

TRAJECTORY-BASED
SEARCH METHODS

Michel Gendreau

Département d'informatique et de recherche opérationnelle

and

Centre de recherche sur les transports

Université de Montréal

CP-AI-OR’05 Master Class
Prague, May 29, 2005

 2

ORGANIZATION OF THE TUTORIAL

1. Introduction

2. Neighbourhoods and search spaces

3. Main classes of trajectory based search methods

4. Tabu Search

5. Recent trends in Tabu and Local Search

6. Tricks of the trade

7. References

 There will be a short question period after each part of the tutorial.

INTRODUCTION

• “Tough” combinatorial problems have been around for a
long time and some have attracted a lot of interest
(e.g.: Traveling Salesman Problem)

• Early 70's: complexity theory

 NP-hard problems →

 ↓

Little hope of solving efficiently many important problems

 ↓
What can be done in practical contexts when

solutions are needed?

 ↓

 USE HEURISTIC TECHNIQUES

• constructive heuristics (e.g. “greedy”)

• iterative improvement methods

 3

 4

CLASSICAL LOCAL IMPROVEMENT
HEURISTICS

Key idea:

• In most combinatorial problems, one would expect good

solutions to share similar structures.

• Indeed, the best solutions should be obtainable by

slightly modifying good ones, and so on…

THUS:

• Start with a (feasible) initial solution.

• Apply a sequence of local modifications to the current
solution as long as these produce
improvements in the value of the objective function
(monotone evolution of the objective).

These methods are the basic (and earlier) trajectory
based search methods.

They are usually called “local search” or “neighbourhood
search” methods.

 5

PROBLEMS AND LIMITATIONS

• These methods stop when they encounter a local
optimum (w.r.t. to the allowed modifications).

• Solution quality (and CPU times) depends on the
“richness” of the set of transformations considered at
each iteration of the heuristic.

• Another key factor is the definition of the set of solutions
explored by the algorithm.

 6

SEARCH SPACES

AND

NEIGHBOURHOODS

 7

SEARCH SPACES

• Simply the space of all possible solutions that can be

considered (visited) during the search.

• Could be the set of all feasible solutions to the problem
at hand, with each point in the search space
corresponding to a solution satisfying all the specified
constraints.

• While this definition of the search space might seem
quite natural and straightforward, it is not so in many
settings, as we shall see later in a few illustrative
examples.

 8

NEIGHBOURHOODS

• At each iteration of LS, the local transformations that can

be applied to the current solution, denoted S, define a
set of neighbouring solutions in the search space,
denoted N(S) (the neighbourhood of S).

• N(S) = {solutions obtained by applying a single local
modification to S}.

• In general, for any specific problem at hand, there are
many more possible (and even, attractive)
neighbourhood structures than search space definitions.

 9

EXAMPLES OF SEARCH SPACES AND
NEIGHBOURHOODS

Two illustrative problems:

• Vehicle routing problem

• Capacitated plant location problem (CPLP)

 10

CLASSICAL VEHICLE ROUTING PROBLEM

• G = (V, A), a graph.

• One of the vertices represents the depot.

• The other vertices customers that need to be serviced.

• With each customer vertex vi are associated a demand qi
and a service time ti.

• With each arc (vi, vj) of A are associated a cost cij and a
travel time tij.

• m identical vehicles of capacity Q are based at the depot.

The CVRP consists in finding a set of routes such that:

• Each route begins and ends at the depot;

• Each customer is visited exactly once by exactly one
route;

• The total demand of the customers assigned to each
route does not exceed Q;

• The total duration of each route (including travel and
service times) does not exceed a specified value L;

• The total cost of the routes is minimized.

 11

SEARCH SPACES AND NEIGHBOURHOODS
FOR THE CVRP

Search space:

• Set of feasible routes.

• Allow routes with capacity violations.

• Allow routes with duration violations.

Neighbourhoods:

• Moving a single customer from its route.

• Insertion can be performed simply or in a complex
fashion (e.g., GENI insertions).

• Swap customers.

• Simultaneous movement of customers to different routes
and swapping of customers between routes
(λ-interchange of Osman 1993).

• Coordinated movements of customers from one route to
another (ejection chains).

• Swapping of sequences of several customers between
routes (Cross-exchange of Taillard et al. 1997).

 12

CAPACITATED PLANT LOCATION
PROBLEM (CPLP)
• Set of customers I with demands di, i ε I.

• Set J of “potential sites” for plants.

• For each site j ε J, the fixed cost of “opening” the plant at
j is fj and its capacity is Kj.

• cij: cost of transporting one unit of the product from site j
to customer i.

The objective is to minimize the total cost, i.e., the sum of
the fixed costs for open plants and the transportation costs.

CPLP: MATHEMATICAL FORMULATION

(CPLP) Minimize z = ijij
JjIiJj

jj xcyf ∑∑∑
∈∈∈

+

 subject to Iidx iij
Jj

∈=∑
∈

,

 JjyKx jj
Ji

ij ∈≤∑
∈

,

 JjIixij ∈∈≥ ,,0

 { } Jjyj ∈∈ ,1,0

Formulation variables:

• xij (i ε I, j ε J): quantity shipped from site j to customer i

• yj (j ε J): 0-1 variable indicating whether or not the plant
at site j is open or closed.

 13

Remark 1. For any vector ỹ of location variables, optimal
(w.r.t. to this plant configuration) values for the flow
variables x(ỹ) can be retrieved by solving the associated
transportation problem:

(TP) Minimize z(ỹ) = ijij
JjIi

xc∑∑
∈∈

 subject to Iidx iij
Jj

∈=∑
∈

,

 JjyKx jj
Ji

ij ∈≤∑
∈

,~

 JjIixij ∈∈≥ ,,0

If ỹ = y*, the optimal location vector, the optimal solution to
the original CPLP problem is simply given by (y*, x(y*)).

 14

Remark 2. An optimal solution of the original CPLP
problem can always be found at an extreme point of the
polyhedron of feasible flow vectors defined by the
constraints:

 Iidx iij
Jj

∈=∑
∈

,

 JjKx j
Ji

ij ∈≤∑
∈

,

 JjIixij ∈∈≥ ,,0

This property follows from the fact that the CPLP can be
interpreted as a fixed-charge problem defined in the space
of the flow variables. This fixed-charge problem has a
concave objective function that always admits an extreme
point minimum. The optimal values for the location
variables can easily be obtained from the optimal flow
vector by setting yj equal to 1 if ,0>∑

∈
ij

Ii
x and to 0

otherwise.

 15

 16

SEARCH SPACES AND NEIGHBOURHOODS
FOR THE CPLP

Search space:

1) Full feasible space defined by all variables.

2) Space defined by location variables.

3) Set of extreme points of the set of feasible flow vectors.

Neighbourhoods:

• Depend upon the search space chosen.

• For 2), one can use “Add/Drop” and/or “Swap”
neighbourhoods.

• For 3), moves defined by the application of pivots to the
linear programming formulation of the transportation
problem, since each pivot operation moves the current
solution to an adjacent extreme point.

A TEMPLATE FOR LOCAL SEARCH

To maximize)(Sf over some domain

Define: S, current solution,

 f *, value of the best-known solution,

 S*, this solution,

)(SN , the "neigbourhood" of S (solutions obtained from S
by a single transformation).

Initialization
Choose (construct) an initial solution 0S

Set S:= 0S , f * := f (0S) , S* := 0S .

Search
While local optimum not reached do

●

)(
maxarg:

SNS
S

∈′
∈ [f(S’)];

● if *)(fSf 〉 , then SSSff == :*,)(:* .

 17

 18

MAIN CLASSES OF LOCAL SEARCH
METHODS

Simple Local Search
• The simplest of all LS approaches
• Consists in constructing a single initial solution and

improving it using a single neighbourhood structure until
a local optimum is encountered.

• Two variants of simple LS:
− “Best improvement”
− “First improvement”

Multi-start Local Search
• A simple extension to the simple LS scheme
• Several (usually randomly generated) initial solutions
• Apply to each of them this simple scheme, thus

obtaining several local optima from which the best is
selected and returned as the heuristic solution.

 19

SIMULATED ANNEALING

• Kirkpatrick, Gelatt and Vecchi (1983)
• Based on an analogy with the cooling of material in a

heat bath.
• Metropolis’ algorithm (1953)
• Solutions <—> Configurations of particles
• Objective function <—> Energy of system
• Can be interpreted as a controlled random walk in the

space of solutions:
– Improving moves are always accepted;
– Deteriorating moves are accepted with a

probability that depends on the amount of the
deterioration and on the temperature (a parameter
that decreases with time).

• Extensions/generalizations: deterministic annealing,
threshold acceptance methods.

• Local search methods in which deterioration of the
objective up to a threshold is accepted.

• As in SA, the threshold decreases as the algorithm
progresses.

 20

VARIABLE NEIGHBOURHOOD SEARCH

• Introduced, by Hansen and Mladenović in 1997.

• Use, instead of a single neighbourhood, several of these
in pre-defined sequences.

• Over time VNS has yielded several variants of different
complexity.

• The simplest one, called Variable Neighbourhood (VND),
is clearly the multi-neighbourhood extension of LS.

• In VND, one first performs LS using the first
neighbourhood structure until a local optimum is
encountered; the search is then continued using the
second neighbourhood structure until a local optimum
(w.r.t. to that structure) is encountered, at which point, it
switches to the third neighbourhood structure, and so on
in a circular fashion.

• VND will eventually stop, but only in a point which is a
local optimum for each of the considered neighbourhood
structures.

 21

THE TABU SEARCH APPROACH

• Glover (1977, 1986)

• Hansen (1986: steepest ascent/mildest descent)

• A metaheuristic that controls an inner heuristic designed
for the specific problem that is to be solved.

• Artificial intelligence concepts: maintain a history of the
search in a number of memories.

• Basic principle: allow non-improving moves to
overcome local optimal (i.e. keep on transforming the
current solution...).

• PROBLEM: How can CYCLING be avoided???

� SOLUTION: Keep a HISTORY of the searching process
and prohibit «comebacks» to previous
solutions (tabu moves).

 22

TABUS

● A short-term memory of the search (in general, only a fixed
amount of information is recorded).

● Several possibilities:

- a list of the last solutions encountered (expensive, and not
frequently used);

- a list of the last modifications performed on current solutions;

reverse modifications are then prohibited
 (the most common type of tabus);

- a list of key characteristics of the solutions or of the
transformations

 (sometimes more efficient)

EXAMPLES OF TABUS

Consider the situation where one is solving the TSP with 2-
opt as inner heuristic.

The basic set of transformations at each step consists of
moves obtained by removing two edges []),(),,(lkji ; and
replacing them with edges []),(),,¨(ljki .

Possible tabus

● Forbid tours themselves.

● Forbid reverse transformations []),(),,¨(ljki → []),(),,(lkji

for a few iterations.

● Forbid any transformation involving either),(ki or),(lj
for some time.

● ...

 23

 24

MORE ON TABUS

● Multiple tabu lists can be used and have proved quite
useful in many contexts.

● “Straightforward” tabus can be implemented as circular

lists of fixed length.

● Fixed-length tabus cannot always prevent cycling: many

authors have proposed schemes to vary tabu list length
during execution (Skorin-Kapov, Taillard).

● Another solution: random tabu tags, the duration of a

tabu status is a random variable generated when the
tabu is created.

● Yet another solution: randomly activated tabus, at

each iteration, a random number is generated
indicating how far to look back in the tabu list (which is
otherwise managed like a fixed-length list).

 25

ASPIRATION CRITERIA

● Tabus are sometimes too “powerful”:

 - attractive moves are prohibited, even when there is no
danger of cycling;

 - they can lead to overall stagnation of the searching process.

● Aspiration criteria are algorithmic devices that cancel tabus in
some circumstances.

● The simplest aspiration criterion consists in allowing a move if it
results in a solution with objective value better than that of the
best-known solution.

● Much more complicated criteria have been proposed and
implemented in some applications.

KEY RULE : If cycling cannot occur, you may disregard tabus

SIMPLE TABU SEARCH
To maximize)(Sf over some domain

Define: S, current solution,

 f *, value of the best-known solution,

 S*, this solution,

 T, the tabu list,

)(SN , the "neigbourhood" of S (solutions obtained from S

by a single transformation),

)(SN , "admissible" subset of)(SN (non-tabu or allowed

by aspiration).

Initialization
Choose (construct) an initial solution 0S

Set S:= 0S , f * := f (0S) , S* := 0S , T :=∅

Search
While termination criterion not satisfied do

●

)(
maxarg:

SNS
S

∈′
∈ [f(S’)];

● if *)(fSf 〉 , then ;:*,)(:* SSSff ==

● record tabu for the current move in T (delete oldest tabu if
necessary).

 26

 27

TERMINATION CRITERIA

• In theory, the search could go on for ever (unless the optimal
value of the problem is known beforehand).

• In practice, the search has to be stopped at some point:

 - after a fixed number of iterations (or a fixed amount of CPU
time),

 - after some number of iterations without an improvement in
the best objective value (probably the most commonly used
criterion),

 - when the objective reaches a pre-specified threshold value.

• In complex tabu search schemes, the search will usually be
stopped after completing a sequence of phases, the duration of
each phase being determined by one of the above criteria.

PROBABILISTIC TABU SEARCH

In “regular” simple tabu search, one must evaluate the objective
for every element in the neighbourhood)(SN of the current
solution.

Instead of considering the whole set)(SN , one may restrict its
attention to a random sample)()(SNSN ⊂′ .

Advantages :

• In most applications, a smaller computational effort, since one
only evaluates the objective for);(SNS ′∈′

• The random choice of)(SN ′ acts as an anti-cycling choice
 shorter tabu lists can be used. →

Disadvantage : the best solution may be missed.

 28

SEARCH INTENSIFICATION

Idea : To explore more thoroughly portions of the search space
that seem “promising”

● From times to times, the normal searching process is stopped
and an intensification phase is executed.

● Often based on some kind of intermediate-term memory
→ recency memory records the number of iterations that

“elements” have been present in the current solution.

● Often restarted from the best-known solution.

● Possible techniques:

 - “freezing” (fixing) “good” elements in the current solution;

 - changing (increasing) sample size in probabilistic TS;

 - switching to a different inner heuristic or modifying the

parameters driving it.

 29

SEARCH DIVERSIFICATION

● In many cases, the normal searching process tends to spend

most of its time in a restricted portion of the search space.
Good solutions may be obtained, but one may still be far from
the optimum.

 Diversification : a mechanism to “force” the search into
previously unexplored areas.

● Usually based on some form of long-term memory .

 frequency memory records the number of times each
“element” has appeared in the solution.

→

● Most common techniques:

 - restart diversification : force a few “unfrequent” elements
in the solution and restart the search from the new current
solution thus obtained;

 - continuous diversification : in the evaluation of moves,

bias the objective by adding a small term related to
element frequencies;

 - strategic oscillation : (see next transparency).

 30

HANDLING CONSTRAINTS

● In many instances, accounting for all problem constraints in the
definition of the search space severely restricts the search
process and leads to mediocre solutions.

 → constraint relaxation is often effective!

● “Wider” search space which is often easier to handle
 simpler neighbourhoods can be used. →

● Constraint violations are added to the objective as a weighted

penalty term.

● But, how can one find “good” weights?

 → self-adjusting penalties can be used

 - weights are adjusted dynamically based on the recent
history of the search

 + increase weights when only infeasible solutions are
encountered,

 + decrease weights if the opposite occurs.

Strategic oscillation : changing weights to induce diversification.

 31

SURROGATE AND AUXILIARY OBJECTIVES

• In some problems, the true objective function is
extremely costly to evaluate (e.g., MIP, with the search
space restricted to integer variables; stochastic
programming;...).

 The evaluation of moves becomes prohibitive (even if
sampling is used).

→

• Solution: evaluate neighbours using a surrogate

objective function

 - correlated to the true objective,

 - less demanding computationally,

 - the value of the true objective is computed only for

the chosen move or for a subset of promising
candidates.

• In some problems, most neighbours have the same

objective value. How can one choose the next move
among them?

By using an auxiliary objective function measuring a
desirable attribute of solutions.

 32

 33

RECENT TRENDS IN TABU SEARCH
(AND OTHER LOCAL SEARCH

APPROACHES)

 34

PARALLEL VARIANTS

Parallel processing opens up great opportunities for
new developments in tabu search.

• Low-level parallelization

Using parallel processing to speed up computationally
demanding steps of “standard” tabu search.

• High-level parallelization

Run several search threads in parallel to obtain more
information and come up with better solutions

 (parallel search threads can also be used on sequential
architectures).

These techniques have already been used with very good
results.

Taxonomy paper by Crainic, Toulouse and Gendreau
(1997).

Book edited by E. Alba (2005).

 35

HYBRIDS

Using local or tabu search in combination with other
optimization techniques.

• In branch-and-bound, to compute bounds.

• In conjunction with genetic algorithms or ant colony

optimization.

• Alternately with other LS or TS methods.

• In conjunction with Constraint Logic Programming

techniques.

Currently, the most successful methods.

Two general schemes:

• “unified” architectures (a single algorithm combining
components of several methods),

• “parallel hybrids” (running concurrently “pure”
implementations of two or more algorithms).

 36

USING INFORMATION IN A DIFFERENT WAY

● Reactive Tabu Search
 - Battiti and Tecchiolli (1992, 1994)

● Path relinking, Scatter search
 - Glover (1994, 1995)

 - Glover and Laguna (1997)

● Candidate list and elite solutions
 - see Glover and Laguna (1997)

● Hashing and Chunking
 - Woodruff and Zemel (1993)

 - Carlton and Barnes (1995)

 - Woodruff (1996)

● Vocabulary building
 - Glover (1992)

 - Glover and Laguna (1993)

 - Rochat and Taillard (1995)

 - Kelly and Xu (1995)

 - Lopez, Carter and Gendreau (1998)

 37

NEW APPLICATION AREAS

• Integer and mixed-integer programming

• Continuous optimization problems

 - with extreme point solutions
 + concave programming
 + fixed-charge problems

 - with “general” solution structure

• Continuous, multi-criteria optimization

• Stochastic programming problems
especially those with a large number of possible
realizations (intractable using standard approaches)

• Real-time decision problems

- LS methods almost possess the “Anytime” property;

 - Solutions can often be adjusted in real time to new
information.

 38

TRICKS OF THE TRADE

 GETTING STARTED

• Read one or two good introductory papers (to gain some

knowledge of the concepts, of the vocabulary,...).

• Read several papers describing in detail applications in

various areas (to see how concepts are implemented).

• Think a lot about your problem

 on search space →
 and neighbourhood structure .

• Implement a simple version of LS or TS based on that

search space and this neighbourhood.

• Collect statistics on the performance of your simple

heuristic.

 memories (recency, frequency,...) →

• Analyze results and adjust the algorithm

 add diversification, intensification, ... →

 39

 40

I have implemented a tabu search heuristic, but I keep
on getting mediocre results. What should I do now?
(HELP!)

• If there are constraints, consider penalization to «open

up» the search.

• Change the neighbourhood structure to allow for a

more purposeful evaluation of moves.

• Collect statistics

• Follow the algorithm step by step

• Consider diversification

• Change parameter values

 41

How do I calibrate all those parameters?
How do I go about computational testing?

• Get a good set of test problems preferably with some

measures of problem difficulty (estimated beforehand).

• Split your problem set into two subsets:

 - one for algorithmic design and parameter calibration,

 - the other to perform your final computational testing

(to be published).

• Perform exploratory testing to find good ranges of

parameters.

• Fix the values of «robust» parameters.

• Perform systematic testing for other parameters.

• You may read the Crainic, Gendreau, Soriano and

Toulouse paper in Annals of O.R. 41.

 42

I use probabilistic tabu search. My results are fairly
good, but when I look at my solutions, they look
somewhat strange!?!

Are you sure that your solutions are local optima w.r.t your
inner heuristic?

They may very well not be, unless you do something about
it!

• Perform a “straight” local improvement phase, starting

from the best found solution, at the end of the TS.

• Switch to TS without sampling (again from the best

found solution) for a short duration before completing the
algorithm.

 43

REFERENCES

Introductory

Aarts, E. and J.K. Lenstra (eds.) (2003), Local Search in

Combinatorial Optimization, Wiley, Chichester.

Gendreau, M. (2003), “An Introduction to Tabu Search”, in

Handbook of Metaheuristics, F.W. Glover and G.A.
Kochenberger (eds.), Kluwer, Boston, MA, 37-54.

Glover, F., É. Taillard and D. de Werra (1993), “A User's

Guide to Tabu Search”, Annals of O.R. 41, 3-28.

Glover, F. and M. Laguna (1993), “Tabu Search”, in

Modern Heuristic Techniques for Combinatorial
Problems, C.R. Reeves (ed.), Blackwell, 70-150.

Glover, F. and M. Laguna (1997), Tabu Search, Kluwer.

Hertz, A. and D. de Werra (1991), “The Tabu Search

Metaheuristic: How We Used It”, Annals of Mathematics
and Artificial Intelligence 1, 111-121.

Soriano, P. and M. Gendreau (1997), « Fondements et

applications des méthodes de recherche avec tabous»,
RAIRO (Recherche opérationnelle) 31, 133-159.

 44

Applications

de Werra, D., F. Glover, M. Laguna, É. Taillard (eds.)

(1993), Annals of Operations Research 41, “Tabu
Search”.

Laporte, G. and I. Osman (eds.) (1996), Annals of

Operations Research 63, “Metaheuristics in
Combinatorial Optimization”.

Osman, I.H. and J.P. Kelly (eds.) (1996), Meta-Heuristics:

Theory and Applications, Kluwer Academic Publishers,
Norwell, MA.

Ribeiro, C.C. and P. Hansen (eds.) (2002), Essays and

Surveys in Metaheuristics, Kluwer Academic
Publishers, Norwell, MA.

Voss, S., S. Martello, I.H. Osman and C. Roucairol (eds.)

(1999), Meta-Heuristics: Advances and Trends in Local
Search Paradigms for Optimization, Kluwer Academic
Publishers, Norwell, MA.

 45

Other references
Battiti, R. and G. Tecchiolli (1994), “The Reactive Tabu Search”, ORSA Journal on Computing 6,

126-140.

Bräysy, O. and M. Gendreau (2002), “Tabu Search Heuristics for the Vehicle Routing Problem
with Time Windows”, TOP 10, 211-237.

Crainic, T.G. and M. Gendreau (1999), “Towards an Evolutionary Method – Cooperative Multi-
Thread Parallel Tabu Search Heuristic Hybrid”, in Meta-Heuristics: Advances and Trends in
Local Search Paradigms for Optimization, S. Voss, S. Martello, I.H. Osman and C. Roucairol
(eds.), Kluwer Academic Publishers, pp. 331-344.

Crainic, T.G. and M. Gendreau (2002), “Cooperative Parallel Tabu Search for Capacitated
Network Design”, Journal of Heuristics 8, 601-627.

Crainic, T.G., M. Gendreau and J.M. Farvolden (2000) “Simplex-based Tabu Search for the
Multicommodity Capacitated Fixed Charge Network Design Problem”, INFORMS Journal on
Computing 12, 223-236.

Crainic, T.G., M. Gendreau, P. Soriano and M. Toulouse (1993), “A Tabu Search Procedure for
Multicommodity Location/Allocation with Balancing Requirements”, Annals of Operations
Research 41, 359-383.

Crainic, T.G., M. Toulouse and M. Gendreau (1997), “Toward a Taxonomy of Parallel Tabu
Search Heuristics”, INFORMS Journal on Computing 9, 61-72.

Cung, V.-D., S.L. Martins, C.C. Ribeiro and C. Roucairol (2002), “Strategies for the Parallel
Implementation of Metaheuristics”, in Essays and Surveys in Metaheuristics, C.C. Ribeiro and
P. Hansen (eds.), Kluwer Academic Publishers, pp. 263-308.

Dueck, G. (1993), “New optimization heuristics: The great deluge algorithm and record-to-record
travel”, Journal of Computational Physics 90, 161–175.

Dueck, G. and T. Scheurer (1990), “Threshold accepting: A general purpose optimization
algorithm”, Journal of Computational Physics 104, 86–92.

Fleurent, C. and J.A. Ferland (1996), “Genetic and Hybrid Algorithms for Graph Colouring”,
Annals of Operations Research 63, 437-461.

Gendreau, M. (2002), “Recent Advances in Tabu Search”, in Essays and Surveys in
Metaheuristics, C.C. Ribeiro and P. Hansen (eds.), Kluwer Academic Publishers, pp. 369-377.

Gendreau, M., F. Guertin, J.-Y. Potvin and É.D. Taillard (1999), “Parallel Tabu Search for Real-
Time Vehicle Routing and Dispatching”, Transportation Science 33, 381-390.

Gendreau, M., A. Hertz and G. Laporte (1994), “A Tabu Search Heuristic for the Vehicle Routing
Problem”, Management Science 40, 1276-1290.

 46

Gendreau, M., G. Laporte and J.-Y. Potvin (2002), “Metaheuristics for the Capacitated VRP”, in
The Vehicle Routing Problem, P. Toth and D. Vigo (eds.), SIAM Monographs on Discrete
Mathematics and Applications, pp. 129-154.

Gendreau, M., P. Soriano and L. Salvail (1993), “Solving the Maximum Clique Problem Using a
Tabu Search Approach”, Annals of Operations Research 41, 385-403.

Glover, F. (1977), “Heuristics for Integer Programming Using Surrogate Constraints”, Decision
Sciences 8, 156-166.

Glover, F. (1986), “Future Paths for Integer Programming and Links to Artificial Intelligence”,
Computers and Operations Research 13, 533-549.

Glover, F. (1989), “Tabu Search – Part I”, ORSA Journal on Computing 1, 190-206.

Glover, F. (1990), “Tabu Search – Part II”, ORSA Journal on Computing 2, 4-32.

Glover, F. (1992), “Ejection chains, Reference Structures and Alternating Path Methods for
Traveling Salesman Problems”, University of Colorado. Shortened version published in
Discrete Applied Mathematics 65, 223-253, 1996.

Grünert, T. (2002), “Lagrangean Tabu Search”, in Essays and Surveys in Metaheuristics, C.C.
Ribeiro and P. Hansen (eds.), Kluwer Academic Publishers, pp. 379-397.

Hansen, P. and N. Mladenović (1997), “Variable Neighbourhood Search for the p-Median”,
Location Science 5, 207–226.

Kirkpatrick, S., C.D. Gelatt Jr. and M.P. Vecchi (1983), “Optimization by Simulated Annealing”,
Science 220, 671-680.

Lokketangen, A. and F. Glover (1996), “Probabilistic Move Selection in Tabu Search for 0/1
Mixed Integer Programming Problems”, in Meta-Heuristics: Theory and Applications, I.H.
Osman and J.P. Kelly (eds.), Kluwer Academic Publishers, pp. 467-488.

Osman, I.H. (1993), “Metastrategy Simulated Annealing and Tabu Search Algorithms for the
Vehicle Routing Problem”, Annals of Operations Research 41, 421-451.

Pesant, G. and M. Gendreau (1999), “A Constraint Programming Framework for Local Search
Methods”, Journal of Heuristics 5, 255-280.

Rego, C. and C. Roucairol (1996), “A Parallel Tabu Search Algorithm Using Ejection Chains for
the Vehicle Routing Problem”, in Meta-Heuristics: Theory and Applications, I.H. Osman and
J.P. Kelly (eds.), Kluwer Academic Publishers, pp. 661-675.

Rochat, Y. and É.D. Taillard (1995), “Probabilistic Diversification and Intensification in Local
Search for Vehicle Routing”, Journal of Heuristics 1, 147-167.

Rolland, E. (1996), “A Tabu Search Method for Constrained Real-Number Search: Applications
to Portfolio Selection”, Working Paper, The Gary Anderson Graduate School of Management,
University of California, Riverside.

Skorin-Kapov, J. (1990), “Tabu Search Applied to the Quadratic Assignment Problem”, ORSA
Journal on Computing 2, 33-45.

 47

Soriano, P. and M. Gendreau (1996), “Diversification Strategies in Tabu Search Algorithms for
the Maximum Clique Problems”, Annals of Operations Research 63, 189-207.

Taillard, É. (1990), “Some efficient heuristic methods for the flow shop sequencing problem”,
European Journal of Operational Research 47, 65-74.

Taillard, É. (1991), “Robust taboo search for the quadratic assignment problem”, Parallel
Computing 17, 443-455.

Taillard, É.D., P. Badeau, M. Gendreau, F. Guertin and J.-Y. Potvin (1997), “A Tabu Search
Heuristic for the Vehicle Routing Problem with Soft Time Windows”, Transportation Science
31, 170−186.

