
Planning-based Scheduling
for SLA-awareness

and Grid Integration∗

Dominic Battré and Matthias Hovestadt
and Odej Kao

Technical University of Berlin, Germany
{battre,maho,okao}@cs.tu-berlin.de

Axel Keller and Kerstin Voss
Paderborn Center for Parallel Computing

University of Paderborn, Germany
{kel,kerstinv}@upb.de

Abstract

Service level agreements (SLAs) are powerful instru-
ments for describing all obligations and expectations
in a business relationship. It is of focal importance
for deploying Grid technology to commercial applica-
tions. The EC-funded project HPC4U (Highly Pre-
dictable Clusters for Internet Grids) aimed at introduc-
ing SLA-awareness in local resource management sys-
tems, while the EC-funded project AssessGrid intro-
duced the notion of risk, which is associated with ev-
ery business contract. This paper highlights the concept
of planning based resource management and describes
the SLA-aware scheduler developed and used in these
projects.

Introduction
In the academic domain Grid computing is well known, if
not even established. Researchers are using Grid middle-
ware systems like Unicore or the Globus Toolkit to create
virtual organizations, dynamically sharing the transparent
access to distributed resources. Grid computing started un-
der the solely technical question of how to provide access to
distributed high performance compute resources. Thanks to
numberless projects and initiatives, funded by national and
international bodies worldwide, Grid systems have signifi-
cantly evolved meanwhile, making Grid technology adopt-
able in a large variety of usage scenarios.

Companies like IBM, Hewlett Packard, and Microsoft
have recognized the potential of Grid Computing already in
the early days of the Grid development, providing noticeable
efforts on research and the support of research communities.
However, the Grid did not really enter the commercial do-
main until the present day. Already in 2003 the European
Commission (EC) convened a group of experts to clarify the

∗This work has been partially supported by the EU within the
6th Framework Programme under contract IST-031772 ”Advanced
Risk Assessment and Management for Trustable Grids” (Assess-
Grid) and IST-511531 ”Highly Predictable Cluster for Internet-
Grids” (HPC4U)

demands of future Grid systems and which properties and
capabilities are missing in current existing Grid infrastruc-
tures. Their work resulted in the idea of the Next Generation
Grid (NGG) (Priol & Snelling 2003; Jeffery (edt.) 2004;
De Roure (edt.) 2006). This work clearly identified that
guaranteed provision of reliability, transparency, and Qual-
ity of Service (QoS) is an important demand for successfully
commercialize future Grid systems. In particular, commer-
cial users will not use a Grid system for computing business
critical jobs, if it is operating on the best-effort approach
only.

In this context, a Service Level Agreement (SLA) is a
powerful instrument for describing all expectations and obli-
gations in the business relationship between service con-
sumer and service provider (Sahai et al. 2002). Such an
SLA specifies the QoS requirement profile of a job. At the
Grid middleware layer many research activities already fo-
cus on integrating SLA functionality.

The EC-funded project BeInGrid (Business Experiments
in Grid (BeInGrid), EU-funded Project) aims at fostering
the commercial uptake of the Grid. BeInGrid encompasses
numerous business experiments, where Grid technology is
to be introduced to specific business domains. Successful
experiments reached the goal of proving the benefit of ap-
plying Grid technology for commercial customers. Accord-
ing to the NGG, a major objective in these BeInGrid ex-
periments is the provision of reliability as contractually ex-
pressed in negotiated SLAs.

Current resource management systems (RMS) are work-
ing on the best-effort approach, not giving any guarantees
on job completion to the user. Since these RMS are offering
their resources to Grid systems, Grid middleware has only
limited means in fulfilling all terms of negotiated SLAs.

For closing this gap between the requirements of SLA-
enabled Grid middleware and the capabilities of RMS,
HPC4U (Highly Predictable Cluster for Internet-Grids
(HPC4U)) started working on an SLA-aware RMS, uti-
lizing the mechanisms of process-, storage- and network-
subsystems for realizing application-transparent fault toler-

ance. As central component of the HPC4U project the RMS
OpenCCS has been selected, since its planning based na-
ture seemed to be well-suited for realizing SLA-awareness.
Within the project all features required for SLA-awareness
and SLA-compliance have been developed, e. g. an SLA-
aware scheduler, mechanisms for transparent checkpointing
of parallel applications, or the negotiation of new SLAs.

The HPC4U project will end 2007. The outcome of the
project allows the Grid to negotiate on SLAs with the RMS.
The RMS is only allowed to accept a new SLA, if it can en-
sure its fulfillment. For this, the RMS provides mechanisms
like process and storage checkpointing to realize fault toler-
ance and to assure the adherence with given SLAs even in
the case of resource failures. The HPC4U system is even
able to act as an active Grid component, migrating check-
pointed jobs to arbitrary Grid resources, if that allows the
completion of the job according to its SLA.

In this paper we first highlight the concept of plan-
ning based resource management, a fundament for realizing
SLA-aware RMS. The main part of the paper focuses on the
specific demands of different job types on the scheduling as
well as the scheduling impact of a Grid integration. The pa-
per ends with an overview about related work and a short
conclusion.

Planning Based Resource Management
Compute clusters have a long tradition beginning in the early
1970s with the UNIX operating system (Pfister 1997). Since
then many resource management systems evolved, bringing
functionality targeted to their specific usage domain, e. g.
capabilities on load balancing. Classic systems are mostly
used in capacity computing environments, computing large
amounts of data in time uncritical context.

Most of the resource management systems available to-
day can be classified as queuing based systems. The sched-
uler of these RMS is operating one or more queues, each
of them with different priorities, properties, or constraints
(e. g. high priority queue, weekend queue) (Windisch et al.
1996). Each incoming job request is assigned to one of these
queues. The scheduling component of the RMS then orders
each queue according to the strategy of the currently ac-
tive scheduling policy. A very basic strategy is FCFS (First
Come, First Served), assigning resources to jobs according
to the job’s entry time into the system. Modern RMS are
also using priority queues, reflecting the status of the par-
ticular jobs. However, resources are assigned to jobs from
the queue head, if the system has enough free resources. If
this results in idle resources, backfilling strategies can be ap-
plied for selecting matching jobs from one of the queues for
immediate out-of-order execution.

Many different strategies on backfilling have evolved,
each optimizing according to a specific objective or usage
environment. Commonly known strategies are conservative
and EASY backfilling. Both strategies only differ in their
way of selecting jobs for backfilling. While conservative
backfilling demands that the backfilled job may not delay
other waiting requests (Mu’alem & Feitelson 2001), EASY
backfilling only demands the queue head’s jobs not to be de-
layed (Lifka 1995). For deciding about the impact of a back-

filling decision on the delay of jobs in the queues, the sys-
tem has to have runtime information of these jobs. Hence,
specific backfilling strategies (like EASY and conservative
backfilling) can only be applied to environments where these
statements are available.

By switching the focus from classic high throughput com-
puting to computation of deadline bound and business criti-
cal jobs, also the demand on the RMS and its scheduler com-
ponent changes. If negotiating on service level agreements,
the system has to know about future utilization, i. e. whether
it is possible to agree on finishing the new job as requested.

Planning is an alternative approach on system schedul-
ing (Hovestadt et al. 2003). In contrast to queuing, planning
does not only regard currently free resources and assigns
them to waiting jobs. Instead, planning based systems also
plan for the future, assigning a start time to all waiting re-
quests. This way a schedule is generated, encompassing all
jobs in the schedule. Having such a schedule available, the
system scheduler is able to determine which jobs are sched-
uled to be executed at what time. Table 1 depicts the most
significant differences between queuing and planning based
systems.

A prerequisite for planning based resource management
system is the availability of run time estimates for all jobs.
Without this information the scheduler has no means to de-
cide how long a specific resource will be used by a job.
Hence, the scheduler could not assign a start time to jobs
following in the schedule. In case the user underestimated
the runtime, the system can try to extend the runtime of this
job. If this is not possible because other jobs are scheduled
on the resource, having a high priority so that they cannot be
pushed away, the job has to be terminated or suspended in
order to have the resources available for other jobs. This
may be considered as a drawback of planning based re-
source management. A further drawback regards the cost
of scheduling. The scheduling process itself is significantly
more complex than in queuing based systems.

The novel approach on scheduling in planning based re-
source management systems allows the development of new
scheduling policies and paradigms. Beside the classic poli-
cies like FCFS, SJF (Shortest Job First), or LJF (Longest Job
First), novel policies could help to realize new objectives or
new functionalities. We are convinced that planning based
resource management is a good starting point for realizing
SLA-awareness.

Scheduling for Typical Scenarios

In this section typical scenarios will be described. Starting
with the submission of a regular local job, the degree of ser-
vice quality will increase with each scenario. For realizing
SLA-awareness in the EC-funded projects HPC4U and As-
sessGrid, the resource management system OpenCCS has
been used. OpenCCS is a planning based resource man-
agement system developed at the University of Paderborn.
Details on OpenCCS can be found in (Keller & Reinefeld
2001).

queuing system planning system
planned time frame present present and future
reception of new request insert in queues replanning
start time known no all requests
runtime estimates not necessary1 mandatory
reservations difficult yes, trivial
backfilling optional yes, implicit
examples PBS, NQE/NQS, LL CCS, Maui Scheduler2
1 exception: backfilling
2 Maui may be configured to operate like a planning system (Jackson, Snell, & Clement 2001)

Table 1: Differences of queuing and planning systems (Hovestadt et al. 2003)

Local Job Submission
The local job submission is the classic case of job submis-
sion, where a user connects locally to the resource manage-
ment system and submits a new job. Since OpenCCS is plan-
ning based, it requires all users to specify the expected dura-
tion of their requests. The OpenCCS planner distinguishes
between Fix-Time and Var-Time resource requests. A Fix-
Time request reserves resources for a given time interval. It
cannot be shifted on the time axis. In contrast, Var-Time re-
quests can move on the time axis to an earlier or later time
slot (depending on the used policy). Such a shift on the time
axis might occur when other requests terminate before the
specified estimated duration.

The Planning Manager (PM) is a central component of
the OpenCCS architecture, responsible for computing a
valid, machine-independent schedule. Likewise, the Ma-
chine Manager (MM) is responsible for machine-dependent
scheduling. The separation between the hardware indepen-
dent PM and the system specific MM allows to encapsu-
late system specific mapping heuristics in separate modules.
With this approach, system specific requests (e. g. for I/O-
nodes, specific partition topologies, or memory constraints)
may be considered. One task of the MM is to verify if
a schedule received from the PM can be realized with the
available hardware. The MM checks this by mapping the
user given specification with the static (e. g. topology) and
dynamic (e. g. PE availability) information on the system re-
sources. Since OpenCCS is a planning-based RMS, the PM
generates a schedule for both current and future resource us-
age. Therewith it supports classic scheduling strategies like
FCFS, SJF, and LJF, considering aspects like project limits
or system wide node limits. The system administrator can
change the strategy during runtime.

The PM manages two lists while computing a schedule,
which are sorted according to the active policy.

• The New list(N-list): Each incoming request is placed in
this list and waits there until the next planning phase be-
gins.

• The Planning list(P-list): These jobs have already been
accepted by the system. The PM takes jobs from this list
to generate the system schedule.

The PM first checks if the N-list has to be sorted accord-
ing to the active policy (e. g. SJF or LJF). It then plans all

elements of N-list. Depending on the request type (Fix-Time
or Var-Time) the PM calls an associated planning function.
For example, if planning a Var-Time request, the PM tries to
place the request as soon as possible. The PM starts in the
present and moves to the future until it finds a suitable place
in the schedule.

Figure 1 depicts a typical schedule situation in a planning-
based RMS. If a user submits a new job request, the sys-
tem is able to match the request properties with the current
schedule, i. e. the PM and MM components of OpenCCS are
checking whether it is possible to generate a new valid sys-
tem schedule. In this case, the user’s job request is accepted,
directly returning the time when the job will be allocated at
the latest. If the request cannot be realized (e. g. because the
user requested for a time slot with insufficient available re-
sources), the job is rejected. In this situation, the user can
query the system for the earliest possible time to start the
job request.

Deadline bound Jobs
Deadline bound jobs have to be completed until a specific
time at the latest. A classic example for such a deadline
bound job is a weather service which has to complete the
computation of a weather forecast until 5am, since the fore-
cast is to be broadcasted on TV at 6am. However, deadlines
are also of particular importance for executing workflows,
where the workflow is executed in multiple branches in par-
allel and where the result needs to be joined until a given
time, so that also the overall workflow result can be deliv-
ered in time.

From the resource management system’s point of view,
a deadline bound job is a Var-Time resource requests. The
user has to provide three key parameters:

• the number of required resources

• the duration of job execution

• the deadline for job completion

The deadline bound job is a specific case of a Var-Time re-
source request, since it may not shift arbitrarily on the time
axis, but only within the boundaries given by the earliest
possible start time and by the deadline. This constraint has
to be regarded during the scheduling process, assigning re-
sources early enough to allow the job to complete in time.

Figure 1: Schedule in a planning based RMS

At this, the latest time for resource allocation conforms to
the specified deadline minus the user’s specified runtime.

In the case of deadline bound jobs, the correctness of the
estimated runtime of the job is crucial for the fulfillment of
the deadline. It is in the responsibility of the user to give
a correct estimate. If the provider assigns a resource at the
latest possible start time, it is the user’s responsibility if the
job did not complete in time, because he underestimated the
job’s runtime. However, users tend to overestimate the run-
time of their jobs to prevent such a situation. Hence in the
typical situation the job ends long before the estimated (and
scheduled) end of time. Generally assuming the specified
runtime to be overestimated allows to postpone the point of
latest ressource allocation by the assumed amount of over-
estimation. However, this strategy is risky since jobs with
correctly estimated runtimes will not be able to finish until
their deadline.

Due to the nature of deadline bound jobs, the sched-
uler has to place them after placing all Fix-Time resource
requests, but before placing regular Var-Time resource re-
quests. At this, it follows the main scheduling policy, e. g.

FCFS. The scheduler executes the following steps on an ini-
tially empty schedule, trying to place Var-Time resource re-
quests at the earliest possible place in the new schedule:

1. sort all requests according to the current policy
2. place all Fix-Time resource requests (from first P-list,

then from N-list)
3. place all deadline bound Var-Time resource requests (first

from P-list, then from N-list)
4. place all remaining Var-Time resource requests (first from

P-list, then from N-list)

Placing deadline bound Var-Time jobs according to poli-
cies like FCFS does not always result in a good schedule
quality. Placing jobs in front of the schedule just because
they arrived at the system at an early point of time (i. e.
blocking valuable resources with this job) prevents execut-
ing other jobs with perhaps even nearer deadlines. Hence,
other strategies could be applied when placing these dead-
line bound requests.

As an alternative approach, Deadline Monotonic Schedul-
ing (DMS) (Audsley 1993) could be applied here, where the

0 2 4 6 8 10

40
00

60
00

80
00

10
00

0
12

00
0

Number of Checkpoints

O
ve

ra
ll

T
im

e
(s

ec
.)

●
●

●
●

●
●

●
●

●
●

●

● no failures
one failure
two failures

Figure 2: Impact of Checkpoint Frequency on Runtime

priority increases the nearer it gets to its deadline, i.e. the
latest possible start time here. By applying Earliest Dead-
line First (EDF) (Buttazzo & Stankovic 1993), the scheduler
would sort all deadline bound jobs by increasing remaining
time until their latest possible point of start. This ensures
that valuable resources are first used for urgent jobs.

Resource Failures and Fault Tolerance
A cluster system consists of multiple nodes. Partitions of
these nodes are assigned to running applications, so that
multiple applications are executed in parallel. If one of the
nodes of a partition fails (e. g. due to a power outage), the
execution of the application running on this node typically
is aborted. In case of parallel applications, not only the pro-
cesses of the application running on the affected node are
aborted, but the entire parallel application is affected.

Cluster systems are used for speeding up the execution
time of complex problems, but with an increasing grade of
parallelism and an increasing runtime of the job (due to the
complexity of the problem), also the possibility of a job
crash increases, because only one of the nodes has to fail
during the execution. This is a real problem for jobs run-
ning on dozens or hundreds of nodes over multiple days or
weeks.

In the EC-funded project HPC4U mechanisms have been
developed for transparently checkpointing parallel applica-
tions, i. e. all mechanisms can be applied without any mod-
ification of the job or relinking of the binary, even without
having the job owner to take any notice of the mechanisms
at all. This mechanism requires a patch to be applied to the
Linux kernel, so that the process itself then runs inside a vir-
tual bubble. At checkpoint time, the entire bubble is saved.
For parallel applications, also the MPI implementation has

to be enhanced, so that a consistent image of all parallel in-
stances can be generated. For this purpose, the cooperative
checkpoint protocol (CCP) has been developed.

Beside this stack of tools the project also evaluated other
existing checkpointing solutions. At this, fairly good expe-
riences also have been made with the tools Berkeley Check-
pointing and Restart (BLCR) and LAM-MPI. Even if par-
allel checkpointing is possible, these tools have significant
functionality drawbacks compared to the HPC4U stack.

By periodically checkpointing an application, the job can
be restarted from the latest checkpointed state. Hence, only
the computation steps after the latest checkpoint has to be
repeated, instead of restarting the job from scratch. Even if
the mechanisms have negligible impact on the job execution
performance and the checkpointing of large jobs can be exe-
cuted in a few seconds or minutes, this has to be considered
at scheduling time.

Firstly, the effort for performing checkpoints enters the
computation for the latest possible point of start. Since the
time increases with the number of nodes and the amount
of used memory, the system can predict quite exactly the
time required for each checkpoint operation. The number of
checkpoints determines the maximum time that can be lost
due to a resource outage. It is a trade-off between reducing
the worst-case loss of computational results and reducing the
overhead of checkpointing.

The impact of the chosen checkpoint frequency on the
runtime of a job is depicted in Figure 2. It assumes a job
having a total runtime of one hour and a duration of each
checkpoint of two minutes. The three curves represent the
number of assumed resource outages. The curve depicting
the case of no resource outages occurring has its minimum in
n = 0, having no checkpoints generated. Since each check-
point generation delays the completion of the job, each gen-
erated checkpoint is unnecessary overhead in the case of no
resource outages. If no resource outages are expected or if
a job restart is acceptable (like for best effort jobs), the best
option is to execute without checkpoints.

In the case of resource outages occurring, things look dif-
ferent. An increasing number of checkpoints decreases the
amount of lost compute steps lost through a resource outage,
since the system is able to resume from the latest check-
pointed state. The curves have their minima at the point of
optimal trade-off between lost computation power and addi-
tional effort for executing the checkpoint operation. More-
over this number increases on increasing the number of ex-
pected outages. Where it is optimal to generate approxi-
mately four checkpoints in the case of one expected outage,
it is approximately 7 in the case of two outages.

Secondly, the scheduling policy has to be adopted for han-
dling the case of failures. If a job is affected by a resource
outage, the entire job (not only the part of the failed node) is
removed from the schedule. It leaves the P-list and is added
to the Defect list(D-list), encompassing all jobs affected by
failures.

Then the scheduler starts the computation of a new sys-
tem schedule, following the policies described above, plac-
ing jobs from D-list after jobs from P-list, but before placing
jobs from N-list. This impacts new jobs (which may be re-

jected now), but does not impact other already planned jobs.
However, if applying policies like DMS, the time until the
job’s latest point of start has to be recomputed, not taking
the originally user specified job runtime into account, but
the remaining runtime at the time of the last checkpoint.

The impact of resource failures on the system schedule
can be reduced by introducing a failure horizon. A resource
management system uses its internal monitoring mecha-
nisms to detect problems within the cluster as soon as possi-
ble. If such a problem can not be solved by internal recovery
mechanisms of the RMS itself, the cluster administrators are
informed. The failure horizon represents the typical time re-
quired by administrators to solve such reported errors (e. g.
12 hours). The RMS only moves those jobs to the D-list
which are planned on the defect resources within the fail-
ure horizon, assuming that the resource is available again at
allocation time of all other jobs.

SLA Negotiation
The process of SLA-negotiation differs significantly from
the regular job submission interface of a resource manage-
ment system. There, a user submits his job description, di-
rectly getting an information about rejection or acceptance
in return. In the latter case, the job has already entered the
system schedule.

In case of service level agreements, a multi-phase nego-
tiation is conducted before the job finally enters the system.
The GRAAP working group (MacLaren 2003) of the Open
Grid Forum (OGF) (Open Grid Forum) described such a
negotiation process in the WS-Agreement Negotiation spec-
ification (Andrieux et al. 2004). Here the provider answers
a job request with an SLA offer. The user has to commit to
this offer before the SLA is actually enforced.

For the scheduling component of an RMS this negotiation
process has significant implications: once the RMS has is-
sued an SLA offer, it has to adhere to this offer until it has
been committed or canceled by the user. Timeout mecha-
nisms ensure that SLA offers automatically expire after a
given time period (e. g. some seconds). However, at least
during this timeout period the system has to reserve system
capacity for the job in negotiation.

For this purpose, a novel list is introduced into the system:
the SLA-offer list(O-list). Jobs from this list are scheduled
within the regular scheduling process in the order P-list be-
fore D-list before O-list before N-list. It is preferable to priv-
ilege jobs from D-list than O-list, since jobs in O-list are not
yet affirmative, so that the system would not actually break
an SLA-contract but only an SLA-offer. Again, the general
policy of handling failures is to not affect other jobs, to keep
the implication of a failure as local as possible. This also
implies, that given SLA-offers should be kept if possible.

Data Staging of Grid Jobs
A second significant difference between locally submitted
jobs and jobs coming from the Grid is the aspect of data
staging. In case of local jobs it can be assumed that all
necessary job data (e. g. the application binary and all in-
put data) are available on a local computer system, so that
fast local network connections can be used for transferring

the data to the compute cluster. The time necessary for this
can be neglected in general. In case of Grid jobs, this so
called stage-in process has to be executed using slow WAN
connections.

For this reason, the Grid user does not only have to spec-
ify parameters like estimated runtime, number of nodes, or
deadline in the negotiation process, but also the earliest time
for starting. The deadline can only be met if both the com-
putation and the stage-in can be completed until this time.
Since providers are usually connected over high bandwidth
connections to the Internet, the bottleneck usually is the In-
ternet network connection of the customer. Knowing the
total amount of data that needs to be staged-in, he has to
estimate the time required for transferring it over the Inter-
net. The earliest point for starting the job is the time where
the SLA has been committed (i. e. when the stage-in process
could start) plus the total transfer time.

As long as the schedule has sufficient free space, the job
may directly start after the estimated duration of the stage-in
process. Overestimating the time for stage-in is uncritical,
because this would only result in having the data available
at RMS side earlier than expected. In contrast, if the user
underestimated the stage-in time, the RMS is unable to start
the job at the planned time. This directly threatens the ful-
fillment of the deadline, if the runtime is estimated correctly
and there is no buffer between the planned end of the job
and the deadline. The RMS has two options to handle such
a situation, differing significantly in their demands on sys-
tem management:

1. keeping the partition available for the job, waiting the start
until stage-in is completed

2. assigning other waiting jobs to the pending job’s re-
sources, executing the pending job as soon as stage-in is
completed
The first option does not require any specific RMS mech-

anisms, since the nodes of the pending job’s partition simply
remain idle. As soon as the stage-in process has been com-
pleted, the RMS starts the job. Even if this option is sim-
ple and easily manageable, it has two major disadvantages.
First, the job is in danger of not finishing until the planned
end, since the allocation time (i. e. the estimated runtime)
is running while nodes are idle. Secondly, the overall clus-
ter utilization is impacted, because nodes run idle instead of
computing jobs.

The second option solves both of these problems, since
nodes are used for computing other jobs and allocation time
only starts when stage-in is completed. However, this option
demands the system to support preemption of jobs. For this,
we again use the checkpointing mechanisms developed in
the HPC4U project. Since this solution provides transparent
checkpointing for parallel applications, we are able to real-
ize preemption for parallel jobs. For preempting a job, the
job is first checkpointed and then stopped.

If other jobs are started in the partition of the pending job,
these jobs have to be preempted. The scheduler is now able
to rebuild the schedule after:
• subtracting the already executed runtime of the preempted

jobs from their estimated runtime.

• setting the end of node allocation to the minimum of spec-
ified deadline and current time plus estimated job runtime.

This way, the job would have its entire estimated runtime
available, as long as the delay in stage-in is not larger than
the original buffer between end of computation and dead-
line. It has to be noted, that the deadline compliance of the
preempted jobs is not endangered, because they already ex-
ecuted the time that they now get started later.

Accepting or Rejecting New Job Requests
In the previous sections it has been outlined how the de-
mands on scheduling and system management increase with
demands coming from deadline support or Grid interface.
However, the general procedure of accepting or rejecting
new job requests remains the same.

If a resource request is submitted to the RMS, the sched-
uler tries to build a new valid schedule that contains this new
request. In case the scheduler succeeds, e. g. if the deadline
of the new job can be realized without violating any other
Fix-Time resource request or deadline bound Var-Time re-
quest, the new request is accepted by the system.

Related Work
The worldwide research in Grid computing resulted in nu-
merous different Grid packages. Beside many commodity
Grid systems, general purpose toolkits exist such as Uni-
core (UNICORE Forum e.V.) or Globus (Globus Alliance:
Globus Toolkit). Although Globus represents the de-facto
standard for Grid toolkits, all these systems have proprietary
designs and interfaces. To ensure future interoperability of
Grid systems as well as the opportunity to customize instal-
lations, the OGSA (Open Grid Services Architecture) work-
ing group within the OGF aims to develop the architecture
for an open Grid infrastructure (GGF Open Grid Services
Architecture Working Group (OGSA WG) 2003).

In (Jeffery (edt.) 2004), important requirements for the
Next Generation Grid (NGG) were described. Among those
needs, one of the major goals is to support resource-sharing
in virtual organizations all over the world. Thus attract-
ing commercial users to use the Grid, to develop Grid en-
abled applications, and to offer their resources in the Grid.
Mandatory prerequisites are flexibility, transparency, relia-
bility, and the application of SLAs to guarantee a negotiated
QoS level.

An architecture that supports the co-allocation of multi-
ple resource types, such as processors and network band-
width, was presented in (Foster et al. 1999). The Globus
Architecture for Reservation and Allocation (GARA) pro-
vides ”wrapper” functions to enhance a local RMS not ca-
pable of supporting advance reservations with this function-
ality. This is an important step towards an integrated QoS
aware resource management. In our paper, this approach is
enhanced by SLA and monitoring facilities. These enhance-
ments are needed in order to guarantee the compliance with
all accepted SLAs. This means, it has to be ensured that the
system works as expected at any time, not only at the time a
reservation is made. The GARA component of Globus cur-
rently does neither support the definition of SLAs or mal-

leable reservations, nor does it support resilience mecha-
nisms to handle resource outages or failures.

The requirements and procedures of a protocol for nego-
tiating SLAs were described in SNAP (Czajkowski et al.
2002). However, the important issue of how to map, im-
plement, and assure those SLAs during the whole lifetime
of a request on the RMS layer remains to be solved. This
issue is also addressed by the architecture presented in this
paper.

The Grid community has identified the need for a stan-
dard for SLA description and negotiation. This led to the
development of WS-Agreement/-Negotiation (Andrieux et
al. 2004).

Conclusion and Future Work
Introducing SLA-awareness is a mandatory prerequisite for
the commercial update of the Grid. Consequently SLA-
awareness also has to be introduced to local resource man-
agement systems which are currently operating on a best-
effort approach. The EC-funded project HCP4U aims at pro-
viding an application-transparent and software-only solution
of such an SLA-aware RMS, demanding for reliability and
fault tolerance. The HPC4U system already allows the Grid
user to negotiate on new SLAs, which will be realized by
means like process-, network,- and storage-checkpointing.

In this paper we have described the requirements of vari-
ous job types and their demands on an SLA-aware schedul-
ing. In particular we addressed the implications of a Grid in-
tegration on the scheduling policies. The described schedul-
ing rules have been implemented within the OpenCCS re-
source management system, which is used in the HPC4U
project. Benefiting from the mechanisms of checkpointing
and restart, the scheduler has proved to be well suited for ex-
ecuting jobs to their negotiated SLAs. Presuming that spare
resources are not allocated by other SLA bound jobs, the
system is able to cope with resource outages, fulfilling the
SLAs of all jobs. Thanks to the transparent checkpointing
capabilities, these mechanisms also apply for the execution
of commercial applications, where no source code is avail-
able and recompiling or relinking is not possible. The user
even does not have to modify the way of executing the job
in the Grid. Hence, HPC4U reached its goal of providing
transparent fault tolerance.

However, the availability of spare resources proved to be
the limiting factor at restart time. If all resources of the clus-
ter system are allocated by SLA bound jobs, the system has
no means of restarting the failure affected job, thus violating
the terms of its SLA.

Improving this situation is subject of currently ongoing
work. Firstly, the notion of buffer nodes is introduced to the
SLA-aware scheduler. These buffer nodes may only be used
for executing best-effort jobs, so that outages either affect
these buffer nodes or running best-effort jobs can be dis-
placed by SLA-bound jobs that are affected by the resource
outage. Secondly, the checkpoint and restart mechanisms
will be used for suspending the execution of running jobs
with respect to their SLA, thus freeing allocated resources
for restarting outage affected jobs. Thirdly, the scheduler
will actively select jobs for migration over the Grid, so that

they can be finished on remote resources according to their
SLA.

The scheduler is also the fundament for work done in
the EC-funded project AssessGrid. Here, the notion of risk
awareness and risk management is introduced into all layers
of the Grid. This implies that the scheduler of the RMS has
to consider risks of SLA violations in all scheduling deci-
sions.

References
Andrieux, A.; Czajkowski, K.; Dan, A.; Keahey,
K.; Ludwig, H.; Nakata, T.; Pruyne, J.; Rofrano, J.;
Tuecke, S.; and Xu, M. 2004. Web Services Agree-
ment Specification (WS-Agreement). http://www.
gridforum.org/Meetings/GGF11/Documents/
draft-ggf-graap-agreement.pdf.
Audsley, N. 1993. Deadline monotonic scheduling theory
and application. Control Engineering Practice 1:71–78.
Business Experiments in Grid (BeInGrid), EU-funded
Project. http://www.beingrid.eu.
Buttazzo, G. C., and Stankovic, J. 1993. Red: A robust ear-
liest deadline scheduling algorithm. In 3rd intl. workshop
on responsive computing systems.
Czajkowski, K.; Foster, I.; Kesselman, C.; Sander, V.;
and Tuecke, S. 2002. SNAP: A Protocol for Nego-
tiating Service Level Agreements and Coordinating Re-
source Management in Distributed Systems. In D.G. Feit-
elson, L. Rudolph, U. S. E., ed., Job Scheduling Strategies
for Parallel Processing, 8th InternationalWorkshop, Edin-
burgh,.
De Roure (edt.), D. 2006. Future for European Grids:
GRIDs and Service Oriented Knowledge Utilities. Techni-
cal report, Expert Group Report for the European Commis-
sion, Brussel.
Foster, I.; Kesselman, C.; Lee, C.; Lindell, B.; Nahrstedt,
K.; and Roy, A. 1999. A Distributed Resource Manage-
ment Architecture that Supports Advance Reservations and
Co-Allocation. In 7th International Workshop on Quality
of Service (IWQoS), London, UK.
GGF Open Grid Services Architecture Working Group
(OGSA WG). 2003. Open Grid Services Architecture:
A Roadmap.
Globus Alliance: Globus Toolkit. http://www.
globus.org.
Highly Predictable Cluster for Internet-Grids (HPC4U),
EU-funded project IST-511531. http://www.hpc4u.
org.
Hovestadt, M.; Kao, O.; Keller, A.; and Streit, A.
2003. Scheduling in HPC Resource Management Systems:
Queuing vs. Planning. In Job Scheduling Strategies for
Parallel Processing: 9th International Workshop, JSSPP,
Seattle, WA, USA.
Jackson, D.; Snell, Q.; and Clement, M. 2001. Core
Algorithms of the Maui Scheduler. In D. G. Feitelson
and L. Rudolph., ed., Proceddings of 7th Workshop on

Job Scheduling Strategies for Parallel Processing, vol-
ume 2221 of Lecture Notes in Computer Science, 87–103.
Springer Verlag.
Jeffery (edt.), K. 2004. Next Generation Grids 2: Require-
ments and Options for European Grids Research 2005-
2010 and Beyond. ftp://ftp.cordis.lu/pub/
ist/docs/ngg2_eg_final.pdf.
Keller, A., and Reinefeld, A. 2001. Anatomy of a resource
management system for hpc clusters. Annual Review of
Scalable Computing 3:1–31.
Lifka, D. A. 1995. The ANL/IBM SP Scheduling System.
In D. G. Feitelson and L. Rudolph., ed., Proc. of 1st Work-
shop on Job Scheduling Strategies for Parallel Processing,
volume 949 of Lecture Notes in Computer Science, 295–
303. Springer Verlag.
MacLaren, J. 2003. Advanced Reservations - State of the
Art. Technical report, GRAAP Working Group, Global
Grid Forum, http://www.fz-juelich.de/zam/
RD/coop/ggf/graap/sched-graap-2.0.html.
Mu’alem, A., and Feitelson, D. G. 2001. Utilization,
Predictability, Workloads, and User Runtime Estimates in
Scheduling the IBM SP2 with Backfilling. In IEEE Trans.
Parallel & Distributed Systems 12(6), 529–543.
Open Grid Forum. http://www.ogf.org.
Pfister, G. 1997. In Search of Clusters. Prentice Hall.
Priol, T., and Snelling, D. 2003. Next Genera-
tion Grids: European Grids Research 2005-2010.
ftp://ftp.cordis.lu/pub/ist/docs/ngg_
eg_final.pdf.
Sahai, A.; Graupner, S.; Machiraju, V.; and van Moorsel,
A. 2002. Specifying and Monitoring Guarantees in Com-
mercial Grids through SLA. Technical Report HPL-2002-
324, Internet Systems and Storage Laboratory, HP Labora-
tories Palo Alto.
UNICORE Forum e.V. http://www.unicore.org.
Windisch, K.; Lo, V.; Feitelson, D.; and Nitzberg, B. 1996.
A Comparison of Workload Traces from Two Production
Parallel Machines. In 6th Symposium Frontiers Massively
Parallel Computing, 319–326.

