
Slot Models for Schedulers
Enhanced by Planning Capabilities

Roman Barták*

Charles University, Faculty of Mathematics and Physics
Department of Theoretical Computer Science

Malostranske namesti 2/25, 118 00 Praha 1, Czech Republic
bartak@kti.mff.cuni.cz

http://kti.mff.cuni.cz/~bartak

Abstract. Scheduling is one of the most successful application areas of
constraint programming and, recently, many scheduling problems were
modelled and solved by means of constraints. Most of these models confine to a
conventional formulation of a constraint satisfaction problem that requires all
the variables and the constraints to be specified in advance. However, many
application areas like complex process environments require a dynamic model
where new activities are introduced during scheduling. In the paper we propose
a framework for constraint modelling of dynamic scheduling problems with
activities generated during scheduling. We also show how some typical
scheduling sub-problems like alternatives, set-ups and processing of by-
products can be modelled in this framework.

1 Introduction

Planning and scheduling are closely related areas that attract a continuous attention of
optimisation community for many years. Planning deals with finding plans to achieve
some goal or, more precisely, with finding a sequence of activities that will transfer
the initial world into one in which the goal description is true. Scheduling solves a bit
different task of allocating the activities to available resource over time. Briefly
speaking, planning helps answer the question, “What should I do?” while scheduling
helps with the question “How should I do it?”

Due to above described differences, it is a common practice that planning and
scheduling tasks are solved separately using rather different methods. There is also
additional reason for such separation and that is the static formulation of the
scheduling problem. We mean that both Constraint Programming (CP) and
Operations Research (OR), which are the most widely used technologies in
scheduling, are confined to a static formulation of the problem where all the variables
and constraints are required to be known in advance. This restriction is perhaps the
main reason why CP and OR are still rarely used in planning applications where it is
impossible to predict which actions will be used in which combination [9].

* Supported by the Grant Agency of the Czech Republic under the contract no. 201/99/D057.

2

Despite the above differences, there exists a demand for integrating planning and
scheduling into a single framework [1]. We may observe trends to convergence on
both sides. Planning community tries to improve quality of plans by considering
resource constraints [7] while scheduling community is exposed to problems that
require adding some planning capabilities to schedulers [2]. We believe that
Constraint Programming may play the integration here thanks to its nice modelling
capabilities and despite the static formulation of a CSP [6,9]. Recent development of
Dynamic CSP [11] or Structural CSP [8] shows that the constraint community is
aware of dynamic real-world problems.

In the paper we deal with the scheduling problems that require an introduction of
new activities during scheduling. Such situation may occur when the appearance of
the activity depends on allocation of other activities. Examples of such behaviour may
be identified in complex-process environments, where set-ups and transition activities
must be considered as well as activities for processing by-products, i.e., products that
are not ordered.

We propose a general framework for modelling scheduling problems with dynamic
activities here. Because activities’ generation is typical for planning, we speak about
schedulers enhanced by planning capabilities. The proposed framework is based on
the notion of activity slot that is a shell being filled by an activity during scheduling.
Slot models are not new to the scheduling community but till now they were used in
static form mainly in timetabling problems. We propose to extend the slot notion by
allowing the slot to move over time or over resources. This gives us more flexibility
when modelling problems where the time slots do not appear in the original problem
formulation.

The rest of the paper describes the proposed framework in detail. In Section 2 we
summarise the reasons for a dynamic problem formulation using the problems from
complex-process environments. In Section 3 we overview the mixed planning and
scheduling framework proposed in [1] and we describe its instance for schedulers
enhanced by planning capabilities. Section 4 is dedicated to description of the slot
model. We introduce the slot chains, and we classify the variables and constraints
here. In Section 5 we sketch how to solve several problems that appear during
scheduling with slot models. We conclude with summary of the results and future
steps.

2 Static vs. Dynamic Problem Formulation

Conventional Constraint Satisfaction Problem (CSP) is defined statically, i.e., all the
variables and constraints are expected to be known in advance. Therefore, most
methods for solving CSP follow the schema:

1) introduce all the variables,
2) post all the constraints,
3) label all the variables respecting the constraints.

Naturally, this schema is reflected in constraint models of real-world problems, i.e.,
we expect all the entities (variables) and relations among the entities to be specified
before we start solving the problem. Because neither the variables nor the constraints
are changing during solving the problem, we speak about the static problem
formulation.

3

A pure scheduling problem, i.e., the allocation of known activities to available
resources over time, can be formulated statically in above sense. Each activity is
described by a set of parameters/variables and the scheduling task is to find values of
these parameters, typically to find when and in which resource the activity is
processed. Before the scheduling starts, the parameters are bound by posting
constraints restricting the possible combinations of parameters’ values.

Naturally, the complexity of the constraints depends on the problem to be solved.
Typically, there are precedence constraints between activities of the same task
describing the order in which the activities must be processed (job-shop scheduling):

start(act1)+duration(act1) ≤ start(act2)

We may also describe when the activity is allowed to be processed (scheduling with
time windows):

min_time ≤ start(activity)
max_time ≥ start(activity)+duration(activity)

Usually, there are also resource capacity constraints specifying how many activities
can be processed in parallel by single resource (resource-constrained project
scheduling [5]). It may seem that these constraints are not static because their
appearance depends on allocation of the activities to the resources. Nevertheless, by
adding a “trigger” we may express the constraint statically:1

resource(act1)=resource(act2) =>
 start(act1)+duration(act1) ≤ start(act2)
 ∨
 start(act2)+duration(act2) ≤ start(act2)

Using triggers allows expressing rather complicated constraints, for example by
extending the above capacity constraint we may describe the minimal transition
duration between activities scheduled to given resource.

There are two main advantages of static formulation of the problem. First, because
the static formulation confines the conventional CSP solving process, it is possible to
use almost all methods developed for solving CSP including popular local search.
This is important especially in large-scale scheduling problems where local search
and similar methods proved themselves to be very efficient.

The second advantage of static formulation is the possibility to exploit fully the
power of constraint propagation. For example, if we know that there is an overlap
between two activities and all the resources have capacity 1 then we may deduce
immediately that these two activities cannot be scheduled to a single resource. This is
“discovered” using the propagation via above described resource capacity constraint.
For scheduling applications several special propagation techniques were proposed to
prune the domains even more, like edge finding.

We see one big drawback of static description of constraints with triggers. Some
complex real-life relations must be described using very complicated “triggered”
constraints. This decreases the readability of the model and it also eliminates the
advantage of constraint propagation. Triggered constraints correspond in fact to

1 The example constraint describes a single capacity resource.

4

disjunctive constraints and it is a known wisdom that the propagation through
disjunction is not very powerful.

To simplify expressing of triggered constraints, it is more appropriate to introduce
such constraints during scheduling. If we introduce the constraint as soon as possible
we may preserve the advantage of constraint propagation while keeping the constraint
in simple form in comparison to equivalent triggered constraints. For example, the
above described capacity constraint may be simplified to the form:

start(act1)+duration(act1) ≤ start(act2)
 ∨
start(act2)+duration(act2) ≤ start(act2)

and this constraint is introduced as soon as we know that both activities are allocated
to a single resource.

In a dynamic problem formulation we allow adding new constraints as well as new
variables during scheduling. In particular we mean adding new activities that
corresponds to adding chunks of variables and new constraints binding these variables
and connecting them to other variables (activities) already in the problem
specification. This approach should not be confused with the dynamic constraint
satisfaction [11] that tries to revise a current variable assignment with given changes
in the constraint graph. In the slot models described further we are trying to refine the
given constraint graph by adding more variables describing the activities. From this
point of view, our approach is closer to structural constraint satisfaction [8].

2.1 When the dynamic problem formulation is appropriate?

We study the dynamic problem formulation mainly because of real-life scheduling
problems in complex-process environments that cannot be formulated statically or the
static formulation is too complicated and inefficient.

First typical problem in complex-process environment is existence of many
alternative activity chains. Typically, one of these alternatives is chosen during
planning so the scheduler gets a “fixed’ sequence of activities to be allocated.
However, as noted in [1] this approach requires the planner to have information about
possible activity allocation because otherwise, the plans could be too tighten or too
relaxed. There is an attempt to postpone choosing the alternative activities to the
scheduling stage. In [3], a method of scheduling alternative activities is proposed.
This method requires all the alternative activities to be generated in the form of a
process plan. Unfortunately, when the number of alternatives is very high, like in
complex-process environments, then the process plan is huge. Therefore we believe
that generating activities during scheduling is more appropriate in such cases.

Fig. 1. A process plan with alternatives. Each rectangle corresponds to an activity and the task
is to choose the path from the leftmost to the rightmost activity.

5

Another problem that can be identified in chemical, food or steelmaking industries, is
necessity to insert special set-up, cleaning, re-heat [10] or transition activities between
production activities. In most current scheduling systems, this is modelled by using
transition times between two consecutive activities. Unfortunately, this model cannot
be used when these set-up and transition activities produce some low-quality products
that must be stored or consumed by other resources2. Another example is inserting re-
heat or cleaning activity that depends on allocation of other activities. Note that such
situation cannot be identified during planning stage that generates the activities
because the appearance of the activity depends on the allocation of other activities. In
such case, we really need to introduce a new activity during scheduling.

Fig. 2. Cleaning activity (stripped) is inserted after each pair of production activities even if it
is not part of any activity chain. The appearance of the cleaning activity depends on the
allocation of other activities to the resource.

Last but not least there is a non-ordered production. In complex-process environments
there exist plants where the ratio of ordered production is very low, say less than 20%,
and the remaining production is driven by a marketing forecast. It is possible to
introduce virtual orders describing the marketing forecast so the planner generates
activities according to these orders. However, there is a danger that the marketing
plan is too tighten and it cannot be scheduled together with given set of orders or the
production cost is too high (e.g. due to many expensive set-ups). Therefore it seems to
be more appropriate to postpone decision about non-ordered production until the
scheduling stage when we may choose from several alternative marketing process
plans. For example we may schedule continuation of a production of some item even
if there is no demand for the item because it is less expensive to continue in the
production than stopping the machine.

3 Integrated Planning and Scheduling

In above paragraphs, we described several examples when generating new activities is
appropriate to model some problems and to get better schedules in terms of
production cost (details can be found in [2]). Because generating activities is a typical
planning task we are speaking about integrated planning and scheduling or, more
precisely, about enhancing schedulers by some planning capabilities.

2 Typically, these so-called by-products are not assumed in scheduling systems, which may

cause problems with storing if a big quantity of by-products appear. Moreover, the by-
products can be used in further production as raw material that may decrease the production
cost.

6

In [1] we proposed a general framework for mixing planning and scheduling. The
basic idea of this framework is not very complicated, the planning module generates
activities and these activities are immediately passed on the scheduling module that
tries to allocate them. The scheduling module uses the constraint propagation to prune
the domains of activity variables so the planner can exploit this additional information
about partial allocation of activities during generating new activities. Moreover, the
scheduler may ask explicitly the planner, to introduce new activities.

Fig. 3. The structure of mixed planning and scheduling system

The schema of mixed planning and scheduling system described in previous
paragraphs is very general and it can be used both for planning under resource
constraints and for scheduling enhanced by planning capabilities. By scheduling
enhanced by planning capabilities we mean the schedulers where it is possible to
introduce new activities during scheduling. If we use a slot model (see later) then we
need not a special activity generator; the activity is introduced to the system simply
by choosing the value for the Activity variable in each slot. Consequently, we may
use the same solving mechanism for the activity allocator and for the activity
generator, in particular constraint programming technology.

4 Slot Models for Dynamic Activities

Slot models are not new to the scheduling community, however their usage is
restricted to problem areas containing slots in the original problem formulation like
timetabling and personnel rostering applications. In these applications, the slot
corresponds to a box in a resource and in a fixed time period. The slot is being filled
by an activity, person etc. during scheduling. For example in school timetabling, the
slot describes some time period, say 9:00-10:00 in the classroom and it is being filled
by a particular lecture and lecturer during scheduling. For these applications, it is
typical that there are no connections/relations between the slots but the relations are
defined between the activities only.

We propose to extend the flexibility of slot models by unsticking the slot from a
particular resource and from a time period. This allows us to model wider class of
scheduling problems, in particular problems with dynamic activities introduced
during scheduling. It may seem that after the proposed generalisation the slot becomes

GENERATOR

ALLOCATOR

demands

schedule

factory
description

activity (slot) values of
attributes

initial
activities

data flow

control flow

7

equivalent to an activity, but this is true only to some extent. Slot is still a box that is
being filled by an activity during scheduling. Now, we are allocating the slots to
resources over time together with filling the slots by activities.

By using the slots instead of activities we can generate the slots in advance before
the scheduling starts. This gives some static character to the dynamic problem so we
may exploit advantages of the static problem formulation like constraint propagation.
Naturally, we need know how many slots should be generated.

4.1 Slot Chains

In a typical scheduling problem the activities are grouped in a sequence, for example
in a process plan describing the sequence of activities necessary to produce an ordered
item. We may group the slots in the same way so we are working with slot chains
instead of individual slots that are not connected. The important thing about the slot
chain is that we may estimate its length or more precisely, upper bound of the length.

In [4] two different activity groupings are identified, grouping per task and
grouping per resource. In [2] we described the criteria for choosing the right grouping
for particular problem using the classification of constraints. The slot models
proposed in this paper can be mapped to both groupings as we show below.

When the activities are grouped per task (a task-centric model) we may have
several alternative process plans, but all these plans are finite. Thus, we simply take
the length of the longest process plan as the number of slots to be generated. In the
task-centric model, the number of tasks is known in advance so we also know the
number of slot chains to be introduced because each slot chain corresponds to the
task. Note also that the slot chains may have different lengths.

If the activities are grouped per resource (a resource-centric model) then we may
calculate the upper bound of the number of slots by dividing the scheduled period by
the minimal activity duration. Note also that the knowledge about the initial activity
(the activity processed by the resource at the beginning of the schedule) and about the
activity transitions can be used to further decrease the upper bound. The number of
slot chains in the resource centric model corresponds to the number of resources3.

Fig. 4. The slot chain corresponds to the longest chain of activities in the production plan.

3 Resources with capacity greater than one may be modelled either by several slot chains (the

number of chains per resource corresponds to the capacity) or by longer single chain (the
length is multiplied by the capacity) or by allowing slots to be filled by more activities (batch
processing). Currently we are using the batch-processing model.

slots alternative activities to fill
the slots

filled

void activities to complete
the activity chain

8

Naturally, because the number of slots in the chain equals to the longest activity
chain it may happen that after the scheduling, some slots remain empty (if a shorter
activity chain is chosen). We require these empty slots to be gathered at the end of the
chain so the slot chain is filled uniquely by a given activity chain. This reduces the
number of combinations how to fill the slots by activities. Extending each activity
chain to the length of the longest activity chain by adding void activities at the end
can solve the difficulty with activity chains of different length. The void activity has a
zero cost and as soon as a slot is filled by a void activity, all remaining slots are filled
by void activities too. We do not need any special mechanism to ensure filling slots
by void activities; this is done automatically using propagation via chain constraints
(see later).

4.2 Slot Parameters

One of the main reasons why we propose to work with slots instead of with activities
directly is that we can move some activity parameters to the slot. This is very
important because in the dynamic problem formulation we do not know the activities
in advance so we cannot post constraints among the activity parameters until the
activity is introduced. However, when (some of) these parameters are moved to the
slot, we may post the constraints in advance because all the slots are generated before
the scheduling starts. The question is which parameters should be moved to the slot
and which parameters should stay in the activity.

The answer is not so complicated. We prefer as many as possible activity
parameters to be expressed in the slot because we can post the constraints among
them immediately. Consequently, we propose to take an intersection of parameters in
all activities as the parameters for the slots. Moreover, each slot has a special
parameter Activity whose domain corresponds to identifications of the activities that
can fill in the slot. The remaining parameters of activities are introduced when the
Activity parameter becomes ground (when the value is chosen for this parameter).
There is a special dynamic section for these parameters in each slot.

Fig. 5. The decomposition to static and dynamic parameters of the activities

To summarise it, we classify all the activity parameters into static and dynamic ones.
The static parameters are present in each activity; they typically include the resource
to which the activity is allocated, the start time and the duration of the activity. These
static parameters are represented in each slot. The dynamic parameters are unique for
each activity and they are filled in the slot when the activity in the slot is known. The
structure of items processed by the activity is a typical example of a dynamic

Sets of activity parameters

Static parameters
(common parameters of all activities)

Dynamic parameters
(unique for each activity)

9

parameter because this structure can be different in different activities. By the
structure of items we mean a list of item quantities with identification of each item.

It should be noted that we could represent the dynamic parameters statically too, if
we take a union of all parameters in all activities as the slot parameters. Then, if the
activity in the slot does not use some of the parameters then these parameters are
ignored. However, if the set of dynamic parameters is too big then their static
representation is much larger than the dynamic representation and, thus, the static
representation is inefficient. For example if there are thousand items processed by
several activities in different combinations then we need thousand parameters to
describe the item quantities statically.

Finally, it should be said that if all the activities share the same parameters then we
might have an empty dynamic section in the slot. Still, the slot is different from the
activity because we do not know which activity is in the slot till the domain of
Activity variable becomes singleton.

4.3 Constraints

When the variables in slots are defined we may introduce the constraints among them.
We propose to classify the constraints in three groups according to the function of a
particular constraint in the slot model. This classification helps us to map particular
problem to the slot model and it simplifies understanding the differences between
posting the constraints.

Slot constraints (intra-slot constraints). First, there are constraints binding variables
in a single slot. Usually, these constraints take care of filling the slot by an activity so
they bind the Activity variable with remaining variables in the slot. For example if
different sets of resources are defined for different activities then we need to bind
Activity and Resource variables. Similarly, if the processing duration of the activity
depends on the resource to which the activity is allocated then we need to bind
Activity, Resource and Duration variables. Notice that this constraint still includes the
Activity variable because we do not know which activity will be filled in the slot. We
may define the slot constraints in a simple triggered form:

Activity = a1 ⇒ Resource in {r1,r2,r3}
Activity = a2 ⇒ Resource in {r3,r4,r5}

or we may use a general (global) relation:

Resource
Activity

r1 r2 r3 r4 r5

a1 1 1 1 0 0
a2 0 0 1 1 1

Naturally, the slot constraint may also describe the relations that do not involve the
Activity variable like the following example shows:

Start + Duration = End

10

Chain constraints (inter-slot constraints or intra-chain constraints). The second
group of constraints corresponds to relations between variables from different slots of
a single slot chain. Typically, these constraints bind two successive slots in the slot
chain and they describe the precedence relations:

slot(i).Start + slot(i).Duration ≤ slot(i+1).Start

or the transition patterns/process plans:

slot(i).Activity = a1 ⇒ slot(i+1).Activity in {a3,a4}

We may expect that these constraints bind static variables mainly so the constraints
can be posted before the scheduling starts. Consequently, the propagation through
slots in the chain is ensured. This is very important because we can fill the slots in
arbitrary order and the propagation guarantees that we can still fill the remaining
slots. Finally note that we do not restrict the chain constraints to bind successive slots
in the chain only but arbitrary slots may be connected. This allows us to define more
complicated chain structures (not only the linear structure). Again, if the chain
constraint binds any dynamic variable then this constraint can be posted after the
dynamic variable is created in the slot.

Inter-chain constraints. The last group contains the constraints binding slots from
different chains. These constraints express the dependencies between different slot
chains, i.e. between different tasks, if the slot chain represents a task, or between
different resources, if the slot chain corresponds to a resource. For example if we
schedule an activity to two different resources (in two slot chains) then we may
require the activity to be processed at the same time by both resources:

chain(i).slot(k).Activity = chain(j).slot(l).Activity
 ⇒ chain(i).slot(k).Start = chain(j).slot(l).Start

To define such inter-chain constraint we must first identify the slots to be connected.
In the timetabling applications, where the slots are fixed to a resource and to time,
there is no problem to find the connected slots. For example, it is easy to define the
constraint forbidding the lecturer to teach in two different rooms at the same time slot.
However, in our slot model, the slots are much more variable so we cannot post the
inter-chain constraints until the slots are at least partially filled. Thus, the inter-chain
constraints are introduced during scheduling and they are dynamic. We sketch the
mechanism of posting such constraints in the next section.

In [2] we proposed a general grouping of constraints for scheduling problems, in
particular we distinguished between:
� resource constraints describing limitations of single resource in given time, e.g.

restricted capacity,
� transition constraints describing relations between states of single resource in

different time points, e.g. transition patterns,
� dependency constraints describing relations between different resources, e.g.

supplier-consumer relation.
We can now define the mapping between the classification in resource-centric and
task-centric representation and the constraint groups in the slot models.

11

Table 1. Mapping between the slot model and resource-centric and task-centric representations

Slot models Resource-centric
representation

Task-centric
representation

Slot constraints Resource constraints Resource constraints
Chain constraints Transition constraints Dependencies
Inter-chain constraints Dependencies Transition constraints

5 Scheduling with the slot models

Having a declarative model of the real-life problem is only the first step; we also need
an efficient solving mechanism. Because we are modelling dynamic problems with
changes in the constraint network we choose the traditional CP technique where the
constraint propagation interleaves with labelling (it is not clear how the local search
and similar methods can be applied to such dynamic problems). We do not describe
all the details concerning the propagation techniques and the labelling strategies here
(this will be a subject of a separate paper). We concentrate on two specific features of
dynamic slot models: how and when to create the dynamic variables and how and
when to post the dynamic constraints.

Generating dynamic variables: Because the set of dynamic variables may differ
from activity to activity we decided to introduce dynamic variables as soon as the
Activity variable in the slot becomes ground (its domain becomes singleton). It is
natural to use event-based programming to implement introduction of dynamic
variables using the same mechanism as constraint propagation is implemented
(typically, the propagation is waked-up when the domain of some constrained
variable is changed). Note also, that the introduction of new variables during
scheduling changes the constraint network.

Posting the constraints: Because of constraint propagation, that reduces domains of
variables and prunes the search space, we prefer to post the constraints as soon as
possible. Naturally, we can post all the constraints binding the static variables in
advance (if we know which variables are bounded). However, we would also like to
keep the constraints in a simple form (as discussed in Section 2) which may lead to
postponing the constraint posting. We can identify two main reasons leading to
postponing the constraint introduction:

� First, the constraint includes some dynamic variables. Such constraint must be
postponed until the dynamic variables are introduced to the problem and we may
post this constraint together (immediately after) with creating the dynamic
variables.

� Second, it is not clear which variables the constraint should bind. This is a typical
case of inter-chain constraints where we do not know which slots should be
connected by the constraint. There are two extreme methods for posting such
constraints (and many variants in-between): eager and lazy method.

12

9 Eager method corresponds to the static formulation of triggered constraints and it
recommends posting the constraints immediately, i.e., we post the constraint
between all the possibly connected slots and we use the trigger to activate the
constraint. As discussed in Section 2, if the trigger is not too complicated then
this method ensures good constraint propagation like the following inter-chain
constraint:

chain(i).slot(k).Resource = chain(j).slot(l).Resource
 ⇒
 chain(i).slot(k).(Start+Duration) ≤ chain(j).slot(l).Start
 ∨
 chain(j).slot(l).(Start+Duration) ≤ chain(i).slot(k).Start

9 Lazy method recommends to wait until we know which slots should be connected,
i.e., until we have enough information about the values of variables. The
advantage of the lazy method is that it generates only necessary constraints (it
needs no disjunction), unfortunately, the constraints are generated too late (in
reality we must wait until the variables are ground) and, thus, they do not
contribute to pruning the search space. In fact, the constraints posted by lazy
method behave like a test only. Lazy method is implemented using the event-
based programming, where the event corresponds to the condition when the
constraint should be posted.

Fig. 6. From eager (left) to lazy (right) method of posting the constraints

The choice of the method depends on a particular problem to be solved. It is even
possible to mix both lazy and eager methods via encoding a part of the constraint
trigger into the event and thus simplifying the constraint.

6 Conclusions

In real-life industrial scheduling there exists problems that require adding new
activities during scheduling. Because the conventional static constraint models are not
able to handle such problems we proposed slot models for scheduling problems that
require some planning capabilities. This enables us to formulate and solve wider
range of real-life problems using the constraint programming technology.

The proposed slot models are based on generalisation of slot models used in
timetabling applications. We use the slot as a shell that can be filled by an activity and
that encapsulates common parameters of activities. We also propose the classification
of constraints using their function in the slot models. Using dynamic variables and
constraints simplifies expressing of some constraints in comparison with their static
formulation. However, we preserve the advantage of constraint propagation by

or or or

13

posting the constraints as soon as possible. This is the advantage of the slot model
over the fully dynamic model where activities are generated completely dynamically.

The slot model makes the core of the scheduling engine implemented as part of the
VisOpt scheduling project. It proved itself to be enough general to cover various real-
life scheduling problems in complex-process environments.

We are currently working on improving the efficiency of the implementation
mainly by using special labelling strategies, by more tighten co-operation between
constraint propagation and labelling and by more sophisticate definition of the
constraint triggers that decrease the number of disjunctive constraints.

Acknowledgements

Author’s work is supported by the Grant Agency of the Czech Republic under the
contract number 201/99/D057 and by InSol Ltd. I would like to thank Yossi Rissin
and the team of InSol for introducing me to the problem and for interesting and
encouraging discussions concerning real-life problems of industrial planning and
scheduling. I am also grateful to Helmut Simonis from Cosytec for useful discussions
concerning constraint scheduling.

References

1. Barták, R.: On the Boundary of Planning and Scheduling: A Study. Proceedings of the
Eighteenth Workshop of the UK Planning and Scheduling Special Interest Group,
Manchester, UK (1999) 28-39

2. Barták, R.: Dynamic Constraint Models for Planning and Scheduling Problems.
Proceedings of the ERCIM/CompulogNet Workshop on Constraint Programming, LNAI
Series, Springer Verlag (2000), to appear

3. Beck, J.Ch. and Fox, M.S.: Scheduling Alternative Activities. Proceedings of AAAI’99,
USA (1999) 680-687

4. Brusoni, V., Console, L., Lamma. E., Mello, P., Milano, M., Terenziani, P.: Resource-
based vs. Task-based Approaches for Scheduling Problems. Proceedings of the 9th

ISMIS96, LNCS Series, Springer Verlag (1996)
5. Caseau, Y., Laburthe, F.: A Constraint based approach to the RCPSP. Proceedings of the

CP97 Workshop on Industrial Constraint-Directed Scheduling, Schloss Hagenberg,
Austria (1997)

6. Joslin, D. and Pollack M.E.: Passive and Active Decision Postponement in Plan
Generation. Proceedings of the Third European Conference on Planning (1995)

7. Koehler, J.: Planning under Resource Constraints. Proceedings of 13th European
Conference on Artificial Intelligence, Brighton, UK (1998) 489-493

8. Nareyek, A.: Structural Constraint Satisfaction. Proceedings of AAAI-99 Workshop on
Configuration, 1999

9. Nareyek, A.: AI Planning in a Constraint Programming Framework. Proceedings of the
Third International Workshop on Communication-Based Systems (2000), to appear

10. Pegman, M.: Short Term Liquid Metal Scheduling. Proceedings of PAPPACT98
Conference, London (1998) 91-99

11. Verfaillie, G. and Schiex, T.: Solution Reuse in Dynamic Constraint Satisfaction
Problems. Proceedings of the 12th National Conference on Artificial Intelligence AAAI-94,
USA (1994), 307-312

