
VLEPpO: A Visual Language for Problem Representation

Ourania Hatzi1, Dimitris Vrakas2, Nick Bassiliades2, Dimosthenis Anagnostopoulos1 and
Ioannis Vlahavas2

1Harokopio University of Athens, Athens, Greece

{raniah, dimosthe}@hua.gr
2Dept. Of Informatics, Aristotle University Of Thessaloniki, Thessaloniki, 54124, Greece

{dvrakas, nbassili, vlahavas}@csd.auth.gr

Abstract
AI planning constitutes a field of interest as its techniques
can be applied to many areas. Contemporary systems that
are being developed deal with certain aspects of planning
and focus mainly on dealing with advanced features such
as resources, time and numerical expressions. This paper
presents VLEPpO, a Visual Language for Enhanced
Planning problem Orchestration. VLEPpO is a visual
programming environment that allows the user to easily
define planning domains and problems, acquire their
PDDL representations, as well as receive solutions,
utilizing web services infrastructure.

1. Introduction
AI planning has been an active research field for a long
time, and its applications are manifold. A great number of
techniques and systems have been proposed during this
period in order to accommodate designing and solving of
planning domains and problems. In addition, various
formalisms and languages have been developed for the
definition of these domains, with Planning Domain
Definition Language (PDDL) [4][5][6] being dominant
among them.

Research among contemporary planning systems has
revealed a lack of appropriate integrated visual
environments for representing accurately PDDL elements
and structures, and consequently using these structures to
produce quality plans. This provided the motivation for
the work presented in this paper.

The proposed visual tool is intended to cover the need
for such an environment by providing an easy to use,
efficient graphical user interface, as well as
interoperability with planning systems implemented as
web services. The elements offered in the interface
correspond to PDDL elements and structures, making the
representation of most contemporary planning domains
possible. Furthermore, importing from and exporting to
PDDL features are provided as well. Drag and drop
operations along with validity checks make the use of the
environment easy even for users not particularly familiar
with the language.

The rest of the paper is organised as follows: Section
2 reviews related work in the field by presenting several
planning systems, while Section 3 discusses the eminent
formalisms for representing planning domains and
problems. Section 4 presents our visual tool and
demonstrates its use through examples, and finally,
Section 5 concludes and discusses future goals.

2. Related Work
There have been a few experimental efforts to construct
general-purpose tools which offer user interfaces for
defining planning domains and problems, as well as
executing planners which provide solutions to the
problems.

The GIPO system [1] is based on an object-centric
view of the world. The main idea behind it is the notion
of change in the state of objects throughout plan
execution. Therefore, the domains are modelled by
describing the possible changes to the objects existing in
the domain. The GIPO system is designed to work with
both classical and HTN (Hierarchical Task Networks)
domains. In both cases, it offers graphical editors for
domain creation, planners, animators for the derived
plans and validation tools. The domain models are
represented mainly in an internal representation language
called OCL (Object Centered Language) [8], which is, as
the name implies, object oriented, in accordance with the
GIPO system. Translators from and to PDDL have been
developed, which cover only a few parts of the language
(typed / conditional PDDL).

SIPE-2 [2] is another system for interactive planning
and execution of the derived plans. As it is designed to be
performance-oriented, it embodies many heuristics for
increased efficiency. Another useful feature is the plan
execution monitoring, which enables the user to feed new
information to the system in case there is some change in
the world. In addition, the system offers graphical
interfaces for knowledge acquisition and representation,
as well as plan visualization. SIPE-2 is an elaborate
system with a wide range of capabilities. However, it
uses the ACT formalism, which is quite complicated and
does not correspond directly to PDDL, although PDDL
descended partially from this formalism, but also from
other formalisms such as ADL. Therefore, there is no
way to easily use a PDDL file to construct a domain in
SIPE-2, or export the domain or problem to PDDL.

ASPEN is an environment for automated planning and
scheduling. It is an object-oriented system, originally
targeted to space mission operations. Its features include
an expressive constraint modelling language which is
used for defining the application domain, systems for
defining activity requirements and resource constraints,
as well as temporal constraints. In addition, a graphical
user interface is included, but its use in confined to

visualization of plans and schedules, in systems where
the problem solving process is interactive.

ASPEN was developed for the specific purposes of
space mission operations and therefore, it has only a few
vague correspondences to PDDL. Furthermore, it does
not offer a graphical interface for creating the planning
domains.

In conclusion, although the above systems are useful,
none of them offers direct visual representation of PDDL
elements, a feature which would make the design very
efficient for the users already familiar with the language.
Moreover, even the systems which offer translation to
PDDL do not cover important features of the language. It
should be mentioned that a couple of other systems which
provide user interfaces can be found in the literature, but
they are not mentioned in this section because of their
being developed for specific purposes.

The VLEPpO tool is based on ViTAPlan [3] a
visualization environment for planning based on the
HAPRC planning system. VLEPpO extends ViTAPlan in
numerous ways providing the user with visualization
capabilities for most of the advanced features of PDDL
[6] and a more accurate and expressive visual language.

3. Problem Representation
A crucial step in the process of solving a search problem
is its representation in a formal language. The choice of
the language can significantly affect not only the
comprehensiveness of the representation but also the
efficiency of the solver. The PDDL language is nowadays
the standard for representing planning problems. PDDL is
partially based on the STRIPS [7] formalism. Since the
environment presented in this work has a close
connection with PDDL, a brief description of the most
important language elements will be provided in the
following section.

3.1. The PDDL Definition Language
PDDL [4] stands for Planning Domain Definition
Language. Although it was initially designed for planning
competitions such as AIPS and IPC, it has become a
standard in the planning community for modelling
planning domains. PDDL focuses on expressing the
physical properties of the domain at hand in each
planning problem, such as the available predicates and
actions. However, at the same time, there are no
structures or elements in the language to provide the
planner with advice, that is, guidelines about how to
search the solution space, although extended notation
may be used, depending on the planner.

Each domain definition in PDDL consists of several
declarations, which include types of entities, variables,
constants, literals that are true at all times called timeless,
and predicates. In addition, there are declarations of
actions, axioms and safety constraints. These elements
are explained in the following paragraphs.

Variables have the same semantics as in any other
definition language, and are used in conjunction with
built-in functions for expression evaluation. In more
recent versions of PDDL, fluents seem to gain

momentum instead of variables when there is a need for
values that can change over time, as a result of an action.

Constants represent objects that do not change values
and can be used in the domain operators or the problems
associated with a domain.

Relations between objects in the domain are
represented by predicates. A predicate may have an
arbitrary number of arguments, whose ordering is
important in PDDL. Predicates are used to describe the
state of the world at a specific moment. Moreover, they
are used as preconditions and results of an action.

Timeless predicates are predicates that are true at all
times. Therefore, they cannot appear as a result of an
action unless they also appear among its preconditions. In
other words, timeless predicates are not affected by any
actions available to the planner.

Actions enable transitions between successive
situations. An action declaration mentions the parameters
and variables involved, as well as the preconditions that
must hold for the action to be applied. PDDL offers two
choices when it comes to defining the results of the
action: The results can either be a list of predicates called
effects, or an expansion, but not both at the same time.
The effects, which can be both conditional and
universally quantified, express how the world situation
changes after the action is applied. More specifically,
inspired by the STRIPS formalism, the effects include the
predicates that will be added to the world state and the
predicates that will be removed from the world state.

Axioms, in contrast to actions, state relationships
among propositions that hold within the same situation.
The necessity of axioms arises from the fact that the
action definitions do not mention all the changes in all
predicates that might be affected by an action. Therefore,
additional predicates are concluded by axioms after the
application of each action. These are called derived
predicates, as opposed to primitive ones. In more recent
versions of the language the notion of derived predicates
has replaced axioms, but the general idea described
remains the same.

Safety constraints in PDDL are background goals
which may be broken during the planning process, but
ultimately they must be restored. Constraint violations
present in the initial situation do not require to be fulfilled
by the planner.

After having defined a planning domain, problems can
be defined with respect to it. A problem definition in
PDDL must specify an initial situation and a final
situation, referred to as goal. The initial situation can be
specified either by name, or as a list of literals assumed to
be true, or a combination of both. In the last case, literals
are treated as effects; therefore they are added to the
initial situation stated by name. Again, the closed-world
assumption holds, unless stated otherwise. Therefore, all
predicates which are not explicitly defined to be true in
the initial state are assumed to be false. The goal can be
either a goal description, using function-free first order
predicate logic, including nested quantifiers, or an
expansion of actions, or both. The solution given to a
problem is a sequence of actions which can be applied to
the initial situation, eventually producing the situation
stated by the goal description, and satisfying the
expansion, if there is one.

PDDL 2.1 [5] was designed to be backward
compatible with PDDL 1.2, and to preserve its basic
principles. It was developed by the necessity for a
language capable of expressing temporal and numeric
properties of planning domains.

The first of the extensions introduced were numeric
expressions. Primitive numeric expressions are values of
functions which are associated with tuples of domain
objects. Further numeric expressions can be constructed
using primitive ones and arithmetic operators. In order to
support numeric expressions, new elements were added
to the language. Functions are now part of the domain
definition and, as mentioned above, they associate a
number of objects with an arithmetic value. Moreover,
conditions were introduced, which are in fact
comparisons between pairs of numeric expressions.
Finally, assignment operations are possible, with the use
of built-in assignment operators such as assign, increase
and decrease. The actual value for each combination of
objects given by the functions is not stated in the domain
definition but must be provided to the planner in the
problem definition.

A further extension to PDDL facilitated by numeric
expressions is plan metrics. Plan metrics specify the way
a plan should be evaluated, when a planner is searching
not for any plan, but for the optimal plan according to
some metric.

 Other extensions in this version include durative
actions, both discretised and continuous. Up to now,
actions were considered instantaneous. Durative actions,
as the term implies, have a duration which is declared
along with their definition. Furthermore, as far as
discretised durative actions are concerned, temporal
annotations are introduced to their conditions and effects.
A condition can be annotated to hold at the start of the
interval, at the end of the interval, or all over the interval
during which the action lasts. An effect can be annotated
as immediate, that is, it takes place at the start of the
interval, or delayed, that is, it takes place at the end of the
interval.

In PDDL 3.0 [6] the language was enhanced with
constructs that increase its expressive power regarding
the plan quality specification. The constraints and goals
are divided into strong, which must be satisfied by the
solution, and soft, which may not be satisfied, but are
desired. In addition, the notion of plan trajectories is
introduced, which allows the specification of
intermediate states that a solution has to reach, before it
reaches the final state.

4. The Visual Language
VLEPpO (Visual Language for Enhanced Planning
problem Orchestration) is an integrated system for
visually designing and solving planning problems,
implemented in Java. It offers an efficient and easy-to-
use graphical interface, as well as compatibility and
interoperability with PDDL. The main goal during the
implementation of the graphical component of the tool
was to keep the interface as simple and efficient as
possible, but, at the same time, represent accurately and
flexibly the features of PDDL. The range of PDDL
elements that can be represented in the tool is quite wide,

and covers the elements that are used more frequently in
contemporary planning domains and problems. In the
following, the features of the tool will be discussed in
more detail.

4.1. The Entity – Relation Model
The entity – relation model is used to design the structure
of data in a system. Our visual tool employs this well-
known formalism, adapting it to PDDL. Therefore, the
entities in a planning domain described in PDDL are the
objects of the domain, while the relations are the
predicates. These elements are represented visually in the
tool by various shapes and connections between them.

A class of objects in the tool is represented visually by
a coloured circle. A class in PDDL represents a type of
domain objects or action parameters. From a class the
user can create parameters of this type in operators, and
objects of this type in problems, by dragging and
dropping the class on an operator or a problem,
respectively. The type of a parameter or object is denoted
by their colour, which is the same as the corresponding
class.

Consider the gripper domain for example, where there
is a robot with N grippers that moves in a space,
composed of K rooms that are all connected with each
other. All the rooms are modelled as points and there are
connections between each pair of points and therefore the
robot is able to reach all rooms starting from any one of
them with a simple movement. In the gripper domain
there are L numbered balls which the robot must carry
from their initial position to their destination.

Following a simple analysis the domain described
above can be encoded using four classes: robot, gripper,
room and ball. However, since the domain does not
support the existence of multiple robots, the class robot
can be implicitly defined and therefore there is no need
for it. The three remaining classes are represented in
VLEPpO using three coloured circles as outlined in
Figure 1.

Figure 1. The classes in Gripper domain.

A relation is represented by a coloured rectangle with

black outline. A relation corresponds to a domain
predicate in PDDL and it is used for defining connections
among classes. The relations in PDDL and therefore in
VLEPpO are of various arities. Unary relations are
usually used to define properties of classes that can be
modeled as binary expressions that are either true or false
(e.g. closed(Door1)).

If at least one pair of class and relation is present in
the domain, the user can add connections between them.
Each connection represents an argument of a relation, and
the class shows the type of this argument. A relation may
have as many arguments as the user wishes, of any type
the user wishes. The arguments are ordered according to
the numbers on each connection, because this ordering is
important to PDDL.

The Gripper domain has four relations, as depicted in
Figure 2: a) at-robot, which specifies the position of the

robot and it is connected only with one instance of room,
b) at which specifies the room in which each ball resides
and therefore is connected with an instance of ball and an
instance of room, c) holding which defines the alternative
position of a ball, i.e. it is held by the robot and therefore
it is connected with an instance of ball and an instance of
gripper and d) empty which is connected only with an
instance of gripper and states that the current gripper does
not hold any ball.

Figure 2. The relations in the Gripper domain.

Note here that although non-typed PDDL requires

only the arity for each predicate and not the type of
objects for the arguments, the interface obliges the user to
connect each predicate with specific object classes and
this is used for the consistency check of the domain
design. According to the design of Figure 2, the arity of
predicate holding, for example, is two and the specific
predicate can only be connected with one object of class
ball and one object of class gripper.

The aforementioned elements, classes, relations and
connections combined together form the entity – relation
model of the data for the planning domain the user is
dealing with.

4.2. Representing Operators
Operators have direct correspondence to PDDL actions,
which enable transitions between successive situations.
The main parts of the operator definition are its
preconditions and results, as well as the parameters.
Preconditions include the predicates that must hold for
the action to be applied. Results are the predicates that
will be added or removed from the world state after the
application of the action. Operators in the visual tool are
represented by light blue resizable rectangles in the
Operator Editor, comprised by three columns. The left
column holds the preconditions, the right column holds
the effects, and the middle one the parameters.

Dragging and dropping a relation on an operator will
add the predicate to the preconditions or effects,
depending on which half of the operator the shape was
dropped on. Parameters can be created in operators by
dropping classes on them. Adding a connection in the
ontology enables the user to add corresponding
connections in the operators. Other elements that can be
imported in operators will be discussed in more detail in
the section about advanced features.

For example, in the gripper domain there are three
operators: a) move which allows the robot to move
between rooms, b) pick which is used in order to lift a
ball using a gripper and c) drop which is the direct
opposite of pick and is used to leave a ball on the ground
(Figure 3)

Figure 3. The operators in the Gripper domain.

The default view for an operator is in preconditions /

results view which follows a declarative schema that is
different from the classical STRIPS/PDDL approach.
However, there is a direct way to transform definitions
from one approach to the other.

Although the preconditions / results view is more
appropriate for visualizing operators, the system gives the
user the option to use the classical add / delete lists view,
therefore the STRIPS formalism is accommodated as
well. If selected, the column on the left, as before, shows
the preconditions that must hold for the action to be
executed, but the column on the right shows the facts that
will be added and deleted from the current state of the
world upon the execution of the action.

Figure 4. Pick operator in add/delete lists view.

As an example, the pick operator of the Gripper

domain is considered. According to the STRIPS
formalism, the operator is defined by the following three
lists, also depicted in Figure 4.

prec = {empty(GripperObj1), at-robot(RoomObj1),

at(BallObj1,RoomObj1)}
add = {holding(GripperObj1, BallObj1)}
del = {empty(GripperObj1), at(BallObj1, RoomObj1)}

The equivalent operator in Preconditions / Results

view is presented in Figure 5.

Figure 5. Pick operator in preconditions / results view.

4.3. Representing Problems
For every domain defined in PDDL a large number of
problems that correspond to this domain can also be
defined. Problem definitions state an initial and a goal
situation, and the task of a planner is to find a sequence
of operators that, if applied to the initial situation, will
provide the goal situation. The problem shape in the
visual tool is much like an operator in form, but different
semantically. It is represented by a three-column
resizable rectangle in the Problem Editor. Left column
holds the predicates in the initial state, right column holds
the predicates in the goal state, and middle column holds
the objects that take part in the problem definition.

Figure 6. A Problem instance of the Gripper domain.

Figure 6 presents a problem instance of the gripper

domain, which contains two rooms (Bedroom and
Kitchen), one ball (Ball1) and the robot has two grippers
(rightGripper and leftGripper). The initial state of the
problem defines the starting locations of the robot and the
ball (Kitchen and Bedroom respectively) and that both
grippers are free. The goals specify that the destination of
both the ball and the robot is the kitchen.

4.4. Advanced Features
The basic PDDL features described above are adequate
for simple planning domains and problems. However, the
language has many more features divided into subsets
referred to as requirements. An effort has been made in
order for the visual tool to embody the most significant
and frequently used among them.

An advanced design element offered by the system,
which has direct representation in PDDL, is a constant.
The constant is visually represented similarly to a class,
but it is enhanced with a red circle around it to
discriminate it from a class. The constant must be of a
type, and the tool enables the user to drag and drop it on a
class to denote that. Constants can be used either in an
operator or in a problem, where they are treated similarly
to parameters or objects, respectively.

A derived predicate is another advanced PDDL feature
that is represented by a group of design elements in the
visual tool. The term refers to predicates that are not
affected by operators, but they are derived by other
relations using a set of rules. Derived predicates in fact
existed in the first version of the PDDL language as well,
under the notion of axioms. Visually, they are represented
by a rounded rectangle with a specific colour, but they
are not complete unless they are enhanced with an
AND/OR tree that indicates the way they are derived by
other relations. Consequently, AND, OR and NOT nodes
for the construction of the tree are also offered as design

elements. In the current implementation, AND and OR
nodes are binary, that is, they accept only two possible
arguments, while NOT nodes are by default unary. Each
of the node arguments can be either another node of any
type, or a relation. An example of a derived predicate is
depicted in Figure 7.

Figure 7. A derived predicate with AND/OR tree.

Among the advanced features is the option to indicate

that a predicate is timeless, that is, the predicate is true at
all times. This operation involves a lot of validity checks,
which will be explained in the corresponding paragraph.

Another PDDL feature incorporated in the tool are
numerical expressions. In order for numerical expressions
to function properly, the definition of a number of other
elements is involved. Consequently, a combination of
design elements in each frame is used. First of all, in the
ontology frame the user can import functions, which are
represented by rectangles with double outline. These
functions may or may not have arguments. As with
simple relations, functions can be dragged on operators.
However, in order to appear in the PDDL description of
an operator, they must be involved in a condition or in an
assignment. The next step is to actually import conditions
and assignments which involve these functions in the
operator. In that case, a dialog box appears facilitating the
import of a condition or an assignment, by showing all
the available options that the user can select among.
Furthermore, for each function imported in the tool, a
new rectangle appears in the problem frame, which
corresponds to this function. This rectangle is used to
declare the initial values of the function for the problem
at hand.

Furthermore, the system supports discretised durative
actions. The definition of a durative action includes
setting the duration of an operator, in combination with
temporal annotations (Figure 8). In this case, the action is
considered to last a specific period of time, while the
preconditions can be specified to hold at the beginning of
this period, at the end of this period, or all over the period
(combination of these choices is also possible). Effects
can be immediate, that is, happen at the beginning of the
action, or delayed, that is happen at the end of the action.

Figure 8. An example of a durative action.

Finally, a very useful element for problem designing is

maps. Maps represent a special kind of relations that have
exactly two arguments of the same type, and are expected
to have many instances in the initial state of a problem
(Figure 9). For each relation that fulfills these conditions
a map can be created. Objects which take part in the
instances of the relation can then be dragged on the map,
and connections can be created between them. Each of
these connections represents an instance of the relation
that the map corresponds to. In conclusion, maps do not
have an exact representation to PDDL, but they express a
part of the initial state of the world, thus making the
problem shape more readable. The use of maps is not
mandatory, as the same relations can be simply
represented in the problem shape.

Figure 9. A map for the relation connected(C1, C2).

4.5. Syntax and Validity Checking
A very important aspect in every tool for designing and
editing planning domains is syntax and validity checking.
Planning domains have to be checked for consistency
within their own structures, and planning problems have
to be checked for consistency and correspondence to the
related domains. This visual tool attempts to detect
inconsistencies at the moment they are created and notify
the user about them, before they propagate in the domain.
In the remainder of this paragraph several examples will
be given, in order to illustrate the validity checking
processes of the system.

Whenever the user attempts to insert a new connection
in an operator or in a problem, necessary checks are
performed and if a corresponding connection cannot be
found in the ontology an appropriate error message is
shown. Special care must be taken to verify that the types
of parameters and objects match to the types of
arguments of the predicates.

As already mentioned, the system supports timeless
predicates, which are, by definition, true at all times.
Therefore, they are allowed to appear in the preconditions
of an operator, but not in the add or delete lists. As a
consequence, if the user tries to add a timeless predicate
in the preconditions part of an operator, it will
automatically appear in the effects part, so the add and
delete lists will not be affected. Furthermore, if the user
tries to set a predicate timeless, checks will be performed
to determine if this operation is allowed. Finally, timeless
predicates are not allowed to appear in a problem. In all
above cases, error messages occur in order to warn the
user and help them correct the domain inconsistencies.

Another example is that of constants. Checks are
performed to confirm that the class of a constant has
already been defined before the user attempts to use the
constant in an operator or a problem. Furthermore,

additional checks are performed about the types of
arguments, similar to those performed for simple objects.

4.6. Translation to and from PDDL
The capability to export the domains and problems
designed in the tool to PDDL constitutes another
important feature. All of the design elements that the user
has imported in the domain, such as predicates and
operators, along with comments, are exported to a PDDL
file, which is enhanced with the appropriate requirements
tag. The user is offered the option to use typing,
therefore, the same domain can produce two different
PDDL files, one with the :typing requirement and one
without it. Details about exporting are presented in the
remainder of the paragraph.

Despite the fact that a class in the visual tool always
represents the same notion, that is, the type of domain
objects or parameters, it takes different forms when it
comes to exporting the domain. In case the requirement
:typing is declared, the class name is included in the
(:types) construct of the domain definition, and for each
object, parameter and constant a type must be declared.
In case typing is not used, classes are treated as timeless
unary predicates and appear in the corresponding part of
the domain definition. In addition, for each parameter in
an operator, a precondition that denotes the type of the
parameter must be added in the PDDL definition,
although it does not appear visually in the tool. Likewise,
for each object, a new initial literal denoting the type of
this object must be included in the problem definition.

The elements in the Ontology Editor are combined
together in order to formulate the domain constructs in
the syntax that the language imposes. For example,
relations, connections and, if typing is used, classes are
combined to formulate the predicates construct. Likewise,
functions and derived predicates constructs are formed.
As far as constants are concerned, they may appear in the
place of parameters in operators and objects in problems,
and they also appear in the special construct (:constants)
in the domain definition.

Exporting the operators is quite more complicated,
because a combination of several elements of the
Operator Editor and the Ontology Editor is needed. Slight
changes occur to an operator definition depending on
whether the :typing requirement is declared.

Finally, exporting the problems is quite similar to
exporting the operators, but the problems are stored in a
different PDDL file. Therefore, numerous problems can
be defined for the same domain. If maps are used, care
must be taken to include the information they embody in
the list of predicates included in the initial state.
Furthermore, if functions are used, their initial values
provided by the user in the Problem Editor will be part of
the declaration of the initial state of the problem, in the
corresponding construct.

The visual tool also offers the feature of importing
planning domains and problems expressed in PDDL,
visualizing them, and thus enabling the user to
manipulate them. However, importing PDDL is subject to
some restrictions. The most important is that the domains
and problems must declare the :typing requirement. If no
typing is used, syntax is not enough, and semantic

information is necessary in order to discriminate types of
objects from common unary predicates.

4.7. Interface with Planning Systems
As the tool is intended to be an integrated system not
only for designing but for solving planning problems as
well, an interface with planning systems is necessary.
This is achieved by providing the ability to discover and
communicate with web services which offer
implementations of various planning algorithms.
Therefore, a dynamic web service client has been
developed as a subsystem. The requirement for flexibility
in selecting and invoking a web service justifies the
decision to implement a dynamic client instead of a static
one. Therefore, the system can exploit alternative
planning web services according to the problem at hand,
as well as cope with changes in the definitions of these
web services.

The communication with the web services is
performed by means of exchanging SOAP messages, as
the web service paradigm dictates. However, in a higher
level, the communication is facilitated by the use of the
PDDL language, which constitutes the common ground
between the visual tool and the planners. An additional
advantage of using PDDL is that the visual tool is
released by the obligation to determine the PDDL
features that a planner can handle, thus leaving each
planning system to decide for itself.

The employment of web services technology for
implementing the interface results in the independency of
the visual tool from the planning or problem solving
module. Such a decoupling is essential since new
planning systems which outperform the current ones are
being developed. Each of them can be exposed as a web
service and then invoked for solving a planning problem
without any further changes to the visual tool or the
domains and problems already designed and exported as
PDDL files.

5. Conclusions and Future Work
In this paper a visual tool for defining planning domains
and problems was proposed. The tool offers an efficient
user interface, as well as interoperability with PDDL, the
standard language for planning domain definition. The
elements represented in the tool cover a wide range of the
language, while the user is significantly facilitated by the
validity checks performed during the design process. The
use of the tool is not confined to designing planning
problems, but the ability to solve them by invoking
planners implemented as web services is offered as well.
Therefore, the tool is considered an integrated system for
designing and solving planning problems.

Our future goals include the extension of the tool in
order to represent even more complex PDDL language
elements, as well as other planning approaches, such as
HTN (Hierarchical Task Network) planning. Such an
extension is believed to broaden the range of real world
problems that can be represented and solved by the tool.
Visual representation of the produced plans, along with
plan metrics are also among our imminent goals.

Acknowledgements
This work was partially supported by a PENED program
(EPAN M.8.3.1, No. 03ΕΔ73), jointly funded by the
European Union and the Greek government (General
Secretariat of Research and Technology).

References
[1] T. L. McCluskey, D. Liu, Ron M. Simpson, “GIPO II: HTN
Planning in a Tool-supported Knowledge Engineering
Environment”, International Conference on Automated
Planning and Scheduling (ICAPS), 2003

[2] Wilkins, D. E., Lee, T. J. and Berry, P., Interactive
Execution Monitoring of Agent Teams, Journal of Artificial
Intelligence Research, 18 (2003), pp. 217-261.

[3] D. Vrakas, I. Vlahavas, “A Visualization Environment for
Planning”, International Journal on Artificial Intelligence
Tools”, Vol. 14 (6), 2005, pp. 975-998, World Scientific.

[4] Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram,
A., Veloso, M., Weld, D. and Wilkins, D., "PDDL -- the
planning domain definition language". Technical report, Yale
University, New Haven, CT (1998).

[5] Fox, M. and Long, D., "PDDL2.1: An extension to PDDL
for expressing temporal planning domains". Journal of Artificial
Intelligence Research, 20 (2003), 61-124.

[6] Gerevini, A. and Long, D., "Plan Constraints and
Preferences in PDDL3", Technical Report R.T. 2005-08-47,
Department of Electronics for Automation, University of
Brescia, Italy.

[7] Fikes, R. and Nilsson, N. J., STRIPS: A new approach to the
application of theorem proving to problem solving, Artificial
Intelligence, Vol 2 (1971), 189-208.

[8] Liu, D., and McCluskey, T. L. 2000. The OCL Language
Manual, Version 1.2. Technical report, Department
of Computing and Mathematical Sciences, University of
Huddersfield

