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Abstract 
AI planning constitutes a field of interest as its techniques 
can be applied to many areas. Contemporary systems that 
are being developed deal with certain aspects of planning 
and focus mainly on dealing with advanced features such 
as resources, time and numerical expressions. This paper 
presents VLEPpO, a Visual Language for Enhanced 
Planning problem Orchestration. VLEPpO is a visual 
programming environment that allows the user to easily 
define planning domains and problems, acquire their 
PDDL representations, as well as receive solutions, 
utilizing web services infrastructure. 

1. Introduction 
AI planning has been an active research field for a long 
time, and its applications are manifold. A great number of 
techniques and systems have been proposed during this 
period in order to accommodate designing and solving of 
planning domains and problems. In addition, various 
formalisms and languages have been developed for the 
definition of these domains, with Planning Domain 
Definition Language (PDDL) [4][5][6] being dominant 
among them.  

Research among contemporary planning systems has 
revealed a lack of appropriate integrated visual 
environments for representing accurately PDDL elements 
and structures, and consequently using these structures to 
produce quality plans. This provided the motivation for 
the work presented in this paper.  

The proposed visual tool is intended to cover the need 
for such an environment by providing an easy to use, 
efficient graphical user interface, as well as 
interoperability with planning systems implemented as 
web services. The elements offered in the interface 
correspond to PDDL elements and structures, making the 
representation of most contemporary planning domains 
possible. Furthermore, importing from and exporting to 
PDDL features are provided as well. Drag and drop 
operations along with validity checks make the use of the 
environment easy even for users not particularly familiar 
with the language. 

The rest of the paper is organised as follows: Section 
2 reviews related work in the field by presenting several 
planning systems, while Section 3 discusses the eminent 
formalisms for representing planning domains and 
problems. Section 4 presents our visual tool and 
demonstrates its use through examples, and finally, 
Section 5 concludes and discusses future goals.  

2. Related Work 
There have been a few experimental efforts to construct 
general-purpose tools which offer user interfaces for 
defining planning domains and problems, as well as 
executing planners which provide solutions to the 
problems.  

The GIPO system [1] is based on an object-centric 
view of the world. The main idea behind it is the notion 
of change in the state of objects throughout plan 
execution. Therefore, the domains are modelled by 
describing the possible changes to the objects existing in 
the domain. The GIPO system is designed to work with 
both classical and HTN (Hierarchical Task Networks) 
domains. In both cases, it offers graphical editors for 
domain creation, planners, animators for the derived 
plans and validation tools. The domain models are 
represented mainly in an internal representation language 
called OCL (Object Centered Language) [8], which is, as 
the name implies, object oriented, in accordance with the 
GIPO system. Translators from and to PDDL have been 
developed, which cover only a few parts of the language 
(typed / conditional PDDL).  

SIPE-2 [2] is another system for interactive planning 
and execution of the derived plans. As it is designed to be 
performance-oriented, it embodies many heuristics for 
increased efficiency. Another useful feature is the plan 
execution monitoring, which enables the user to feed new 
information to the system in case there is some change in 
the world. In addition, the system offers graphical 
interfaces for knowledge acquisition and representation, 
as well as plan visualization. SIPE-2 is an elaborate 
system with a wide range of capabilities. However, it 
uses the ACT formalism, which is quite complicated and 
does not correspond directly to PDDL, although PDDL 
descended partially from this formalism, but also from 
other formalisms such as ADL. Therefore, there is no 
way to easily use a PDDL file to construct a domain in 
SIPE-2, or export the domain or problem to PDDL.  

ASPEN is an environment for automated planning and 
scheduling. It is an object-oriented system, originally 
targeted to space mission operations. Its features include 
an expressive constraint modelling language which is 
used for defining the application domain, systems for 
defining activity requirements and resource constraints, 
as well as temporal constraints. In addition, a graphical 
user interface is included, but its use in confined to 



visualization of plans and schedules, in systems where 
the problem solving process is interactive.  

ASPEN was developed for the specific purposes of 
space mission operations and therefore, it has only a few 
vague correspondences to PDDL. Furthermore, it does 
not offer a graphical interface for creating the planning 
domains.  

In conclusion, although the above systems are useful, 
none of them offers direct visual representation of PDDL 
elements, a feature which would make the design very 
efficient for the users already familiar with the language. 
Moreover, even the systems which offer translation to 
PDDL do not cover important features of the language. It 
should be mentioned that a couple of other systems which 
provide user interfaces can be found in the literature, but 
they are not mentioned in this section because of their 
being developed for specific purposes. 

The VLEPpO tool is based on ViTAPlan [3] a 
visualization environment for planning based on the 
HAPRC planning system. VLEPpO extends ViTAPlan in 
numerous ways providing the user with visualization 
capabilities for most of the advanced features of PDDL 
[6] and a more accurate and expressive visual language. 

3. Problem Representation 
A crucial step in the process of solving a search problem 
is its representation in a formal language. The choice of 
the language can significantly affect not only the 
comprehensiveness of the representation but also the 
efficiency of the solver. The PDDL language is nowadays 
the standard for representing planning problems. PDDL is 
partially based on the STRIPS [7] formalism. Since the 
environment presented in this work has a close 
connection with PDDL, a brief description of the most 
important language elements will be provided in the 
following section.  

3.1. The PDDL Definition Language 
PDDL [4] stands for Planning Domain Definition 
Language. Although it was initially designed for planning 
competitions such as AIPS and IPC, it has become a 
standard in the planning community for modelling 
planning domains. PDDL focuses on expressing the 
physical properties of the domain at hand in each 
planning problem, such as the available predicates and 
actions. However, at the same time, there are no 
structures or elements in the language to provide the 
planner with advice, that is, guidelines about how to 
search the solution space, although extended notation 
may be used, depending on the planner.  

Each domain definition in PDDL consists of several 
declarations, which include types of entities, variables, 
constants, literals that are true at all times called timeless, 
and predicates. In addition, there are declarations of 
actions, axioms and safety constraints. These elements 
are explained in the following paragraphs.  

Variables have the same semantics as in any other 
definition language, and are used in conjunction with 
built-in functions for expression evaluation. In more 
recent versions of PDDL, fluents seem to gain 

momentum instead of variables when there is a need for 
values that can change over time, as a result of an action.  

Constants represent objects that do not change values 
and can be used in the domain operators or the problems 
associated with a domain.  

Relations between objects in the domain are 
represented by predicates. A predicate may have an 
arbitrary number of arguments, whose ordering is 
important in PDDL. Predicates are used to describe the 
state of the world at a specific moment. Moreover, they 
are used as preconditions and results of an action.  

Timeless predicates are predicates that are true at all 
times. Therefore, they cannot appear as a result of an 
action unless they also appear among its preconditions. In 
other words, timeless predicates are not affected by any 
actions available to the planner.  

Actions enable transitions between successive 
situations. An action declaration mentions the parameters 
and variables involved, as well as the preconditions that 
must hold for the action to be applied. PDDL offers two 
choices when it comes to defining the results of the 
action: The results can either be a list of predicates called 
effects, or an expansion, but not both at the same time. 
The effects, which can be both conditional and 
universally quantified, express how the world situation 
changes after the action is applied. More specifically, 
inspired by the STRIPS formalism, the effects include the 
predicates that will be added to the world state and the 
predicates that will be removed from the world state.  

Axioms, in contrast to actions, state relationships 
among propositions that hold within the same situation. 
The necessity of axioms arises from the fact that the 
action definitions do not mention all the changes in all 
predicates that might be affected by an action. Therefore, 
additional predicates are concluded by axioms after the 
application of each action. These are called derived 
predicates, as opposed to primitive ones. In more recent 
versions of the language the notion of derived predicates 
has replaced axioms, but the general idea described 
remains the same.  

Safety constraints in PDDL are background goals 
which may be broken during the planning process, but 
ultimately they must be restored. Constraint violations 
present in the initial situation do not require to be fulfilled 
by the planner.  

After having defined a planning domain, problems can 
be defined with respect to it. A problem definition in 
PDDL must specify an initial situation and a final 
situation, referred to as goal. The initial situation can be 
specified either by name, or as a list of literals assumed to 
be true, or a combination of both. In the last case, literals 
are treated as effects; therefore they are added to the 
initial situation stated by name. Again, the closed-world 
assumption holds, unless stated otherwise. Therefore, all 
predicates which are not explicitly defined to be true in 
the initial state are assumed to be false. The goal can be 
either a goal description, using function-free first order 
predicate logic, including nested quantifiers, or an 
expansion of actions, or both. The solution given to a 
problem is a sequence of actions which can be applied to 
the initial situation, eventually producing the situation 
stated by the goal description, and satisfying the 
expansion, if there is one.  



PDDL 2.1 [5] was designed to be backward 
compatible with PDDL 1.2, and to preserve its basic 
principles. It was developed by the necessity for a 
language capable of expressing temporal and numeric 
properties of planning domains.  

The first of the extensions introduced were numeric 
expressions. Primitive numeric expressions are values of 
functions which are associated with tuples of domain 
objects. Further numeric expressions can be constructed 
using primitive ones and arithmetic operators. In order to 
support numeric expressions, new elements were added 
to the language. Functions are now part of the domain 
definition and, as mentioned above, they associate a 
number of objects with an arithmetic value. Moreover, 
conditions were introduced, which are in fact 
comparisons between pairs of numeric expressions. 
Finally, assignment operations are possible, with the use 
of built-in assignment operators such as assign, increase 
and decrease. The actual value for each combination of 
objects given by the functions is not stated in the domain 
definition but must be provided to the planner in the 
problem definition.  

A further extension to PDDL facilitated by numeric 
expressions is plan metrics. Plan metrics specify the way 
a plan should be evaluated, when a planner is searching 
not for any plan, but for the optimal plan according to 
some metric.  

 Other extensions in this version include durative 
actions, both discretised and continuous. Up to now, 
actions were considered instantaneous. Durative actions, 
as the term implies, have a duration which is declared 
along with their definition. Furthermore, as far as 
discretised durative actions are concerned, temporal 
annotations are introduced to their conditions and effects. 
A condition can be annotated to hold at the start of the 
interval, at the end of the interval, or all over the interval 
during which the action lasts. An effect can be annotated 
as immediate, that is, it takes place at the start of the 
interval, or delayed, that is, it takes place at the end of the 
interval.  

In PDDL 3.0 [6] the language was enhanced with 
constructs that increase its expressive power regarding 
the plan quality specification. The constraints and goals 
are divided into strong, which must be satisfied by the 
solution, and soft, which may not be satisfied, but are 
desired. In addition, the notion of plan trajectories is 
introduced, which allows the specification of 
intermediate states that a solution has to reach, before it 
reaches the final state.  

4. The Visual Language 
VLEPpO (Visual Language for Enhanced Planning 
problem Orchestration) is an integrated system for 
visually designing and solving planning problems, 
implemented in Java. It offers an efficient and easy-to-
use graphical interface, as well as compatibility and 
interoperability with PDDL. The main goal during the 
implementation of the graphical component of the tool 
was to keep the interface as simple and efficient as 
possible, but, at the same time, represent accurately and 
flexibly the features of PDDL. The range of PDDL 
elements that can be represented in the tool is quite wide, 

and covers the elements that are used more frequently in 
contemporary planning domains and problems. In the 
following, the features of the tool will be discussed in 
more detail.  

4.1. The Entity – Relation Model 
The entity – relation model is used to design the structure 
of data in a system. Our visual tool employs this well-
known formalism, adapting it to PDDL. Therefore, the 
entities in a planning domain described in PDDL are the 
objects of the domain, while the relations are the 
predicates. These elements are represented visually in the 
tool by various shapes and connections between them.  

A class of objects in the tool is represented visually by 
a coloured circle. A class in PDDL represents a type of 
domain objects or action parameters. From a class the 
user can create parameters of this type in operators, and 
objects of this type in problems, by dragging and 
dropping the class on an operator or a problem, 
respectively. The type of a parameter or object is denoted 
by their colour, which is the same as the corresponding 
class.  

Consider the gripper domain for example, where there 
is a robot with N grippers that moves in a space, 
composed of K rooms that are all connected with each 
other. All the rooms are modelled as points and there are 
connections between each pair of points and therefore the 
robot is able to reach all rooms starting from any one of 
them with a simple movement. In the gripper domain 
there are L numbered balls which the robot must carry 
from their initial position to their destination. 

Following a simple analysis the domain described 
above can be encoded using four classes: robot, gripper, 
room and ball. However, since the domain does not 
support the existence of multiple robots, the class robot 
can be implicitly defined and therefore there is no need 
for it. The three remaining classes are represented in 
VLEPpO using three coloured circles as outlined in 
Figure 1. 

 

 
Figure 1. The classes in Gripper domain. 

 
A relation is represented by a coloured rectangle with 

black outline. A relation corresponds to a domain 
predicate in PDDL and it is used for defining connections 
among classes. The relations in PDDL and therefore in 
VLEPpO are of various arities. Unary relations are 
usually used to define properties of classes that can be 
modeled as binary expressions that are either true or false 
(e.g. closed(Door1)).  

If at least one pair of class and relation is present in 
the domain, the user can add connections between them. 
Each connection represents an argument of a relation, and 
the class shows the type of this argument. A relation may 
have as many arguments as the user wishes, of any type 
the user wishes. The arguments are ordered according to 
the numbers on each connection, because this ordering is 
important to PDDL.  

The Gripper domain has four relations, as depicted in 
Figure 2: a) at-robot, which specifies the position of the 



robot and it is connected only with one instance of room, 
b) at which specifies the room in which each ball resides 
and therefore is connected with an instance of ball and an 
instance of room, c) holding which defines the alternative 
position of a ball, i.e. it is held by the robot and therefore 
it is connected with an instance of ball and an instance of 
gripper and d) empty which is connected only with an 
instance of gripper and states that the current gripper does 
not hold any ball. 

 

 
Figure 2. The relations in the Gripper domain. 

 
Note here that although non-typed PDDL requires 

only the arity for each predicate and not the type of 
objects for the arguments, the interface obliges the user to 
connect each predicate with specific object classes and 
this is used for the consistency check of the domain 
design. According to the design of Figure 2, the arity of 
predicate holding, for example, is two and the specific 
predicate can only be connected with one object of class 
ball and one object of class gripper. 

The aforementioned elements, classes, relations and 
connections combined together form the entity – relation 
model of the data for the planning domain the user is 
dealing with.  

4.2. Representing Operators 
Operators have direct correspondence to PDDL actions, 
which enable transitions between successive situations. 
The main parts of the operator definition are its 
preconditions and results, as well as the parameters. 
Preconditions include the predicates that must hold for 
the action to be applied. Results are the predicates that 
will be added or removed from the world state after the 
application of the action. Operators in the visual tool are 
represented by light blue resizable rectangles in the 
Operator Editor, comprised by three columns. The left 
column holds the preconditions, the right column holds 
the effects, and the middle one the parameters. 

Dragging and dropping a relation on an operator will 
add the predicate to the preconditions or effects, 
depending on which half of the operator the shape was 
dropped on. Parameters can be created in operators by 
dropping classes on them. Adding a connection in the 
ontology enables the user to add corresponding 
connections in the operators. Other elements that can be 
imported in operators will be discussed in more detail in 
the section about advanced features.  

For example, in the gripper domain there are three 
operators: a) move which allows the robot to move 
between rooms, b) pick which is used in order to lift a 
ball using a gripper and c) drop which is the direct 
opposite of pick and is used to leave a ball on the ground 
(Figure 3) 

 

 
Figure 3. The operators in the Gripper domain. 

 
The default view for an operator is in preconditions / 

results view which follows a declarative schema that is 
different from the classical STRIPS/PDDL approach. 
However, there is a direct way to transform definitions 
from one approach to the other.  

Although the preconditions / results view is more 
appropriate for visualizing operators, the system gives the 
user the option to use the classical add / delete lists view, 
therefore the STRIPS formalism is accommodated as 
well. If selected, the column on the left, as before, shows 
the preconditions that must hold for the action to be 
executed, but the column on the right shows the facts that 
will be added and deleted from the current state of the 
world upon the execution of the action.  

 

 
Figure 4. Pick operator in add/delete lists view. 

 
As an example, the pick operator of the Gripper 

domain is considered. According to the STRIPS 
formalism, the operator is defined by the following three 
lists, also depicted in Figure 4. 

 
prec = {empty(GripperObj1), at-robot(RoomObj1),   

at(BallObj1,RoomObj1)} 
add = {holding(GripperObj1, BallObj1)} 
del = {empty(GripperObj1), at(BallObj1, RoomObj1)} 
 
The equivalent operator in Preconditions / Results 

view is presented in Figure 5. 
 

 
Figure 5. Pick operator in preconditions / results view. 

 



4.3. Representing Problems 
For every domain defined in PDDL a large number of 
problems that correspond to this domain can also be 
defined. Problem definitions state an initial and a goal 
situation, and the task of a planner is to find a sequence 
of operators that, if applied to the initial situation, will 
provide the goal situation. The problem shape in the 
visual tool is much like an operator in form, but different 
semantically. It is represented by a three-column 
resizable rectangle in the Problem Editor. Left column 
holds the predicates in the initial state, right column holds 
the predicates in the goal state, and middle column holds 
the objects that take part in the problem definition.  
 

 
Figure 6. A Problem instance of the Gripper domain. 

 
Figure 6 presents a problem instance of the gripper 

domain, which contains two rooms (Bedroom and 
Kitchen), one ball (Ball1) and the robot has two grippers 
(rightGripper and leftGripper). The initial state of the 
problem defines the starting locations of the robot and the 
ball (Kitchen and Bedroom respectively) and that both 
grippers are free. The goals specify that the destination of 
both the ball and the robot is the kitchen. 

4.4. Advanced Features 
The basic PDDL features described above are adequate 
for simple planning domains and problems. However, the 
language has many more features divided into subsets 
referred to as requirements. An effort has been made in 
order for the visual tool to embody the most significant 
and frequently used among them.  

An advanced design element offered by the system, 
which has direct representation in PDDL, is a constant. 
The constant is visually represented similarly to a class, 
but it is enhanced with a red circle around it to 
discriminate it from a class. The constant must be of a 
type, and the tool enables the user to drag and drop it on a 
class to denote that. Constants can be used either in an 
operator or in a problem, where they are treated similarly 
to parameters or objects, respectively.  

A derived predicate is another advanced PDDL feature 
that is represented by a group of design elements in the 
visual tool. The term refers to predicates that are not 
affected by operators, but they are derived by other 
relations using a set of rules. Derived predicates in fact 
existed in the first version of the PDDL language as well, 
under the notion of axioms. Visually, they are represented 
by a rounded rectangle with a specific colour, but they 
are not complete unless they are enhanced with an 
AND/OR tree that indicates the way they are derived by 
other relations. Consequently, AND, OR and NOT nodes 
for the construction of the tree are also offered as design 

elements. In the current implementation, AND and OR 
nodes are binary, that is, they accept only two possible 
arguments, while NOT nodes are by default unary. Each 
of the node arguments can be either another node of any 
type, or a relation. An example of a derived predicate is 
depicted in Figure 7. 

 

 
Figure 7. A derived predicate with AND/OR tree. 

 
Among the advanced features is the option to indicate 

that a predicate is timeless, that is, the predicate is true at 
all times. This operation involves a lot of validity checks, 
which will be explained in the corresponding paragraph.  

Another PDDL feature incorporated in the tool are 
numerical expressions. In order for numerical expressions 
to function properly, the definition of a number of other 
elements is involved. Consequently, a combination of 
design elements in each frame is used. First of all, in the 
ontology frame the user can import functions, which are 
represented by rectangles with double outline. These 
functions may or may not have arguments. As with 
simple relations, functions can be dragged on operators. 
However, in order to appear in the PDDL description of 
an operator, they must be involved in a condition or in an 
assignment. The next step is to actually import conditions 
and assignments which involve these functions in the 
operator. In that case, a dialog box appears facilitating the 
import of a condition or an assignment, by showing all 
the available options that the user can select among. 
Furthermore, for each function imported in the tool, a 
new rectangle appears in the problem frame, which 
corresponds to this function. This rectangle is used to 
declare the initial values of the function for the problem 
at hand. 

Furthermore, the system supports discretised durative 
actions. The definition of a durative action includes 
setting the duration of an operator, in combination with 
temporal annotations (Figure 8). In this case, the action is 
considered to last a specific period of time, while the 
preconditions can be specified to hold at the beginning of 
this period, at the end of this period, or all over the period 
(combination of these choices is also possible). Effects 
can be immediate, that is, happen at the beginning of the 
action, or delayed, that is happen at the end of the action.  

 

 
Figure 8. An example of a durative action. 



 
Finally, a very useful element for problem designing is 

maps. Maps represent a special kind of relations that have 
exactly two arguments of the same type, and are expected 
to have many instances in the initial state of a problem 
(Figure 9). For each relation that fulfills these conditions 
a map can be created. Objects which take part in the 
instances of the relation can then be dragged on the map, 
and connections can be created between them. Each of 
these connections represents an instance of the relation 
that the map corresponds to. In conclusion, maps do not 
have an exact representation to PDDL, but they express a 
part of the initial state of the world, thus making the 
problem shape more readable. The use of maps is not 
mandatory, as the same relations can be simply 
represented in the problem shape. 

 

 
Figure 9. A map for the relation connected(C1, C2). 

4.5. Syntax and Validity Checking 
A very important aspect in every tool for designing and 
editing planning domains is syntax and validity checking. 
Planning domains have to be checked for consistency 
within their own structures, and planning problems have 
to be checked for consistency and correspondence to the 
related domains. This visual tool attempts to detect 
inconsistencies at the moment they are created and notify 
the user about them, before they propagate in the domain. 
In the remainder of this paragraph several examples will 
be given, in order to illustrate the validity checking 
processes of the system.  

Whenever the user attempts to insert a new connection 
in an operator or in a problem, necessary checks are 
performed and if a corresponding connection cannot be 
found in the ontology an appropriate error message is 
shown. Special care must be taken to verify that the types 
of parameters and objects match to the types of 
arguments of the predicates.  

As already mentioned, the system supports timeless 
predicates, which are, by definition, true at all times. 
Therefore, they are allowed to appear in the preconditions 
of an operator, but not in the add or delete lists. As a 
consequence, if the user tries to add a timeless predicate 
in the preconditions part of an operator, it will 
automatically appear in the effects part, so the add and 
delete lists will not be affected. Furthermore, if the user 
tries to set a predicate timeless, checks will be performed 
to determine if this operation is allowed. Finally, timeless 
predicates are not allowed to appear in a problem. In all 
above cases, error messages occur in order to warn the 
user and help them correct the domain inconsistencies.  

Another example is that of constants. Checks are 
performed to confirm that the class of a constant has 
already been defined before the user attempts to use the 
constant in an operator or a problem. Furthermore, 

additional checks are performed about the types of 
arguments, similar to those performed for simple objects.  

4.6. Translation to and from PDDL 
The capability to export the domains and problems 
designed in the tool to PDDL constitutes another 
important feature. All of the design elements that the user 
has imported in the domain, such as predicates and 
operators, along with comments, are exported to a PDDL 
file, which is enhanced with the appropriate requirements 
tag. The user is offered the option to use typing, 
therefore, the same domain can produce two different 
PDDL files, one with the :typing requirement and one 
without it. Details about exporting are presented in the 
remainder of the paragraph.  

Despite the fact that a class in the visual tool always 
represents the same notion, that is, the type of domain 
objects or parameters, it takes different forms when it 
comes to exporting the domain. In case the requirement 
:typing is declared, the class name is included in the 
(:types ) construct of the domain definition, and for each 
object, parameter and constant a type must be declared. 
In case typing is not used, classes are treated as timeless 
unary predicates and appear in the corresponding part of 
the domain definition. In addition, for each parameter in 
an operator, a precondition that denotes the type of the 
parameter must be added in the PDDL definition, 
although it does not appear visually in the tool. Likewise, 
for each object, a new initial literal denoting the type of 
this object must be included in the problem definition. 

The elements in the Ontology Editor are combined 
together in order to formulate the domain constructs in 
the syntax that the language imposes. For example, 
relations, connections and, if typing is used, classes are 
combined to formulate the predicates construct. Likewise, 
functions and derived predicates constructs are formed. 
As far as constants are concerned, they may appear in the 
place of parameters in operators and objects in problems, 
and they also appear in the special construct (:constants ) 
in the domain definition.  

Exporting the operators is quite more complicated, 
because a combination of several elements of the 
Operator Editor and the Ontology Editor is needed. Slight 
changes occur to an operator definition depending on 
whether the :typing requirement is declared.  

Finally, exporting the problems is quite similar to 
exporting the operators, but the problems are stored in a 
different PDDL file. Therefore, numerous problems can 
be defined for the same domain. If maps are used, care 
must be taken to include the information they embody in 
the list of predicates included in the initial state. 
Furthermore, if functions are used, their initial values 
provided by the user in the Problem Editor will be part of 
the declaration of the initial state of the problem, in the 
corresponding construct. 

The visual tool also offers the feature of importing 
planning domains and problems expressed in PDDL, 
visualizing them, and thus enabling the user to 
manipulate them. However, importing PDDL is subject to 
some restrictions. The most important is that the domains 
and problems must declare the :typing requirement. If no 
typing is used, syntax is not enough, and semantic 



information is necessary in order to discriminate types of 
objects from common unary predicates.   

4.7. Interface with Planning Systems 
As the tool is intended to be an integrated system not 
only for designing but for solving planning problems as 
well, an interface with planning systems is necessary. 
This is achieved by providing the ability to discover and 
communicate with web services which offer 
implementations of various planning algorithms. 
Therefore, a dynamic web service client has been 
developed as a subsystem. The requirement for flexibility 
in selecting and invoking a web service justifies the 
decision to implement a dynamic client instead of a static 
one. Therefore, the system can exploit alternative 
planning web services according to the problem at hand, 
as well as cope with changes in the definitions of these 
web services.  

The communication with the web services is 
performed by means of exchanging SOAP messages, as 
the web service paradigm dictates. However, in a higher 
level, the communication is facilitated by the use of the 
PDDL language, which constitutes the common ground 
between the visual tool and the planners. An additional 
advantage of using PDDL is that the visual tool is 
released by the obligation to determine the PDDL 
features that a planner can handle, thus leaving each 
planning system to decide for itself.  

The employment of web services technology for 
implementing the interface results in the independency of 
the visual tool from the planning or problem solving 
module. Such a decoupling is essential since new 
planning systems which outperform the current ones are 
being developed. Each of them can be exposed as a web 
service and then invoked for solving a planning problem 
without any further changes to the visual tool or the 
domains and problems already designed and exported as 
PDDL files. 

5. Conclusions and Future Work 
In this paper a visual tool for defining planning domains 
and problems was proposed. The tool offers an efficient 
user interface, as well as interoperability with PDDL, the 
standard language for planning domain definition. The 
elements represented in the tool cover a wide range of the 
language, while the user is significantly facilitated by the 
validity checks performed during the design process. The 
use of the tool is not confined to designing planning 
problems, but the ability to solve them by invoking 
planners implemented as web services is offered as well. 
Therefore, the tool is considered an integrated system for 
designing and solving planning problems.  

Our future goals include the extension of the tool in 
order to represent even more complex PDDL language 
elements, as well as other planning approaches, such as 
HTN (Hierarchical Task Network) planning. Such an 
extension is believed to broaden the range of real world 
problems that can be represented and solved by the tool. 
Visual representation of the produced plans, along with 
plan metrics are also among our imminent goals.  
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