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Abstract

Constraint hierarchies have been proposed to describe over-constrained systems of
constraints by specifying constraints with hierarchical preferences, i.e., hard and
soft constraints. While the hard (required) constraints must hold, the soft
(preferential) constraints should be satisfied as much as possible depending on the
criterion used. Currently, constraint hierarchies are mostly applied to the areas of
graphical user interfaces and geometric layout, but the area of usage is much more
wider.

The integration of constraint hierarchies with Constraint Logic Programming
(CLP) is called Hierarchical Constraint Logic Programming (HCLP). In the
original definition of HCLP, only alternate solutions to one constraint hierarchy are
compared and the best solutions are returned. The later extension of HCLP also
supports comparison of solutions to more constraint hierarchies arising from
different choices of rules in HCLP program. This extension, called inter-hierarchy
comparison, extends usefulness of HCLP programs by eliminating non-intuitive
solutions. However, at the same time, it introduces nonmonotonic behaviour in
HCLP programs which creates novel implementation problems.

In this paper we present an algorithm for efficient solving of constraint
hierarchies using inter-hierarchy comparison within HCLP. The efficiency of the
proposed algorithm is based on tight integration with the HCLP interpreter and on
elimination of useless branches of computation. As the algorithm makes an
extension of hierarchical constraint solvers which support global comparators, its
efficiency can be further improved by harmonizing with underlying hierarchical
constraint solver. We present such an extension that uses properties of our
generalized approach to solving constraint hierarchies.
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1 Introduction
Constraint hierarchies were introduced for describing over-constrained systems of constraints
by specifying constraints with hierarchical strengths or preferences� . It allows one to specify
declaratively not only the constraints that are required to hold, but also weaker, so called soft
constraints at an arbitrary but finite number of strengths. Weakening the strength of constraints
helps to find a solution of previously over-constrained system of constraints. Intuitively, the
hierarchy does not permit to the weakest constraints to influence the result. Moreover,
constraint hierarchies allow “relaxing” of constraints with the same strength by applying, e.g.,
weighted-sum, least-squares or similar comparators.

This constraint hierarchy scheme can be parameterized by a comparator C that allows one
to compare different possible solutions to a single hierarchy and to select the best ones.
Currently, there are three widely used groups of comparators, namely locally-better, regionally-
better and globally-better comparators. While the locally-better comparators consider each
constraint individually, the globally-better comparators combine errors of all constraints at a
given level using some combining function. Thus, the globally-better comparators can be used
for inter-hierarchy comparison [13], i.e., comparison of solutions to two or more constraint
hierarchies. For a regionally-better comparator, each constraint at a given level is considered
individually (as with a local comparator), but, unlike a local comparator, two solutions that are
incomparable at strong levels may still be compared at weaker levels.

The constraint hierarchies are used in Hierarchical Constraint Logic Programming (HCLP)
which is an extension of Constraint Logic Programming (CLP). In the original definition of
HCLP [4,14] only alternate solutions to one constraint hierarchy are compared and the best
solutions are returned. The later extension of HCLP [13] also enables comparison of solutions
to more constraint hierarchies arising from different choices of rules in HCLP program. Such
comparison, called inter-hierarchy comparison (opposite to more common intra-hierarchy
comparison), rules out non-intuitive solutions and, in our opinion, it is closer to declarative
character of HCLP programs. Then, the HCLP programs with inter-hierarchy comparison can
be used as rule-based expert systems [2]. At the same time, the inter-hierarchy comparison
introduce nonmonotonic behaviour in HCLP programs that creates novel implementation
problems.

In this paper we present an efficient algorithm for solving constraint hierarchies using
inter-hierarchy comparison. This algorithm is intended to be used within the HCLP framework
and, thus, it can take advantage of tight integration with the HCLP interpreter. Opposite to
CLP/HCLP approach that does not change the operational behaviour of logic programs, i.e.,
usage of depth-first search method, the proposed algorithm utilizes breadth-first search
approach to solving HCLP programs. HCLP interpreter supporting inter-hierarchy comparison
has to explore the whole computation tree of the program to collect all possible constraint
hierarchies arising from different choices of rules in HCLP program. We propose to use
breadth-first search to explore the computation tree combining with the evaluation of partial
solutions. This enables us to eliminate useless branches (subtrees) of the computation tree and,
thus, to dramatically improve efficiency of the algorithm. This approach is more efficient than
other approaches which have to collect all constraint hierarchies first. Additionally, the
proposed algorithm makes an extension of hierarchical constraint solvers which support global
comparators. Therefore, the efficiency of the algorithm can be further improved by harmonizing
with the underlying hierarchical constraint solver.

The paper is organized as follows. In Section 2, we give a practical motivation for
studying hierarchical constraint solvers supporting inter-hierarchy comparison. This section is
of a particular interest for a "practical application" audience as it emphasis on the methodological
benefits of using constraint hierarchies and inter-hierarchy comparison. In Section 3, we give a

� The other methods for describing over-constrained systems include the "partial CSP" model by Freuder &
Wallace, the "fuzzy CSP" model by Fargier, and the "probabilistic CSP" model by Fargier & Lang.



background of our research and we outline the theory of constraint hierarchies and inter-
hierarchy comparison. In Section 4, we outline the methodology and theoretical foundation of
our approach. In Section 5, we describe the skeleton of proposed algorithm for solving
constraint hierarchies using inter-hierarchy comparison. We concentrate on its integration with
HCLP interpreter there. In Section 6, we give an example that illustrates the work of the
proposed algorithm. Section 7 is dedicated to further improvements of the proposed algorithm
via harmonizing with underlying hierarchical constraint solver. We sketch our generalized
approach to solving constraint hierarchies there and then we describe how one may utilize its
properties to improve efficiency of inter-hierarchy comparison. We conclude with some final
remarks and description of future research.

2 Motivation and benefits
Although the concept of inter-hierarchy comparison is not new at all [13], it is used scarce in
practical applications if at all. Even the original constraint hierarchies with intra-hierarchy
comparison are used sparingly, mostly in areas of graphical user interfaces, geometric layout
and document formatting. It sounds surprisingly because of the nice declarative description of
over-constrained systems by constraint hierarchies.

The problem is probably hidden in hierarchical constraint solvers which utilize different
concepts than traditional constraint satisfaction. Additionally, most current hierarchical
constraint solvers are constructed for locally-better comparators only [8,9,11,12], and thus they
are not suitable for inter-hierarchy comparison. Also, if the constraint solvers with intra-
hierarchy comparison are computational-hungry, the solvers supporting inter-hierarchy
comparison are even more demanding for computational power.

Despite the current spare usage of constraint hierarchies we believe that many practical
applications, particularly those with complicated relations among variables, can profit from
constraint hierarchies and inter-hierarchy comparison. The potential benefit of constraint
hierarchies and inter-hierarchy comparison is especially visible in the area of modeling, i.e., in
expressing a real world problem in terms of constraints. Constraints labeled by strength can
naturally and declaratively describe user's preferences and vision of importance of individual
constraints. In addition, the possibility to utilize inter-hierarchy comparison extends further the
expressive power of constraint hierarchies because the inter-hierarchy comparison supports
naturally the disjunctive constraints. Actually, the inter-hierarchy comparison is more powerful
than simple disjunctive constraints as following example demonstrates.

The following program [13] shows the advantages of constraint hierarchies and inter-
hierarchy comparison in the area of scheduling. We utilize the HCLP (Hierarchical Constraint
Logic Programming) framework here as it perfectly incorporates both constraint hierarchies and
inter-hierarchy comparison (via different choices of rules). The objective of the program is to
find time for meeting of two people. Notice the natural representation of the problem using
labeled constraints and alternative rules.

can_meet(Person1,Person2,Day,Time,Length):-
free(Person1,Day,StartTime1,EndTime1),
free(Person2,Day,StartTime2,EndTime2),
required StartTime1≤Time, required StartTime2≤Time,
required Time+Length≤EndTime1, required Time+Length≤EndTime2.

free(judy,saturday,11,12).
free(judy,friday,13,14).
free(chris,saturday,10,13).
free(chris,friday,T,16):-

required T≥12, prefer T≥14.
The other benefit of constraint hierarchies is the possibility to use very weak constraints to
establish stability of solution that is crucial for many up-to-date applications of constraint
technology. Currently, this feature is widely used in the construction of graphical user



interfaces [11,12]. By stability of the solution we mean "as small as possible difference"
between the original solution and the tuned solution obtained by solving the system of
constraints.

Constraint hierarchies and inter-hierarchy comparison can be succesfully applied to
traditional applications, like geometric layout, physical simulations, user interface design,
document formatting, design and analysis of mechanical devices, planning and scheduling,
where constraints settle in. But this approach also opens some new areas of usage. In [2] we
proposed to use HCLP with inter-hierarchy comparison to write rule-based expert systems
where constraint hierarchies can naturally handle uncertain information. In such systems, the
existence of algorithms supporting inter-hierarchy comparison becomes crucial.

3 Constraint hierarchies and inter-hierarchy comparison
The theory of constraint hierarchies was developed in [4]. It is based on the idea of labeling
each constraint by preference that determines the strength of the constraint. The constraint
hierarchy is then a finite set of labeled constraints. Intuitively, the stronger a constraint is, the
more it influences the solution of the hierarchy. The solution of the constraint hierarchy H can
be formally expressed in a following way:

SH,0 = { θ | ∀c∈H0  cθ holds }

SH = { θ | θ∈S0 & ∀σ∈S0 ¬ better(σ,θ,H) },

where θ, σ are valuations of free variables in constraints from H, H0 is a vector of required
constraints in H (in some arbitrary order, with their labels removed) and better is a relation
comparing two valuations according to the hierarchy H. The set SH,0 contains valuations
satisfying required constraints and SH is a subset of SH,0 containing all  valuations from SH,0
which are not worse than any other valuation from SH,0. The set SH is called a solution set for
the hierarchy H.

There is a number of reasonable candidates for the predicate better which is called a
comparator and it is a parameter to the constraint hierarchy scheme. Note that comparators
should respect the hierarchy, i.e., the stronger constraints influence the solution more than the
weaker constraints. Currently, three groups of comparators are used, namely locally-better,
regionally-better and globally-better comparators (these notions will be explained below). The
choice of comparator in a particular application depends on the way of handling constraints. If
each constraint is considered individually then the locally-better or regionally-better comparators
are used. If the set of constraints at a level is manipulated at once then the globally-better
comparator is the choice.

The locally-better comparators consider each constraint individually. Thus, the valuation θ
is locally-better than the valuation σ if the errors of all constraints till some level k-1 are equal

after applying the respective valuations θ and σ, and the error of some constraint from level k is

strictly less for the valuation θ than the error for the valuation σ and the errors of other

constraints from level k are not greater for the valuation θ than for the valuation σ. The locally-
better comparators are formally defined by the following way:

locally-better(θ,σ,H) ≡def

∃k>0 ∀i∈{1,…,k-1} ∀c∈Hi  e(c,θ)=e(c,σ) &

∀c∈Hk e(c,θ)≤e(c,σ) & ∃c'∈Hk e(c',θ)<e(c',σ),

where e(c,θ) is an error function that returns a non-negative real number indicating how closely

a constraint c is satisfied for a valuation θ and Hi are levels of the hierarchy H defined in an
obvious way, i.e., H1 is a vector of strongest non-required constraints in H  etc.



Because many valuations are not comparable using the locally-better comparator, the
regionally-better comparator was introduced to extend the idea of the locally-better comparator.
The regionally-better comparator uses a level-better comparator (will be defined below) which
compares two valuations according to the set of equally prefered constraints (i.e., the level).
The valuation θ is regionally-better than the valuation σ if both valuations are incomparable at

levels 1,…,k-1 and the valuation θ is level-better than the valuation σ at some level k.

regionally-better(θ,σ,H) ≡def

∃k>0 ∀i∈{1,…,k-1} ¬ (level-better(θ,σ,Hi) &  level-better(σ,θ,Hi)) &

level-better(θ,σ,Hk),
where
level-better(θ,σ,Hi) ≡def

∀c∈Hi e(c,θ)≤e(c,σ) & ∃c'∈Hi e(c',θ)<e(c',σ).

By introduction of the level-better relation, the regionally-better comparator opens doors to a
globally-better comparator that combines errors of all the constraints at given level Hi using a
combining function g, and then it compares the combined errors. The scheme of globally-better
comparator is defined as follows:

globally-better(θ,σ,H,g) ≡def

∃k>0 ∀i∈{1,…,k-1} g(θ,Hi)=g(σ,Hi)  &

g(θ,Hk)<g(σ,Hk).
Note that the scheme of globally-better comparator is parameterized by the combining function g
that combines errors of individual constraints via, e.g., weighted sum

( g(θ,Hi ) = wc * e(c,θ )
c∈H i

∑ ), worst case (g(θ,Hi ) = max wc * e(c,θ )c ∈Hi{ }) or least squares

( g(θ,Hi ) = wc * e(c,θ )
c∈H i

∑ 2
) methods. To justify soundness of our algorithm for inter-hierarchy

comparison we require the combining function g to satisfy the monotony property that
guarantees that the combined error does not decrease by adding a constraint to the hierarchy.
The monotony property of the combining function g is formally defined by the following way:

∀H,c,θ ∀i >0  g(θ,(H∪{c}) i)≥g(θ,Hi), (monotony property)

where θ is a valuation, H is a constraint hierarchy and c is a labeled constraint ((H∪{c}) i is i-th

level of the hierarchy (H∪{c})). Note also that the above examples of combining function
satisfy the monotony property.

Constraint hierarchies extend the Constraint Logic Programming CLP(R) scheme
parameterized by the domain R of constraints into a more general scheme Hierarchical
Constraint Logic Programming HCLP(R,C) parameterized by the domain R and the comparator
C. These languages provide both required constraints and default constraints of various
strengths. The following program [13] is an example of HCLP program.

f(X):-strong X>3, g(X).
g(5).
g(1).

Given the goal ?-f(A), HCLP would first return the answer A=5, and on backtracking A=1.
In reality, there are produced two constraint hierarchies arising from different choices of the rule
g. One is hierarchy required A=5, strong A>3 and the other is required A=1,
strong A>3. The above definition of constraint hierarchies does not prefer neither the first
nor the second answer as the definition allows intra-hierarchy comparison only.



To rule out unintuitive solutions described above, the extended definition of constraint
hierarchies with inter-hierarchy comparison was proposed in [13]. It is a definition of the
solution set for the set of constraint hierarchies ∆. Note that each valuation in sets S∆,0, S∆ is
labeled by its respective constraint hierarchy.

S∆,0 = { θH | H∈∆ ∀c∈H0  cθ holds }

S∆ = { θH | θH∈S0 & ∀σJ∈S0 ¬ better(σJ,θH,∆) }.

First, the valuations satisfying all required constraints of a hierarchy from ∆ are collected and,
then, those valuations satisfying best their respective hierarchies are selected. Because the
locally-better and regionally-better comparators consider each constraint in the hierarchy
individually and the comparator better compares valuations arising from more hierarchies now,
neither the locally-better nor the regionally-better comparators are redefined to compare
solutions to different hierarchies� . However, the definition of globally-better scheme can be
naturally extended to compare valuations arising from different hierarchies.

globally-better(θH,σJ,∆,g) ≡def

∃k>0 ∀i∈{1,…,k-1} g(θH,Hi)=g(σJ,Ji)  &

g(θH,Hk)<g(σJ,Jk).
Again, the globally-better scheme is parameterized by some combining function g. Note that the
combining function g is applied to the valuation and its respective constraint hierarchy now.

4 Theoretical basis
Original HCLP systems with intra-hierarchy comparison does not change the operational
behaviour of CLP or Prolog respectively, i.e., they use the depth-first search to explore the
computation tree. Consequently, the HCLP system can be built over the underlying CLP
system. The approach of HCLP with inter-hierarchy comparison is a bit different as it requires
to collect all possible constraint hierarchies arising from different choices of rules in HCLP
program.

The algorithm for inter-hierarchy comparison presented in [6] uses the underlying HCLP
system to collect constraint hierarchies and then it solves the resulting set of constraint
hierarchies. The advantage of this approach is that it does not require to change the operational
behaviour of HCLP, i.e., the depth-first search. Furthermore, this algorithm is not confined to
HCLP framework, i.e., to the way of collecting constraint hierarchies, and thus it could be used
in all applications where inter-hierarchy comparison is requested. However, we see also the
disadvantage of this free binding and we assume that a closer relation between HCLP and the
hierarchical constraint solver with inter-hierarchy comparison can improve dramatically the
efficiency of the system. The reason of this hypothesis is the similarity of constraint hierarchies
arising from different choices of rules in HCLP program. Consequently, such hierarchies, or at
least their parts, can be solved in common. Additionally, the tight integration of HCLP with
inter-hierarchy comparison can remove some infinite computations which lock the above
approach (see Section 6).

We propose to utilize breadth-first search in HCLP with inter-hierarchy comparison. As
we need to explore the whole computational tree, the computational complexity of breadth-first
search is similar to the computational complexity of depth-first search. We understand that in
general the memory consumptions of both methods are different, but again, all hierarchies
appearing during the computation are collected and thus, the final memory consumption of both
methods does not differ significantly. The advantage of breadth-first search is that it collects all

� There exists a definition of constraint hierarchies which allows locally-better comparators in inter-hierarchy
comparison.



finite constraint hierarchies even if infinite branches appear in the computational tree. The same
does not hold for depth-first search.

As we discussed in the above paragraph, the elementary switch from depth-first to
breadth-first search does not change the efficiency of the HCLP system, however it enables
further improvements. Now, we show how to integrate the process of collecting constraint
hierarchies with constraint hierarchical solver. In the following, we expect the existence of
hierarchical constraint solver supporting globally-better comparators (for such systems look at
[1,3,5,10]) and we extend this solver to support inter-hierarchy comparison.

The idea behind our algorithm uses the following observations. One can assign the error
vector EVθ,H=[g(θ,H1), g(θ,H2)…] to each valuation θ of variables from the constraint
hierarchy H (g is a combining function). Obviously, it is possible to order all error vectors
lexicographically and to show that this ordering is a total ordering. The following example
shows the way the error vector is obtained for a given constraint hierarchy and a given
valuation.

Example:
combining function: (unsatisfied-count-better comparator)

 g(θ,Hi ) = e(c,θ )
c∈H i

∑    where e(c,θ ) =
1, otherwise

0, if cθ  holds{

constraint hierarchy:

strong a+b=c, prefer a≥2, prefer c=3, weak a=3, weak b=1
error vector:

valuation error vector [strong,prefer,weak]
{a/1,b/1,c/3} [1,1,1]
{a/2,b/1,c/3} [0,0,1]

Now, we can formulate propositions which justify soundness of the proposed algorithm for
solving constraint hierarchies with inter-hierarchy comparison. In particular, these propositions
provide methodology for efficient solving of constraint hierarchies by means of error vectors.

Proposition 1:
The solution set SH of the hierarchy H contains only those valuations from the set SH,0
which have the minimal error vector. Moreover, the error vectors of valuations from the
solution set SH are equal.

The proof of Proposition 1 follows directly from the definition of the solution set of hierarchy
and the definition of the globally-better schema (better(σ,θ,H) ⇔ EVσ,H<EVθ,H).

Proposition 1 relates the notion of the solution set with the error vectors and it provides the
correspondence between the comparator and the ordering of error vectors. As a consequence of
Proposition 1 we can assign the error vector EVH=EVθ,H, where θ is any valuation belonging to
the solution set SH of the hierarchy H, to each constraint hierarchy H. This error vector EVH
describes how nearly the constraints from the hierarchy H can be satisfied.

Proposition 2:
Let EVH be the error vector of the hierarchy H and EVH∪{c}  be the error vector of the

extended hierarchy H∪{c} (c is arbitrary constraint added to the hierarchy H). Then
EVH≤EVH∪{c}  in the lexicographic ordering of error vectors.

Proof:
The idea of the proof is to show that EVH>EVH∪{c}  evokes conflict and, thus,
EVH≤EVH∪{c}  holds.

Clearly, ∃θ  EVH∪{c} =EVθ,H∪{c} . Now, it is easy to show that EVθ,H∪{c}  ≥ EVθ,H:



Let (H∪{c}) i denotes i-th level of the hierarchy H∪{c} and k be the number
indicating the preference (level) of the added constraint c. Then:

1) ∀i≠k  (H∪{c}) i=Hi , i.e., ∀i≠k  g(θ,(H∪{c}) i)=g(θ,Hi)

2) g(θ,(H∪{c}) k)≥g(θ,Hk) (monotony of the combining function).

Consequently,

[g(θ,(H∪{c}) 1),…,g(θ,(H∪{c}) k),…] ≥ [g(θ,H1),…,g(θ,Hk),…], i.e.,

EVθ,H∪{c}  ≥ EVθ,H

Now,

(∃θ EVH>EVH∪{c}  & EVH∪{c} =EVθ,H∪{c}  & EVθ,H∪{c} ≥EVθ,H) ⇒ ∃θ EVH>EVθ,H

but ∃θ EVH>EVθ,H is in conflict with the definition of EVH. Thus EVH≤EVH∪{c}  holds.

⊗
Proposition 2 says that adding arbitrary constraint to the hierarchy does not “improve” the error
vector of the hierarchy. This feature of error vectors can be exploited by incremental algorithms
for solving constraint hierarchies. Now, we can naturally extend Proposition 2 to the inter-
hierarchy comparison.

Proposition 3:
Let EVH be the error vector of a hierarchy H and EVJ be the error vector of a hierarchy
J. If EVH<EVJ in lexicographic ordering of error vectors, then EVH<EVJ∪{c}  for

arbitrary constraint c. Consequently S{H} =S{H,J}  ⇒  S{H} =S{H,J∪{c}}  (note that

valuations are labeled by the corresponding hierarchy and thus θH≠θJ).

Proposition 3 is a direct consequence of Proposition 2 because of EVH<EVJ & EVJ≤EVJ∪{c}  ⇒
EVH<EVJ∪{c} . Proposition 3 enables one to eliminate some partial constraint hierarchies, i.e.,
branches (subtrees) of the computational tree if any complete constraint hierarchy is found
during the breadth-first search (see next section). In some cases, it even enables elimination of
an infinite branch of the computation tree (see example in Section 6). However, we should note
that the algorithm proposed in the next section do not guarantee to eliminate all the infinite
branches because of obvious reason (the halting problem, i.e., the discovery of all infinite
branches of the computation, is not algorithmically solvable).

Note also, that the above propositions are not in conflict with the nonmonotonic and
disorderly aspects of inter-hierarchy comparison presented in [13]. A comparator is orderly if
SH⊇SH∪{c} , where SH is a solution set for hierarchy H and SH∪{c}  is a solution set for hierarchy

H∪{c}. A comparator that is not orderly is disorderly. Unfortunately, each comparator that
respects the hierarchy is disorderly [13] which means that adding a constraint could in general
require us to change the previous solution in a significant way. Confining ourselves to the error
vector of hierarchy instead of to the solution set of hierarchy we weaken the orderly aspect and
Proposition 2 guarantees us that adding a constraint does not improve the error vector of the
hierarchy.

Similarly, a comparator is monotonic if S∆⊆S∆∪Γ, where S∆ is a solution set for the set ∆
of hierarchies and S∆∪Γ is a solution set for the set ∆∪Γ of hierarchies. A comparator that is not
monotonic is nonmonotonic. Again, each comparator that respects the hierarchy is
nonmonotonic [13] which means that adding a hierarchy to the set of hierarchies (e.g., by using
alternative rule in HCLP) could in general require us to change the previous solution in a
significant way. Nevertheless, Propositions 2 and 3 enables us to restrict ourselves to solving
smaller set ∆ of hierarchies in case of the error vectors of all hierarchies from Γ are worse.



5 The algorithm
As mentioned in above sections, we utilize breadth-first search in our framework for solving
HCLP programs using inter-hierarchy comparison. The HCLP goal is resolved in an obvious
way. The required (hard) constraints are processed immediately and the soft (preferential)
constraints are collected. As soon as the goal is completely reduced in any branch of the
computational tree, the computation is interrupted temporarily and the elimination phase starts.

To simplify description of the elimination phase, we classify the collected constraint
hierarchies into three categories first. The collected constraint hierarchies which are attached to
the leaves of computational branches are called frontier hierarchies. We call the constraint
hierarchy attached to the leave of the branch terminated with completely reduced goal a
completed hierarchy. The hierarchies attached to leaves of other branches which are not reduced
completely yet are called partial hierarchies.

During the elimination phase, the frontier hierarchies are solved using hierarchical
constraint solver supporting globally-better comparator. Also the error vectors of all frontier
hierarchies are computed. Next, the algorithm eliminates all branches labeled by partial
hierarchies which error vectors are worse than the error vector of the completed hierarchy.
According to Proposition 3 we know that the computation in the eliminated branch will not
bring better solution (better error vector) than the solution of the completed hierarchy. Thus, the
elimination does not influence the final solution. The error vector of the completed hierarchy can
be seen as the top estimate of the final solution. Note also that this elimination can cut some
infinite branches (see Section 6), but the algorithm does not guarantee to eliminate all the infinite
branches.

� � � � � � � � � � � � � � � � � � � � � � � � � �
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hierarchy
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After finishing the elimination, the exploration of the computational tree is restarted. Note, that
the solution of all completed hierarchies must be considered in subsequent elimination phases.
This means that, if a completed hierarchy H is computed and its solution is better than the
solution of previously found completed hierarchies, then the solution of the hierarchy H
displaces the previously found solution. Obversely, if the solution of the hierarchy H is worse
than the previously found solution, then the solution of the hierarchy H is not included in the
current solution (see below the case structure of the procedure distribute_list).

The algorithm terminates as soon as there is no goal to reduce, i.e., all goals were
completely reduced or eliminated respectively. Because of obvious reasons (halting problem),
we can not guarantee the termination of the algorithm in case of occurrence of infinite branches.
Nevertheless, the algorithm terminates if there are no infinite branches and it can terminate even
if there are infinite branches (for discussion see above paragraphs; for example see Section 6).

To simplify the following algorithm scheme we expect that the goal, current valuation of
variables and collected soft constraints are encapsulated into one data structure. We also assume
that the same data structure with the goal reduced represents the solution.



Algorithm Scheme:

solve_goal(Goal,Program)
%% main procedure that solves Goal using HCLP Program
%% returns list of solutions, i.e., valuations of variables

GoalsToSolve:=append_to_list(new_list,Goal)
% initialize the list of unsolved goals

SolutionOfCompletedHier:=new_list
% prepare (empty) list for collecting solutions

while not empty(GoalsToSolve) % repeat while there is any unsolved goal
GoalToReduce:=delete_first(GoalsToSolve)

% select (remove) first goal from the list of unsolved goals
GoalList:=reduce(GoalToReduce,Program)

% reduce the selected goal using all possible rules from the Program
distribute_list(GoalList,GoalsToSolve,SolutionOfCompletedHier)

% update the list of unsolved goals and the list of solutions
end while

return SolutionOfCompletedHier
end solve_goal

distribute_list(ListOfGoals,GoalsToSolve,CurrentSolution)
%% update the list of unsolved goals by adding new goals; if any new goal

is reduced then do elimination and update the list of solutions

AnyReduction:=false % clear the indicator of reduction occurrence

while not empty(ListOfGoals)  % repeat while there is any unfilled goal
Goal:=delete_first(ListOfGoals)

% select (remove from the list) first unfilled goal
if reduced(Goal) then % the Goal is completely reduced

AnyReduction:=true % set the indicator of reduction occurrence
case of

:better(Goal,best_of(CurrentSolution))
% solution of Goal is better than the previously found solution
CurrentSolution:=append_to_list(new_list,Goal)

% displace the previous solution by the new solution

:not better(best_of(CurrentSolution),Goal)
% & not better(Goal,best_of(CurrentSolution))
% the solution of the Goal is as good as the previous solution
CurrentSolution:=append_to_list(CurrentSolution,Goal)

% add the new solution to the list of solutions

:otherwise
% the solution of the Goal is worse than the previous solution
% the Goal is immediately eliminated, i.e., it is not placed
neither to the list of unsolved goals nor to the list of
solutions

end case
else % Goal is not reduced yet

GoalsToSolve:=append_to_list(GoalsToSolve,Goal)
% add the Goal to the list of unsolved goals

end if
end while

if AnyReduction then % any goal is completely reduced
GoalsToSolve:=delete_worse(best_of(CurrentSolution),GoalsToSolve)

% do elimination, i.e., remove unsolved goals which are known to
produce solutions worse than the current solution

end if
end distribute_list



The call to underlying hierarchical constraint solver is hidden in the test better where the
error vectors are used to compare solutions. The elimination of not yet reduced goals, which are
known to bring worse solution, is done within the procedure delete_worse.

delete_worse(BestCompleted,ListOfPartial)

Goals:=new_list % prepare list for unsolved goals which pass the test

while not empty(ListOfPartial)
 % repeat while there is any unfilled goal

G:=delete_first(ListOfPartial)
% remove first goal from the list of unfilled goals

if not better(BestCompleted,G)
% solve the partial hierarchy attached to the goal G
% compare the partial solution with current best solution
Goals:=append_to_list(Goals,G)

% if the partial solution is not worse than the
previous solution then update the list of goals

end if
end while

return Goals
end delete_worse

6 Example
The following example illustrates the computation of the above presented algorithm. We use the
domain of integers, the weighted-sum-better comparator (all weights are equal to 1) and the
following HCLP program.

f(X):-g(X), prefer X>0.
g(2).
g(X):-weak X=0, p(X-1).
p(1).
p(X):-p(X-1).

Given the goal ?-f(X), the following figure shows the schema of partial computational tree
when the first elimination phase occurs, i.e., when a goal in one branch is completely reduced:

?-f(X).

?-g(X),prefer X>0.

required X=2, prefer X>0 ?-p(X-1),prefer X>0,weak X=0.

g(2). g(X):-weak X=0,p(X-1).

f(X):-g(X),prefer X>0.

The goal in the left branch of the tree is completely reduced and we get the complete hierarchy
required X=2,prefer X>0. The solution of this hierarchy is X=2 with the error vector
[0] (only non-required levels are included in the error vector). The goal p(X-1) in the right
branch is not reduced yet, and thus we get the partial hierarchy prefer X>0,weak X=0
with the solution)  X=1 and the error vector [0,1]. Because the error vector of the partial
hierarchy is “worse” than the error vector of the completed hierarchy, the algorithm eliminates

)  Note, that the hierarchy has no solution if we work with the domain of reals.



the right branch. As there are no other goals to reduce, the algorithm stops and returns the
currently found solution X=2.

Notice that the right subtree, which was eliminated by the algorithm, contains an infinite
branch. In this particular case the algorithm eliminates the infinite branch but note again that, in
general, it is not possible to detect all infinite branches. In fact, the presented algorithm does not
deal with infinity of branches, it rather concerns with quality of the partial solution and
eliminates bad partial solutions. Nevertheless, remind that the traditional approach, which
collects all constraint hierarchies first, does not terminate at all in case of occurence of an infinite
branch.

7 Further improvements
The scheme of the algorithm presented in Section 5 offers a lot of opportunities for further
improvements. In fact, the presented algorithm corresponds to the well-known branch and
bound method. We use breadth-first search to branch the tree of computation. The bound phase
called elimination is evoked when the goal in any branch is reduced completely.

It is clear that finding a “good” initial solution can eliminate larger part of the computation
tree. However, the breadth-first search is a method of blind search which is not influenced by
the “quality” of the (partial) solution. Thus, we propose to use best-first search which is a
method of knowledge-driven search. The only change in the algorithm from Section 5 is the
replacement of the call delete_first in the procedure solve_goal by the call
delete_best, which selects the most promising goal to reduce.

The error vector of the hierarchy is a natural quality indicator for the best-first search. The
problem is how to obtain efficiently the error vector of the partial hierarchy. The straightforward
approach, which uses the underlying hierarchical constraint solver to solve the constraint
hierarchy entirely, i.e., to compute the error vector, does not seem to be reasonable because the
evocation of this solver is still time consuming process. So, we suggest to use an estimate of
the error vector.

As the computation of the estimate of the error vector requires close co-operation with the
underlying constraint hierarchy solver, we briefly sketch the algorithm for solving constraint
hierarchies that we developed in our previous works [1,2,3]. This hierarchical constraint solver
consists of two phases: planning and propagation. During the planning phase, the constraint
network is constructed, while the valuation of variables is computed within the propagation
phase. In our view of HCLP system, the planning algorithm is used to collect the labeled
constraints successively, i.e., to construct incrementally the constraint network, whereas the
propagation phase is delayed till the complete constraint hierarchy is collected, i.e., till the
original goal is completely reduced.

The constraint network is a directed acyclic graph whose nodes are labeled by constraint
cells. The constraint cell is a set of equally preferred constraints. In [1,2,3] we distinguish two
classes of constraint cells: functional cells and potentially unsatisfied cells. The algorithm
guarantees that the constraints in functional cells are satisfied during the propagation phase
which computes the solution by propagating sets of values through the constraint network.

The planning phase, whose features we exploit here, is well known from hierarchical
constraint solvers like DeltaBlue [12] and SkyBlue [11]. In [3] we generalized the planning
phase in such a way that all types of constraints and comparators, including globally-better, are
supported.  Now, we propose to further exploit the planning algorithm in such a way that it also
computes the top estimate of the error vector.  We compute the top estimate of the error vector
using the assumption that the constraints from the potentially unsatisfied cells are not satisfied
while the constraints from the functional cells are satisfied (therefore top estimate). As the
planning phase runs anyway, there is no time penalty of computing the top estimate of the error
vector.



Example:

a=2
strong

F

a

b=1
preferb

F

a+b=c
weakc

F

a>1
prefer

functional cell

potentially 
unsatisfied 
cell

preference

constraint network


M - 0 1 2 3 0 + 3 . 4 5 6 , / - 2 5 7 . 2 2 . 8 6 , 9 : 1 8 1 2 , 86 , 8 8 . 0 : , - 4 0 2 , 2 = . < . 3 N = 2 . 4 5 0 / 9 5 7 . 2 2 . 86 , 9 : 1 8 1 2 , 8 < 3 2 = < . 3 N = 2 0 . O / 1 ? 2 , C 1 - 42 = . : 8 . 4 3 6 1 2 . . 8 8 , 8 + / - 6 2 3 , - . G 8 . 2 / 8 - 0 B ;3 + 2 = . 6 , - 0 2 8 1 3 - 2 3 0 0 1 2 3 0 + 3 . 4 ; 1 - 4 C, 2 = . 8 < 3 0 . J H

The enhancements proposed in this section can improve the efficiency of the algorithm for inter-
hierarchy comparison. However, we should also mention that the expenses of computing
additional information has to be balanced with the total gain of usage such information.

8 Conclusions and future research
In this paper, we present a basic framework for solving constraint hierarchies using inter-
hierarchy comparison within HCLP. The proposed algorithm is based on tight integration with
the HCLP interpreter and on elimination of useless branches of computation. The algorithm is
built on top of a hierarchical constraint solver supporting globally-better comparators. The
elimination of useless branches reduces the space of computation but, on the other hand, this
approach demands more attention from the underlying hierarchical constraint solver which is
applied to complete constraint hierarchies as well as to partial constraint hierarchies.

In comparison with the algorithm from [6] our approach presents the advantage of early
elimination of unuseful branches of the computation tree which speeds up the computation and
reduces the memory consumption. The open architecture of our algorithm, that can use arbitrary
hierarchical constraint solver supporting globally-better comparators, is another benefit of our
approach (the algorithm from [6] also presents this advantage).

There are still a lot of opportunities for further improvements, we show the direction for
some of them. Especially adding (semi) incrementality feature to the underlying hierarchical
constraint solver can dramatically improve the efficiency of the proposed algorithm because the
subsequent calls to the solver can exploit the results of previous calls. Also, the area of
empirical investigation of the proposed algorithm and its refinements is still open.

Hierarchical Constraint Logic Programming with inter-hierarchy comparison provides
framework for natural representation of real-world problems. We believe that the practical
application potential of constraint hierarchies and HCLP, in particular, can be further exploited
by using the open algorithm for inter-hierarchy comparison within HCLP, that is presented in
this paper.
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