VisOpt JobShop — The Solver Behind 1of3 11.6.1999

Contents

Problem Areas

Background

VisOpt JobShop
The Solver behind the User Interaction

Roman Bartak

InSol Ltd., Haifa, Israel
Web: http://www.insol.co.il/
e-mail: bartak@insol.co.il

This document describes the scheduling part of the VisOpt system from the end-user point of
view. First, we specify the problem areas that the scheduler is suitable for. Then, we describe
the technology behind the scheduler and finally we look at the “internals” of the scheduling
engine.

In general, the VisOpt scheduler is appropriate for almost all production scheduling problems.
In particular, we concentrate on problems where many different types of resources appear. We
call such problems heterogeneous because the resources involved in the scheduling task can be
of many different types, like producer, mover, store, tool, worker, etc. Actually, we include
custom and purchase orders among resources because, in our terminology, resource is
everything that is being scheduled®. Note that the scheduling engine is (almost) independent of
particular structure of resources so it is possible to extend the scheduler with other resource

types.

The VisOpt scheduler is especially suitable for complex environments. It is possible to specify
various transitions between subsequent activities of the resource including different set-up,
change and processing times. It is also possible to express dependencies between resources, the
most natural dependency is supplier-consumer relation.

The ability to express many constraints (even user defined) between parameters of resources is
another advantage of the VisOpt scheduler. Because we use the constraint technology behind
the scheduler (see next section) we are capable of capturing many dependencies in a very
natural way for the user. Of course, the scheduler follows all these dependencies so the final
schedule is consistent according to the user’s specifications.

Moreover, the scheduler does not find an arbitrary schedule but a schedule close to the
optimum. We use the notion of cost (or profit) as a measure of optimality so the scheduler tries
to minimise the cost (or maximise the profit). The user can specify various cost functions from
the fixed cost to the cost being dependent on other parameters. The scheduler is capable of
finding an optimal schedule but this is usually too (time) expensive. Therefore, the scheduler
returns any “good” solution first (it is up to the user to define what is good) and, if there is time
left, the scheduler can improve the plan even more.

Because of above features, we intend the VisOpt scheduler for very complex areas like plastic
petrochemical, chemical or pharmaceutical industries.

There is a sophisticated technology behind the scheduler in VisOpt called constraint
programming (CP), originating from Artificial Intelligence (Al). It is based on idea of
describing the problem as a set of constraints, i.e.,, dependencies among parameters
(unknowns), and solving these constraints.

In general, a constraint is an arbitrary relation among several unknowns. It is possible to
describe dependencies between unknowns with different domains (numbers, strings, names,

! purchase and custom orders are scheduled because we have to find the exact time of the order and the structure of the order (number of

items, etc.)

Insol Ltd.

Intelligent Solutions

Roman Bartak

VisOpt JobShop — The Solver Behind 20f3 11.6.1999

Scheduling Engine

etc.), so many real-life relations can be captured in natural way. Here are some examples of
constraints (of course, we are able to model all of them in the VisOpt scheduler):

at time interval <1,10> six workers with the qualification x are available

it takes five minutes to start (or to load) the machine

before producing item B we need at least eight hours of production of item A
if tool 1 is used then the production rate is 5, otherwise the production rate is 2.

As the above examples show, the problem specification using constraints is very close to user’s
point of view and, consequently, the end-user understands what is loaded into the system. This
is one of the main advantages of constraint programming as opposed to other approaches, such
as operational research.

Constraint programming is a close approach to the Holy Grail of computing: a user states a
problem and the computer solves it. Of course, there is a powerful technology in the
background that is responsible for solving the problems modelled by constraints. This solving
technology is based on searching, an ancient Al technology where the constraints are used to
reduce the search space. Therefore we do not need to explore all possibilities, e.g., all possible
schedules, but only such solutions that satisfy the constraints. This improves the efficiency
dramatically. It is also possible to look for best (optimal) solutions using some objective
function describing how good the particular solution is. One of the advantages is that we can
get sub-optimal solutions in specified time so it is not necessary to wait for optimum if we are
satisfied with the current solution. Finally, constraint programming allows using of heuristics, a
user experience expressed in some formal fashion that can improve the efficiency even more.

We utilise the constraint technology in the VisOpt scheduler, which allows us to prepare
general engine capable of solving various scheduling problems. The scheduling engine is based
on the resource-centric model®, i.e., we schedule the behaviour of individual resources
according to the internal limits of these resources (state transitions, etc.) and dependencies
between resources. There are certain advantages achieved, for example we can handle by-
products, i.e., products that were not ordered but resulted from producing another product, or
we can work with various production sequences (alternative processes) to satisfy the order. The
important thing is that this model is not dependent on custom orders so it is possible to
schedule the production according to some general rules without necessity of putting in the
orders (e.g., inventory level policy). However, it is possible to use custom orders to drive the
scheduling as well.

Take a look inside the scheduling engine. As we mentioned above, we schedule the behaviour
of each resource. This behaviour is specified by the set (usually a sequence) of activities where
each activity describes some homogenous part of resource life. The activity can have various
parameters, e.g., duration, input specification, etc., and constraints between these parameters. It
is also possible to specify relations between activities of the same resource. Each such relation
is called a transition because it usually describes the transitional rules between successive
activities. Finally, one can specify relations between activities of different resources, like
supplier-consumer relation. We call these relations dependencies.

transition dependency
Purchase Order [Purchase P] ~ [Purchase R] [Purchase R]
Producer 1 | B->A) Produce A » A->B ./ Produce B
L4 L4 L4
Producer 2 [stop y A->B N Produce B N B->A
Ld Ld Ld
Custom Order [orderB] [orderB]
time w~
>

2 There also exists order-centric model that is based on scheduling production sequences for individual orders, i.e., sequences of actions to
satisfy the particular order. However, this model is not able to handle by-products and it cannot be used to schedule non-order driven plants.

Insol Ltd.
Intelligent Solutions

Roman Bartak

VisOpt JobShop — The Solver Behind 30f3 11.6.1999

Conclusions

Insol Ltd.
Intelligent Solutions

The scheduler looks for such schedules that all activity constraints, transitions and
dependencies, appearing in the schedule are valid. Moreover, it is possible to specify a cost (or
profit) of each activity and the scheduler tries to minimise the cost (or maximise the profit) of
the schedule. Because looking for optimal solution is usually too time expensive (and, in fact,
it is not necessary to find optimum) we provide the mechanism for finding sub-optimal
solutions. The user can specify the cost level that is unacceptable for him/her, so the scheduler
does not care about schedules with higher cost. Additionally, the user can specify the cost level
that is acceptable, so if the scheduler finds a schedule with this (or better) cost, it returns the
schedule to the user immediately. Now, if the user is still not satisfied with the schedule it is
possible to ask the scheduler to find an even better schedule (in fact, if there is enough time,
the scheduler is able to find the optimal schedule). It is also possible to stop the scheduler when
it is in the "shadow” zone between the acceptable and unacceptable cost levels. In such case, it
returns current schedule that is not too bad (the cost is lower than the unacceptable level) but it
is still not acceptable as specified by the user (the cost is higher than the acceptable level).
Again, the user can decide whether the schedule is appropriate or whether the scheduler should
find a better schedule. We call such strategy an almost-anytime scheduling because the
scheduler is ready to return some schedule at almost each time.

VisOpt JobShop Scheduler is a generic scheduling engine capable of solving various
scheduling problems, including optimisation.

Roman Bartak

