency algorithm, it is called 
singleton consistency [10,20]. Let A is some level 
of consistency, e.g., arc consistency. Then CSP is 
singleton A-consistent if for any value v of any 
variable X the problem reduced using X=v is A-
consistent. For example, we can define singleton 
arc consistency (SAC) or singleton restricted path 
consistency (SRPC). Even if singleton consistency 
can be also expensive in cpu time, it is easy to 
implement it provided that the underlying local 
consistency algorithm is available. 

Pruning power of some consistency techniques can 
be compared easily using a generic notion of k-
consistency (higher k implies more pruning power). 
However in case of inverse and singleton 
consistencies the comparison is not so obvious. In 

[10] these techniques were formally compared 
concerning their pruning power. The paper [20] 
concentrates on theoretical and empirical 
comparison of singleton consistencies. Figure 9 
summarise the results of these and other papers 
concerning pruning power of basic consistency 
techniques that are applicable to solving real-life 
problems. 

 

 

 

 

 

 

Figure 9: Comparison of pruning power of consistency 
techniques. A→B means that A is strictly stronger than B (A 
removes more inconsistencies than B), dashed line means 
incomparable techniques. 

4 Non-binary and global constraints 
In Section 2 we mentioned that arbitrary CSP can 
be translated to an equivalent binary CSP and the 
filtering techniques surveyed in Section 3 were 
designed for binary CSP. However, conversion to a 
binary CSP is sometime/often impracticable and 
thus consistency notions and techniques are being 
extended to non-binary constraints [5-8]. 

Generalised arc consistency. The notion of arc 
consistency can be simply extended to non-binary 
constraints, then we are speaking about generalised 
arc consistency. The constraint is generalised arc 
consistent (GAC) if for any value of the variable in 
the constraint there exist values for the other 
variables in the constraint such that the tuple 
satisfies the constraint. 

AC-3 algorithm can be naturally extended to make 
the constraint network generalised arc consistent 
and, in fact, this is the most widely used technique 
in the current constraint satisfaction packages. 
Instead of revising the binary arc, this algorithm 
revises the hyper-arcs. For example if the domain 
of the variable A is changed then the revision of the 
constraint A+B=C is done by calling the following 
two functions: C←A+B, B←C-A. Usually, instead 
of remembering the hyper-arcs in the queue for re-
revisions, this algorithm remembers the variables 
that domain has been changed. Then, the algorithm 
calls the revision procedures connected to these 
variables. This approach gives the algorithm 
enough flexibility necessary for integration of user 
defined filtering algorithms and, therefore, it is the 
most common algorithm provided by the constraint 
satisfaction packages. 
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GAC-schema. Arc consistency algorithms 
presented in Section 3 were designed for binary 
constraints. In [5] a new schema for generalised arc 
consistency were proposed based on AC-7 
algorithm. In [8], an instantiation of this schema 
was proposed to achieve arc consistency on global 
constraints.   

Global constraints. The disadvantage of 
generalised arc consistency algorithms is 
decreasing efficiency with growing cardinality of 
the constraint. As shown in [21], special filtering 
algorithms can be designed for particular 
constraints that achieve the same level of 
consistency but are more time and space efficient 
thanks to exploiting semantic information about the 
constraint. Such special constraints are usually 
called global constraints. They can be often 
decomposed to simpler (binary) constraints [13,18] 
but then the same consistency technique, say AC, 
has lower pruning power and therefore such 
decomposition often does not pay-off. Several 
groups of global constraints were proposed 
motivated by real-life problems [2]. 

5 Propagation in practice 
After surveying the basic filtering techniques used 
to reduce domains of binary and non-binary 
constraints, let us now describe some less obvious 
techniques how the constraint propagation can be 
improved and how the filtering techniques should 
be applied to solve real-life problems. The 
discussed techniques are derived from observations 
of the author and others so they have more or less 
experimental nature.  

Disjunction. Appearance of the disjunctive 
constraint in the problem formulation usually 
causes problems because of weak propagation 
through such constraint. Let us illustrate it with a 
simple example. Assume that variable x has a 
domain -10,…,10 and there is a disjunctive 
constraint (x≤-5 ∨ x≥5). One may assume 
(wrongly) that after posting this constraint, the 
domain of the variable x is reduced to (-10,…,-5) ∪ 
(5,…,10). Unfortunately, in most constraint systems 
this is not true and the domain of x stay -10,…,10. 
This is because propagation through particular 
constraint in the disjunction is activated only when 
the other constraints are violated. For example, if 
the domain of x is reduced to say -10,…,3 then x≥5 
is not true so the other constraint x≤-5 is activated 
and the domain of x is reduced further to -10,…, -5. 
In this clear example, there is a simple solution to 
increase propagation: instead of the disjunctive 
constraint one may use the domain constraint 
x in (inf..-5)\/(5..sup). However, in a more complex 
disjunction such reformulation may be more 
complicated or even impossible. Then the solution 
could be to use a more expensive constructive 

disjunction (the domain of the variable is reduced 
to the union of domains after propagation through 
the individual constraints in the disjunction) or to 
design an ad-hoc propagation algorithm. 

Disjunction in CLP. When constraint logic 
programming (CLP) is used as an underlying 
platform for constraint solving then problems with 
disjunction become even harder. Logic 
programming provides alternative clauses to model 
disjunction and many CLP users apply this 
approach when modelling problems with 
constraints. For example the disjunctive constraint 
from the previous paragraph is modelled using the 
following CLP code: 

disj(X):-X#=<-5. 
disj(X):-X#>=5. 

This means that a constraint X≤-5 is posted when 
disj(X) is called and if we find later that this is not 
good then the alternative constraint X≥5 is used. 
However, the only way how to install the constraint 
X≥5 is upon backtracking so everything that has 
been done since the first call to disj(X) is lost. This 
unwanted behaviour of CLP when defining 
disjunctive constraint using alternative clauses was 
first observed in [28] where a solution using the 
cardinality operator has been proposed. In [26] the 
idea of cardinality operator is further extended. 
Nevertheless, note that cardinality operator still 
suffers from the problem with non-constructive 
disjunction described in the previous paragraph. 

Singleton consistency. As mentioned in Section 3, 
singleton consistency is a very powerful filtering 
technique close in pruning power to path 
consistency but resistant from path consistency 
problems. Unfortunately like other more powerful 
consistency techniques, achieving singleton 
consistency is not cheap in terms of time. 
Therefore, it is not practical to maintain full 
singleton consistency during labelling. On the other 
hand, implementation of singleton arc consistency 
algorithm is almost for free, it is a combination of 
labelling, achieving arc consistency, and tabling 
variables' domains. Note also that opposite to many 
other consistency techniques, the implementation of 
SAC does not require changes inside the constraint 
satisfaction engine but it can be done at a meta-
level. 

We see several ways how singleton consistency can 
be applied to improve domain filtering. First, it is 
possible to make the constraint satisfaction problem 
singleton consistent just once before labelling. This 
reduces domains more than simple AC while 
keeping reasonable time complexity. If achieving 
full SAC is too expensive (and this could be pretty 
often in large-scale real-life problems) then it is still 
possible to use SAC in a limited way. In particular, 
it is possible to apply SAC to selected variables that 



somehow determine the solution space. Reducing 
some domains using SAC can then be propagated 
to other variables using standard AC. Note that this 
limited SAC can be applied within labelling as well 
to achieve a weaker form of maintaining singleton 
consistency. Maintaining limited singleton 
consistency can also be used during prototyping a 
constraint model. It is much easier to implement 
singleton consistency then to design a special 
propagation algorithm (global constraint). Thus, 
singleton consistency (SC) can be used to test if 
applying stronger consistency over a particular set 
of variables pays off. If the answer is yes then it is 
possible to design a special ad-hoc filtering 
algorithm with similar pruning power as SC but 
more time efficient than SC. 

Redundant constraints. Usually, when the user 
formulates a problem, only the necessary 
constraints are included in the model. Redundant 
constraints, i.e., the constraints that can be derived 
from other constraints are often avoided. This is 
because redundant constraints do not contribute to 
the solution set (their presence in the model does 
not shrink the solution set), and moreover, they 
increase overhead. On the other side, adding 
redundant constraints may further reduce domains 
and, consequently, speed up search. Let us illustrate 
improved propagation with redundant constraints 
using a simple CSP. Assume there are four 
variables x1,x2,x3,x4 with domains 0,…,5, two 
variables y1,y2 with domains 3,…,8 and constraints 
x1+x2=y1, x3+x4=y2, x1+x2+x3+x4=z. Visible the 
domain for z should be 6,…,16 but the propagation 
infers the domain 0,…, 25. If a redundant constraint 
y1+y2=z is added then we get the expected domain 
for z. 

Dual models. In Section 2 we discussed a dual 
encoding when converting a non-binary CSP to a 
binary CSP. In a real-life problem there also 
typically exist two dual encodings modelling the 
same problem. In these encodings the constraints 
are swapped for the variables and vice versa. Let us 
illustrate dual models using a well-known n-queens 
problem, where the task is to place n queens onto a 
n×n chessboard in such a way that the queens are 
not in conflict. One may choose rows as variables 
and the constraints describe consistent columns for 
the queens. Or it is possible to use columns as 
variables and the constraints describe the 
compatible rows. Both encodings are fully 
interchangeable and typically only one of then is 
chosen to model the problem. However, if both 
models are used in parallel, we can achieve better 
pruning. Naturally, there must be special 
constraints that connect the variables of both 
models, e.g. in case of n-queens the following 
constraint can be used: row(i)=j ⇔ column(j)=i. 
Using both primal and dual model can significantly 
improve domain reduction, e.g. we get a solution 

five times faster for 200 queens when primal and 
dual encoding was used together. However, one 
must be very careful about combining both 
encodings because adding more (redundant) 
constraints increases overheads of propagation. 
Sometime this overhead wipes the advantage of 
better domain filtering and sometimes there is no 
additional pruning when a dual model is used 
together with the primal one. 

Symmetries. Removing inconsistent values from 
the variables' domains is the main task of constraint 
propagation. Sometimes, we can improve this 
propagation by removing symmetrical solutions, 
i.e., the solutions that can be achieved from another 
solution by swapping the values of some variables. 
See Figure 10 for two symmetries in n-queens 
problem (for simplicity reasons we do not discuss 
rotation in the n-queens problem). 

 

 

 

 

 

Figure 10: Horizontal (left) and vertical (right) symmetrical 
solution to the n-queens problem achieved by mirroring the 
chessboard over the horizontal and vertical axes. 

Symmetry divides the set of possible assignments 
into equivalence classes. If the search algorithm 
proves that there is no solution in some class then 
we do not need to explore the equivalent classes 
because there is no solution as well. Thus, we can 
exploit symmetry of the problem to improve 
domain pruning. Assume that we found that the 
queen in the first column could not be placed to the 
first row. Using a horizontal symmetry we can 
deduce that this queen cannot be placed to the last 
row as well. This symmetry can be encoded using 
the following constraint row(1)≤n/2, i.e., the queen 
in the first column must be placed in the top half of 
the board. Note that this constraint removes the 
horizontal symmetry. The vertical symmetry can be 
removed by using a constraint row(1)<row(n). 
Notice also that information about forbidden first 
row for the first queen implies that the last row is 
forbidden for the last queen too. This combined 
symmetry can be removed by the constraint 
row(n)≤n-row(1). 

Removing symmetries can significantly improve 
domain reduction especially in highly symmetric 
problems. Symmetries can also be used to get more 
solutions from a single solution without wasting 
time to find them via search. Some approaches to 
reducing the symmetry, namely remodelling the 
problem, adding constraints, and adding constraints 
during search, are discussed in [25]. 



6 Conclusions 
The paper is focused to practitioners using 
constraint programming to solve various problems 
as well as to theoreticians looking for a brief survey 
of consistency techniques that can be used to solve 
real-life problems. We also discuss some modelling 
issues leading to improve propagation and thus to 
find a solution faster. 

7 References 
[1] Bacchus F. and van Beek, P.: On the Conversion between 

Non-Binary and Binary Constraint Satisfaction Problems, 
in Proceedings of AAAI-98, pp 311-319, 1998. 

 [2] Beldiceanu N. and Contejean E.: Introducing Global 
Constraints in CHIP, in Mathematical Computer 
Modelling 20 no. 12, pp. 97-123, 1994. 

 [3] P. Berlandier. Improving Domain Filtering using 
Restricted Path Consistency, in Proceedings of the IEEE 
CAIA-95, Los Angeles CA, 1995. 

[4] Bessiere Ch., Arc-consistency and arc-consistency again, 
in Artificial Intelligence 65, pp. 179-190, 1994. 

[5] Bessiere Ch., Régin J.-Ch.: Arc consistency for general 
constraint networks: preliminary results, in Proceddings 
of IJCAI97, pp. 397-404, 1997. 

[6] Bessiere Ch.: Non-binary constraints, in Proceedings of 
CP99, pp.24-27, Alexandria, USA, 1999. 

[7] Bessiere Ch., Meseguer P., Freuder E., Larrosa J.: On 
Forward Checking for Non-binary Constraint 
Satisfaction, in Proceedings of CP99, pp. 88-102, 
Alexandria, USA, 1999. 

[8] Bessiere Ch. and Régin J.-Ch.: Enforcing arc consistency 
on global constraints by solving subproblems on the fly, 
in Proceedings of CP99, pp. 103-117, Alexandria, USA, 
1999. 

[9] Bessiere Ch., Freuder E., Régin J.-Ch.: Using Constraint 
Metaknowledge to Reduce Arc Consistency Computation, 
in Artificial Intelligence 107, pp. 125-148, 1999. 

[10] Debruyne R. and Bessiere Ch.: Some Practicable 
Filtering Techniques for the Constraint Satiscation 
Problems, in Proceedings of IJCAI97, pp. 412-417, 1997. 

[11] Freuder E.: A sufficient condition for backtrack-bounded 
search, in Journal of the ACM 32(4), pp. 755-761, 1985. 

[12] Freuder E. and Elfe Ch.: Neighborhood Inverse 
Consistency Preprocessing, in  Proceedings of the AAAI 
National Conference, pp. 202-208, 1996. 

[13] Gent I., Stergiou K., Walsh T.: Decomposable 
Constraints, in Artificial Intelligence 123 (1-2), pp. 133-
156, 2000. 

[14] Han C. and Lee C.: Comments on Mohr and Henderson's 
path consistency algorithm, in Artificial Intelligence 36, 
pp. 125-130, 1988. 

[15] Mackworth, A.K.: Consistency in Networks of Relations, 
in: Artificial Intelligence 8(1), pp. 99-118, 1977. 

[16] Mackworth A.K., Freuder E.C.: The complexity of some 
polynomial network consistency algorithms for constraint 
satisfaction problems, in Artificial Intelligence 25, pp. 65-
74, 1985. 

[17] Mohr R. and Henderson T.C.: Arc and path consistency 
revised, in Artificial Intelligence 28, pp. 225-233, 1986. 

[18] Montanary, U.: Networks of constraints: fundamental 
properties and applications to picture processing, in: 
Information Sciences 7:, pp. 95-132, 1974. 

[19] Perlin M.: Arc consistency for factorable relations, in 
Artificial Intelligence 53, pp. 329-342, 1992. 

[20] Prosser P., Stergiou K., Walsh T.: Singleton 
Consistencies, in Proceedings of CP2000, pp. 353-368, 
Singapore, 2000. 

[21] Régin, J.-Ch.: A filtering algorithm for constraints of 
difference in CSPs, Research Report LIRMM 93-068, 
Université Montepellier, France, 1993. 

[22] Rossi F. and Dhar V.: On the Equivalence of Constraint 
Satisfaction Problems, in Proceedings of ECAI90, pp. 
550-556, Stockholm, Sweden 1990. 

[23] Singh M.: Path Consistency Revised, in Proceedings of 
IEEE International Conference on Tools with Artificial 
Intelligence, pp. 318-325, 1995. 

[24] Smith B., Stergiou K., Walsh T.: Using auxiliary 
variables and implied constraints to model non-binary 
problems, in Proceedings of AAAI2000, 2000. 

[25] Smith B.: Reducing Symmetry in a Combinatorial Design 
Problem, in Proceedings of CP-AI-OR2001, pp. 351-359,  
Wye College, UK, 2001. 

[26] Steggiou K., Walsh T.: Encodings of Non-Binary 
Constraint Satisfaction Problems, in Proceedings of 
AAAI-99, 1999. 

[27] Van Der Linden A.S.J.: Dynamic Meta-Constraints: An 
Approach to Dealing with Non-Standard Constraint 
Satisfaction Problems, PhD Thesis, Oxford Brookes 
University, 2000. 

[28] Van Hentenryck P. Deville Y.: The Cardinality Operator: 
A new Logical Connective for Constraint Logic 
Programming, in Proceedings of ICLP91, pp. 745-759, 
1991. 

[29] Van Hentenryck P., Deville Y., Teng C.M.: A generic 
arc-consistency algorithm and its specialisation, in 
Artificial Intelligence 57, pp. 291-321, 1992. 

[30] Waltz, D.L.: Understanding line drawings of scenes with 
shadows, in: Psychology of Computer Vision, McGraw-
Hill, New York, 1975 


