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Abstract
Constraint hierarchies have been proposed to overcome over-constrained

systems of constraints by specifying constraints with hierarchical preferences.
They are widely used in HCLP (Hierarchical Constraint Logic Programming), CIP
(Constraint Imperative Programming) and graphical user interfaces. The
advantages of constraint hierarchies are a declarative expression of preferred
constraints and the existence of efficient satisfaction algorithms. At present, there
exist a lot of relatively independent constraint hierarchy solvers/satisfaction
algorithms that could be classified into two categories: refining and local
propagation algorithms. While the local propagation algorithms are fast but limited
to equality (functional) constraints the more general refining algorithms are not
incremental.

In this paper we propose a generalized algorithm for solving constraint
hierarchies. This algorithm combines advantages of both refining and local
propagation approaches. It is based on ideas of local propagation however it is not
limited to one type of comparators. The algorithm solves constraint hierarchies,
even if some constraints must be solved simultaneously, by dividing them into
constraint cells as much as possible. By constructing a constraint network/graph it
also supports “constraint planning”, i.e., the method of smart resatisfying of
constraints when a value of one variable is changed. The proposed algorithm fits in
our concept of plug-in architecture of constraint hierarchy solvers.

Keywords: constraint hierarchies, constraint solver, constraint network, plug-in
architecture.
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1. I NTRODUCTION

Constraint hierarchies were introduced for describing over-constrained systems of
constraints by specifying constraints with hierarchical strengths or preferences2.
Constraint hierarchies are widely used in areas like HCLP (Hierarchical Constraint Logic
Programming) [8, 23] – an extension of CLP (Constraint Logic Programming) [13] to
include constraint hierarchies, CIP (Constraint Imperative Programming) [14] – an
integration of declarative constraint programming and imperative object-oriented
programming, and graphical user interfaces construction [7]. The major advantage of
constraint hierarchies is their declarative expression of preferences or strengths of
constraints rather than encoding them in the procedural parts of the language.

In a constraint hierarchy, the stronger a constraint is, the more it influences the
solution of the hierarchy. Additionally, constraint hierarchy allows “relaxing” of
constraints with the same strength via weighted-sum, least-squares or similar methods.

Another important aspect of constraint hierarchies is also the existence of efficient
satisfaction algorithms. Satisfaction algorithms, in other words constraint hierarchy
solvers, can be classified into two groups: algorithms based on refining method and local
propagation algorithms. Each group has its advantages and disadvantages but what they
have in common is the ad-hoc method used for their construction. Almost all current
constraint hierarchy solvers are designed for a specific comparator or for a certain type of
constraints.

In this paper we propose a generalized algorithm for solving constraint hierarchies.
This algorithm embraces both refining and local propagation concepts, hence it is at once
enough efficient and satisfactory general. The algorithm solves constraint hierarchies,
even if some constraints must be solved simultaneously, by dividing them into constraint
cells as much as possible. By constructing a constraint network/graph it also supports
“constraint planning”, i.e., the method of smart resatisfying of constraints when a value
of one variable is changed. The division of a constraint solving algorithm into two stages,
i.e., the planing and the execution stages, is typical for local propagation and we preserve
this feature in our algorithm too. Actually, we concentrate on the planing stage of the
algorithm there as it is independent of the type of constraints and of the chosen
comparator.

The proposed algorithm fits in our concept of modular plug-in architecture of
constraint hierarchy solvers [1]. It means, e.g., that it is possible to construct various
hierarchy solvers by adding modules with miscellaneous comparators and flat constraint
solvers.

Although the proposed algorithm shares similar ideas with the DETAIL algorithm
[10], it is completely different. While the DETAIL  works with equality (functional)
constraints and concentrates especially on removing cycles and conflicts from constraint
graphs, we mainly focus on support of all types of constraints. Also, the DETAIL allows
constraints with different strengths to be in one constraint cell, whereas our algorithm
gathers only equally preferred constraints in the constraint cell. It admits the hypothesis
that our constraint graphs are more structured, but then, we need more sophisticated
execution phase.

2 Another method for describing over-constrained systems is PCSP (Partial Constraint Satisfaction
Problems).
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The paper is organized as follows. In Sections 2 and 3, we present a short preview
of the theory of constraint hierarchies followed by a brief catalogue of well-known
constraint hierarchy solvers. The advantages and disadvantages of various constraint
hierarchy solvers are also discussed there. In Section 4, we describe a general plug-in
architecture of constraint hierarchy solvers. The Section 5 is dedicated to analysis of
limits of local propagation. We introduce the notions of a constraint cell and of a
constraint network in Section 6. We also give two sketches of planning algorithms for
constructing constraint networks there. In Section 7, we give a preview of the execution
algorithm that computes the evaluation of variables. We conclude with a summary of the
paper.

2. CONSTRAINT HIERARCHIES

A theory of constraint hierarchies was developed in [6]. It allows the user to specify
declaratively not only constraints that must hold, but also weaker, so called soft
constraints at an arbitrary number of strengths. Weakening the strength of constraints
helps to find a solution of previously over-constrained system of constraints. This
constraint hierarchy scheme is parameterized by a comparator C that allows us to compare
different possible solutions to a single hierarchy and to select the best ones.

Intuitively, the stronger a constraint is, the more it influences the solution of the
hierarchy. Consider, e.g., an over-constrained system of two constraints: x=0  and x=1 .
The user can attach a preference or strength to both constraints: x=0@strong  and
x=1@weak, and the arising constraint hierarchy yields the solution {x/0 }. This
property also enables programmers to specify preferential or default constraints those
may be used in case the set of required, so called hard constraints is under-constrained
(has more solutions). Moreover, constraint hierarchies allow “relaxing” of constraints
with the same strength by applying, e.g., weighted-sum, least-squares or similar
methods.

For purposes of the introduction to constraint hierarchies we will use the former
definition of constraint hierarchies [8] which is simpler but also a bit different (e.g., it
does not support regionally-better comparators) from the more recent definition [23].

A constraint is a relation over some domain D. The domain D determines the
constraint predicate symbols ΠD of the language. A constraint is thus an expression of

the form p(t1,…tn) where p is an n-ary symbol in ΠD and each ti is a term. A labeled
constraint is a constraint labeled with a strength, written c@l where c is a constraint and l
is a strength. The set of strengths is finite and totally ordered and it is usually given by
the user.

A constraint hierarchy is a finite set of labeled constraints. Given a constraint
hierarchy H, H0 is a vector of required constraints in H, in some arbitrary order, with
their labels removed. Similarly, H1 is a vector of strongest non-required constraints in H
up to the weakest level Hn, where n is a number of non-required levels in the hierarchy
H. We also define Hk=∅  for k>n. Note, that constraints in Hi are stronger (more
preferred) than those in Hj for i<j .

A valuation for a set of constraints is a function that maps free variables in the
constraints to elements in the domain D over which the constraints are defined. A solution
to a constraint hierarchy is such a set of valuations for the free variables in the hierarchy
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that any valuation in the solution set satisfies at least the required constraints, i.e., the
constraints in H0, and, in addition, it satisfies the non-required constraints, i.e., the
constraints in Hi for i>0 , at least as well as any other valuation that also satisfies the
required constraints. In other words, there is no valuation satisfying the required
constraints that is “better” than any valuation in the solution set. Formally:

S0 = { θ | ∀ c∈ H0  cθ holds }
S = { θ | θ∈ S0 & ∀σ∈ S0 ¬  better(σ,θ,H) },

where S0 is a set of valuations satisfying required constraints and S is a solution set.

There is a number of reasonable candidates for the predicate better which is called a
comparator. We insist that better is irreflexive and transitive, however, in general, better
will not provide a total ordering on the set of valuations. We also insist that better
respects the hierarchy, i.e., if there is some valuation in S0 that completely satisfies all the
constraints through level k, then all valuations in S must satisfy all the constraints
through level k:

if ∃θ∈ S0 ∃ k>0  such that ∀ i∈ {1,..,k} ∀ c∈ Hi  cθ holds
then ∀σ∈ S ∀ i∈ {1,..,k} ∀ c∈ Hi  cσ holds.

To define various comparators we first need an error function e(c,θ) that returns a non-

negative real number indicating how nearly a constraint c is satisfied for a valuation θ.
The error function must have the following property:

e(c,θ)=0 ⇔  cθ holds.

For any domain D, we can use the trivial error function that returns 0 if the constraint is
satisfied and 1 if it is not.

Currently, there are two different groups3 of comparators: locally-better and
globally-better comparators. The locally-better comparators consider each constraint
individually. They are defined by the following way:

locally-better(θ,σ,H) ≡def

∃ k>0 ∀ i∈ {1,É,k-1} ∀ c∈ Hi  e(c,θ)=e(c,σ) &
∃ c'∈ Hk e(c',θ)<e(c',σ) & ∀ c∈ Hk e(c,θ)²e(c,σ).

We can define a special type of locally-better comparator, locally-predicate-better (LPB)
comparator to be locally-better using the trivial error function.

 The globally-better comparators combine errors of all the constraints at a given level
Hi using a combining function g, and then compare the combined errors. They are
defined as follows:

globally-better(θ,σ,H,g) ≡def

∃ k>0 ∀ i∈ {1,É,k-1} g(θ,Hi)=g(σ,Hi)  &
g(θ,Hk)<g(σ,Hk).

Using globally-better schema, we can define three global comparators, using different
combining function g. This comparator triple enables the user to add a positive real
number, called weight, to each constraint. Weights allow relaxing of constraints with the
same strength then. The weight for constraint c is denoted by wc.

3 The recent definition of constraint hierarchies [23] also supports another type of comparator called
regionally-better.
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weighted-sum-better(θ,σ,H) ≡def  globally-better(θ,σ,H,g),
where g(τ, Hi ) = wc∗e(c,τ)

c∈Hi

∑
worst-case-better(θ,σ,H) ≡def  globally-better(θ,σ,H,g),

where g(τ, Hi ) = max
c∈Hi

wc∗e(c,τ){ }
least-squares-better(θ,σ,H) ≡def  globally-better(θ,σ,H,g),

where g(τ, Hi ) = wc∗e2 (c,τ)
c∈Hi

∑ .

3. CONSTRAINT HIERARCHY SOLVERS

An important aspect of constraint hierarchies is that there are efficient satisfaction
algorithms proposed. We can categorize them into the following two approaches:

The refining algorithms first satisfy the strongest level, and then weaker levels
successively.

The local propagation algorithms gradually solve constraint hierarchies by repeatedly
selecting uniquely satisfiable constraints.

To illustrate both approaches consider, e.g., the following constraint hierarchy:

x=y@required, x=z+1@strong, z=1@medium, x=1@weak .

The refining algorithm first solves the required constraint x=y  with the result
{ x / V , y / V }, followed by the strong constraint x = z + 1  leading to
{x/Z+1,y/Z+1,z/Z }. Then, it evaluates the medium constraint z=1  and gets solution
{ x/2,y/2,z/1 }. Finally, it attempts to solve the weak constraint x=1  but as it
conflicts with the assignment generated by the stronger constraints, it remains
unsatisfied.

By contrast, the local propagation algorithm first solves the medium constraint z=1 ,
then propagates the value {z/1 } through the strong constraint x=z+1 , i.e., computes
{ x/2,z/1 }, and, finally, through the required constraint x=y , i.e., {y/2,x/2,z/1 }.
Note, that the weak constraint x=1  remains unsatisfied as it was rejected by the stronger
constraints.

The refining method is a straightforward algorithm for solving constraint hierarchies
as it follows the definition of solution, in particular the property of respecting the
hierarchy. It means that the refining method can be used for solving all constraint
hierarchies using arbitrary comparator. Its disadvantage is recomputing the solution from
scratch everytime a constraint is added or retracted. The refining method was first used in
a simple interpreter for HCLP programs [8] and it is also employed in the DeltaStar
algorithm [23] and in a hierarchical constraint logic programming language CHAL. We
show later (Section 6) that our generalized framework for solving constraint hierarchies
covers the refining method.

Local propagation takes advantage of the potential locality of typical constraint
networks, e.g., in graphical user interfaces. Basically, it is efficient because it uniquely
solves a single constraint in each step (execution phase). In addition, when a variable is
repeatedly updated, e.g., by user operation, it can easily evaluate only the necessary
constraints to get a new solution. This straightforward execution phase is paid off by a
foregoing planning phase that choose the order of constraints to satisfy.
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Local propagation is also restricted in some ways. Most local propagation
algorithms (DeltaBlue [18], SkyBlue [17], QuickPlan [20], DETAIL [10], Houria [9]) can
solve only equality constraints, e.g., linear equations over reals. The exception is the
Indigo [5] algorithm for solving inequalities that combines local propagation and refining
method. We borrowed the main idea behind the Indigo algorithm, i.e., the propagation of
the set of values, to our algorithm. The local propagation algorithms also usually use
locally-predicate comparator or its variant respectively. Only Houria III and DETAIL can
use globally comparators and Indigo uses metric comparator. Finally, local propagation
cannot find multiple solutions for a given constraint hierarchy due to the uniqueness.

4. A PLUG- I N ARCHITECTURE OF HCLP  SOLVER

Almost all current constraint hierarchy solvers have at least one common property. They
are constructed ad-hoc for a limited class of constraints and using only one particular
comparator or a small group of similar comparators respectively. The common reason for
doing it is the (mis)belief that a more specialized solver is also a more efficient one. In [1]
we suggest to use a more general architecture of constraint hierarchy solver without loss
of efficiency.

The structure of the proposed plug-in architecture follows directly from the
definition of a constraint hierarchy solution. It extends and generalizes the architecture of
the simple HCLP interpreter [8] for support of various comparators and flat constraint
solvers. The following figure shows the plug-in architecture of a constraint hierarchy
system.

meta-interpreter
general hierarchy 
solver

comparator
code

flat constraint 
solver

plug-in 
modules

kernel

Figure 1 (plug-in architecture)

The kernel of the architecture includes a meta-interpreter or, more generally, a core
system exploiting constraint hierarchies. The second part of the kernel is a general
hierarchy solver which defines a universal method for solving constraint hierarchies. The
general hierarchy solver should be independent of a chosen comparator and of a chosen
set of constraints which depends on the domain D. It reflects the method used for solving
constraint hierarchies, i.e., currently the refining method or the local propagation
respectively. We described a general hierarchy solver based on refining method in [1] and
we concentrate on generalized algorithm for solving constraint hierarchies that is based on
local propagation but also covers refining method in this paper

The extension part of the architecture forms a pair of plug-in modules. There is a
plug-in module which implements a particular comparator and which closely cooperates
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with the second module, a flat constraint solver. The services provided by the flat
constraint solver depend on demands of the comparator module.

The arrangement of elements in the Figure 1 is not self-involved. It expresses the
binds and data-flow between individual components, i.e., the higher module calls
services of the lower module(s).

In [1] we identified two typical services provided by the general hierarchy solver,
i.e., adding a labeled constraint to a constraint hierarchy (planning) and solving a
constraint hierarchy (executing). Although the parts implementing these two services do
not call each other, they are closely related through sharing the data structure which
describes the hierarchy of constraints. Hence, we usually do not separate them into two
modules. However, according to the conception of data-flow between modules we can
draw the structure of the general hierarchy solver in a following way.

general hierarchy 
solverplanning

e
xe

c.

Figure 2 (structure of the general hierarchy solver)

Note, that the planning
module  does not
communicate neither with
the comparator module
nor the flat constraint
solver and thus it is fully
independent of a chosen
comparator and of a
chosen set of constraints.

The names of the general hierarchy solver submodules correspond to the obvious phases
of the local propagation solver. The planning and the execution phases can also be
identified in our generalized algorithm.

The difference between the refining method and the local propagation in terms of
planning and executing modules is the complexity of a particular module. While the
refining method uses simple planning, i.e., distributing labeled constraints into levels
according to strength [1], the local propagation algorithms employ a more complex
planning phase which converts a set of labeled constraints into a constraint graph [18].
Contrary, the execution phase of the refining method is usually much more complicated
that the execution phase of the local propagation. The generalized algorithm for solving
constraint hierarchies, which is presented in following sections, is flexible enough to
scale between these two extremes.

5. L OCAL PROPAGATION L IMITS I N DEPTH

When we investigated the limits of the local propagation algorithms we identify the
following problems:

• solving conflicts among constraints is sometimes inappropriate
• local propagation cannot handle cycles of constraints
• local propagation works only with equality (functional) constraints
• local propagation supports only locally predicate better comparators
• local propagation cannot find multiple solutions.

As the execution phase of the local propagation requires every variable to be computed by
just one constraint, the planning phase has to choose among conflicting constraints which
bound the variable. However, solving this conflict is sometimes impossible, e.g., when
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constraints have the same strength (x=1@strong, x=2@strong), and sometimes it is too
restrictive, i.e., a weaker constraint (y=1@weak) is disabled (assumed unsatisfied) to
enable satisfying of a stronger constraint (y=1@strong) even if the weaker constraint is
also satisfied.

The execution phase of the local propagation is a linear process. It means that when
a constraint computes the value of one of its variables, the values of all other variables in
the constraint have to be known, i.e., the values of these variables have had to be
computed by other constraints before. This feature disables solving the set of constraints
containing the same variables, e.g., the system of equations (x+y=3, x-y=1). Such a
system of constraints corresponds to the cycle in the constraint graph, hence we speak
about cycles of constraints. Some local propagation algorithms solve constraint cycles by
evoking an external solver [7].

We mentioned the way a constraint is used to compute the value of one of its
variables in the above paragraphs. The constraint is assumed there to be a function that
computes the value of the output variable from the values of input variables. However,
this approach disables many types of constraints like inequalities.

Every constraint, which is used in the execution phase, is completely satisfied while
other constraints are entirely disabled during the planning phase. It implies the application
of the predicate type of comparator in the classical local propagation. As every constraint
is considered individually in the constraint graph it indicates the usage of the locally-better
comparator. Local propagation also cannot find multiple solutions due to the uniqueness
of satisfying constraints.

6. CONSTRAINT NETWORKS AND PLANNING

By addressing problems of the local propagation we made the first step to improve the
generality of local propagation algorithms. To eliminate most of the mentioned problems
we introduce constraint cells which can contain more than one constraint and which have
different functions. The constraint cell containing more constraints can easily handle
conflicts between constraints with the same strength as well as it can naturally manage the
constraint cycles (Figure 3). By encapsulating the constraints into a constraint cell we
also enable using of more types of comparators including globally-better ones.

We suggest several types of constraint cells. There are “normal” cells, called
functional cells, containing only one functional constraint that can uniquely compute its
output variable(s) from input variables. These cells are the only one enabled by the
classical local propagation and the constraints in these cells are known to be completely
satisfied independently of the values of the input variables. Then, there are “generalized
functional” cells, called generative cells, containing constraints which can propagate sets
of values of input variables to the set of values of output variable(s). As they can generate
a set of values they enable finding multiple solutions. Nevertheless, it is also possible that
a constraint in the generative cell is not satisfied according to the values of the input
variables. Finally, we introduce test cells which, rather that computing a value of any
variable, test the satisfiability of constraint(s) according to given values of input
variables.
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former approach our generalized approach

conflict

constraint cycle

x=1@strong x=2@strong x=1@strong, x=2@strong

x+y=3@strong, x-y=1@strong
x+y=3@strong

x-y=1@strong
x

y
x,y

x

x

Figure 3 (removing conflicts and constraint cycles)

Individual constraint cells are connected into a constraint network similar to
constraints graphs from classical local propagation. This network is created and
maintained by the algorithm of the planning phase. Note, that this algorithm is completely
independent of a particular type of constraints or used comparator. Due to a more
complex structure of the constraint cell we shall also need a more sophisticated algorithm
of the execution phase. This algorithm will use a particular comparator and constraint
solver to find a solution by tracing the constraint network. Before we proceed to the
formal definition of the constraint cell and related notions we depict some examples of
constraint cells (we omit the strengths of constraints in the figure). Note that every
constraint, even the equality, can be in a generative or a test cell.

x+1=y

FUNCTIONAL CELL GENERATIVE CELL TEST CELL

x

{1,2,4}

{0,1,3}
x

x  ≤y2

{1}

{-1,0,1}
x  ≤y2

{0,1} {6}

yes

x yyy

Figure 4 (types of constraint cells)

DEFINITION 1: (constraint cells)
Let C is a finite non-empty set of labeled constraints with the same strength
and V is a set of all variables in constraints from C. For arbitrary sets of
variables In,Out⊆ V such that In∪ Out=V and In∩ Out=∅  we define a
constraint cell as a triple (C,In,Out). For every variable v we define a
constraint cell ({},{},{v}) containing only the output variable v.
We call the sets In and Out from the constraint cell (C,In,Out) input and output
variables respectively.
We also say that constraint cell (C,In,Out) determinates each variable from the
set Out.
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DEFINITION 2: (classification of constraint cells)
We classify constraint cells into the following groups:

• free variable ({},{},{v})
• functional constraint cell ({c@l},In,Out) such that for arbitrary

evaluation θ of variables from In there exists a unique valuation σ
of variable(s) in Out such that cθσ holds

• generative constraint cell (C,In,Out) such that C≠∅  and Out≠∅  and
(C,In,Out) is not functional

• test (C,In,∅ )
• undecidable constraint cell is a generative constraint cell or a test

Free variables and functional cells are well known from classical constraint graphs while
generative cells and tests are contribution of this work. A constraint in a functional cell is
always satisfied but we cannot decide whether constraints in generative cells and tests are
satisfied during the planning phase. Thus, we call undecidable both the generative and
test cells.

DEFINITION 3: (internal strength)
The internal strength of the constraint cell (C,In,Out) is the strength of any
constraint in C. The internal strength of the constraint cell ({},{},{v}) is ‘free’
which is the strength that is weaker than any other strength of constraints.

DEFINITION 4: (constraint network)
Let H is a constraint hierarchy, i.e., a finite set of labeled constraints, and V is
a set of all variables in constraints from H. We call a pair (CC,E) a constraint
network if the following conditions hold:

1) (CC,E) is a directed acyclic graph with nodes CC and edges E
2) CC is a finite set of constraint cells containing only constraints from H,

i.e.,
∀ Cell∈ CC such that Cell=(C,In,Out)   C⊆ H

3) every constraint from H is located in just one constraint cell, i.e.,
∀ c∈ H  ∃!  Cell∈ CC such that Cell=(C,In,Out) & c∈ C

4) every variable from V is determined by just one constraint cell, i.e.,
∀ v∈ V  ∃!  Cell∈ CC such that Cell=(C,In,Out) & v∈ Out

5) for every constraint cell Cell there exist edges in E directed from constraint
cells determining the input variables of Cell, i.e.,
∀ Cell,Cell’∈ CC

Cell=(C,In,Out) & Cell’=(C’,In’,Out’) & In∩Out’≠∅  ⇒  (Cell’,Cell)∈ E
6) for every undecidable constraint cell there does not exist an upstream

constraint cell which has the same or weaker internal strength, i.e.,
∀ Cell∈ CC

Cell is undecidable ⇒  ∀ Cell’∈ CC such that there exists a directed path
from Cell’ to Cell (Cell’ is upstream to Cell),
Cell’ has a stronger internal strength than Cell
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7) there does not exist “downstream forking” in an undecidable cell
directed to other undecidable constraint cells, i.e.,
∀ Cell,Cell’∈ CC
Cell and Cell’ are undecidable & there does not exist directed path
neither from Cell to Cell’ nor from Cell’ to Cell

⇒
∀ Cell’’ ∈ CC such that Cell’’ is upstream both to Cell and Cell’,
Cell’’ is not undecidable (i.e., it is a functional constraint cell)

The first five points of the constraint network definition are obvious conditions from
traditional constraint graphs extended to cover the constraint cells. Thus, the proposed
constraint network is a generalization of the former concept of constraint graphs
[9,17,18,20]. The new conditions 6 and 7 of the Definition 4 are the contribution of this
work. They help us to keep linearity and thus effectiveness of the execution algorithm.
As the execution algorithm, computing values of variables, traverses downstream the
constraint network, it has to be sure that using a constraint cell to compute its output
variables does not disable any stronger constraint later, i.e., downstream the network.
The condition 6 preserve this feature. The condition 7 keeps up the linearity of the
execution algorithm.

The following figure shows two constraint networks corresponding to the same
constraint hierarchy. It implies that there can exist more sound planning algorithms which
construct the constraint networks. While the net on the right corresponds to the refining
method (all constraints of the same strength are in one cell), the left net is more structured
and thus it can more exploit local propagation methods (viz. Section 7).

a=5,b=5,c=100,d=200

a=50

d≤100

a≥10
a

b≥20
b

c+25=d
d

weak

medium

strong

required

required

requiredrequired

GG

F

F

T

T

T
a=5,b=5,c=100,d=200

a=50

d≤100

weak

medium

strong

T

T

T

a≥10,b≥20,a+b=c,c+25=d

a,b,c,d required

G

a+b=c
c

internal strength

output variable(s)

cell category
F-functional
G-generative
T-test

c+25=d
d required

F

constraint cell

Figure 5 (constraint networks)
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The constraint net is incrementally constructed by adding labeled constraints. This stage
is usually called planning. We present two planning algorithms in the following
paragraphs.

The first algorithm builds constraint nets similar to the right net in the Figure 5. This
algorithm behaves in a following way. If there exists a cell with internal strength equal to
the strength of the added constraint, then the algorithm adds the constraint into this cell.
Otherwise, it creates a new cell containing this constraint. In the second phase the
algorithm decides which variables of the added constraint are input and output
respectively. Finally, it adds all necessary edges such that all conditions of the Definition
4 are satisfied. Note, that this algorithm does not use the free variable cells. While this
planning algorithm is very simple, it requires the execution phase to mimic the refining
method and, thus, to be ineffective.

Instead of formal description of the algorithm we give an example of adding a
constraint to the net. The following figure shows the process of gradual addition of two
constraints into the constraint net (read left to right).

d=200@weak

a+b=c
a,b,c required

G
a+b=c
a,b,c required

G
a+b=c
a,b,c required

G

a=5,d=200

d weak

G

a=5
weak

T
a=5,d=200

weak

T

d≤100
d

G

strong

d≤100@strong

Figure 6 (constraint planning-refining method)

Note, that the shade edge between the required and the strong cell in the rightmost net is
not entailed by the definition of the constraint network, nevertheless, this edge is also not
explicitly forbidden by the definition. As we expect the execution algorithm to traverse
the net from stronger to weaker cells (the refining method), the auxiliary edges can help
to better navigate the constraint network.

The sophisticated planning algorithm, that builds structuralized constraint nets like
the left net in the Figure 5, keeps the constraint cells as small as possible. This feature of
the constraint network is desirable as it enables the execution algorithm to exploit the local
propagation as much as possible. Lets us call this planning algorithm a gentle planner
contrary to the raw planner that we described above.

The principle of the gentle planner is not complicated. First, the gentle planner tries
to add a constraint as a new functional cell. If it does not succeed it adds a constraint as a
new generative or test cell. Adding a constraint as a functional cell is almost identical to
adding the constraint to a constraint graph using classical local propagation algorithm like
DeltaBlue [18]. Nevertheless, we have to keep all conditions from the Definition 4
satisfied. In particular, we have to remove the downstream forking of undecidable cells
that could possible arise after adding a new cell. The following figure sketches the
process of removing the downstream forking.
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strong
G

G/T
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prefer

G/T

new edge added to remove 
the downstream forking

strong
G

G/T

weak

G/T

weak

strong
G

G/T

weak

join cells with the 
same internal 
strength

Figure 7 (removing downstream forking)

When it is not feasible to add a constraint as a functional cell, it is added as a generative
or test cell. To satisfy the conditions 6 and 7 from the Definition 4 we possibly need to
join some cells into one cell. The following figure shows example of adding constraints
as generative cells.
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b weak
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@strong

b≥20
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G

b
a≥10

strong

G

a

a+1=b,b≤25
weak

T

a≥10
@strong

Figure 8 (constraint planning-gentle planner)

Some constraint cells can be deleted from the constraint net during the process of adding
a constraint. Constraints from these cells are repeatedly added to the net till all constraints
are in the net.

7. EXECUTION PHASE

In this section we will briefly demonstrate one possible algorithm of the execution phase
of the generalized constraint hierarchy solver. We expect that many other algorithms of
the execution phase can be developed to exploit the proposed structure of the constraint
network.

The algorithm presented in this section is based on ideas behind the Indigo
algorithm [5]. It means that the algorithm finds a solution of constraint hierarchy
containing equality and inequality constraints over reals using locally-error-better
comparator (i.e., locally better comparator that uses non-trivial error function). The
proposed algorithm propagates set of values or intervals (in the weak version) through
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the constraint network in a similar way like the Indigo algorithm does. However, our
algorithm is able to find multiple solutions contrary to the Indigo.

To demonstrate the algorithm we use the constraint hierarchy whose constraint
network is depicted in the Figure 5 (the network on the left). First of all, the algorithm
topologically sorts the constraint cells. In this particular case there are two orderings (left
to right):

a≥10, b≥10, a+b=c, c+25=d, d≤100, a=50, {a=5,b=5,c=100,d=200}

b≥10, a≥10, a+b=c, c+25=d, d≤100, a=50, {a=5,b=5,c=100,d=200}.

We choose the first sequence and apply directly the Indigo algorithm to the first hexad of
constraint cells from this sequence. As every cell in this hexad contains just one
constraint we do not need to change the nature of the Indigo algorithm. We get the
following partial solution [5]:

a/50, b/{20…25}, c/{70…75}, d/{95…100}.

To get a final solution we choose an arbitrary ordering of constraints in the last constraint
cell and apply the Indigo algorithm again. As it is possible to pick the ordering of
constraints in the constraint cell it is conceivable to get multiple solutions. The following
table shows all final solutions (valuations).

ordering of constraints in the last cell solution
starts with b=5, e.g.,
    b=5, a=5, c=100, d=200

a/50, b/20, c/70, d/95

starts with c=100 or d=200, e.g.,
     c=100, a=5, b=5, d=200 or
    d=200, a=5, b=5, c=100

a/50, b/25, c/75, d/100

Note that applying the Indigo algorithm to the constraint cell containing more constraints
is justified by using the locally better comparator. When we choose another type of
comparator we have to use another method for solving such cells. However, the frame of
the algorithm, i.e. propagation of sets of values through the constraint network, remains
the same and thus the modularity of the algorithm is preserved (viz. Section 4).

In addition to finding multiple solutions, the sketched algorithm of the execution
phase can solve the constraint hierarchy more effectively than the Indigo in some cases
(the above example is not such a case). While the Indigo sorts constraints according to
their strengths only, our algorithm uses topological ordering of constraint cells in the
constraint network. Therefore, it is available to place as many as possible functional cells
at the beginning of the sequence even if their internal strength is weaker than the strength
of other cells and to place as many as possible of the rest functional constraints at the end
of the sequence. Then, we can exploit the classical local propagation which is more
effective than the Indigo, while the Indigo is used only in the central part of the sequence.
The following figure shows such an ordering (the signs F, G and T denote functional,
generative and test cells respectively).
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Figure 9 (smart ordering of constraint cells)

Note, that conditions 6 and 7 of the Definition 4 justify the usage of the Indigo algorithm
in the central part of the sequence. These conditions ensure that all topological orderings
of the constraint cells can be correctly used by the Indigo algorithm which requires
stronger constraints to precede the weaker constraints.

CONCLUSIONS

In this paper we presented a generalized algorithm for solving constraint hierarchies and
we showed how this algorithm fits in our concept of plug-in architecture of constraint
hierarchy solvers. We addressed some drawbacks of classical local propagation
algorithms and, consequentially, we defined more general notions of constraint cell and
constraint network. The proposed concept of constraint network is a generalization of
former constraint graphs. In particular, we concentrated on the planning phase of the
proposed algorithm that constructs the constraint network. We also sketched an algorithm
of the execution phase that is based on ideas behind the Indigo algorithm. The presented
algorithms are instances of a general framework for solving constraint hierarchies based
on constraint networks. This framework is a main subject of our future research.
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