Constraint Programming and Local Search

Filippo Focacci, Andrea Lodi, François Laburthe Louis-Martin Rousseau

Outline

1. Introduction

2. A didactic optimization problem (dTP)

Motivations for cooperation

3. A zoo of CP / LS hybrids

- Sequential combination
- Master / sub-problem decomposition
- Improved neighborhood exploration
- CP Neighborhood search
- Large neighborhood search
- Local moves during construction
- Local moves over a heuristic

What this tutorial addresses

- Solving large hard combinatorial optimization problems
- Systematic description of ways of combining LS and CP techniques
- Goal: provide a check-list of recipes that can be tried when tackling a new optimization application
- Illustrated on a didactic problem

When should you enquire about CP / LS hybrids ?

- When you have:
 - A large complex optimization problem
 - No solution neither with CP nor with LS
 - The problem specification may change over time
- Best in case of strong execution requirements
 - Limited planning resource
 - On-line optimization

When can't it help ?

- When modeling is the issue
- When optimization is the single difficulty
- When thousands of man.year have been spent studying your very problem

=> useless for solving a 1M node TSP

Comparing CP and LS

- Constraint Programming
 - Solves complex problems
 - Models capturing many side constraints
 - Solves by global search and propagation
- Local search
 - Solves problems with simple models
 - Efficiency: quick first solution, rapid early convergence

Opportunities for collaboration

- Expected combination of :
 - Generality (solve complex problems)
 - Nice modeling
 - Generic methods from the model
 - Easy to add/modify constraints
 - Efficiency (solve them fast)
 - Initial solution
 - Quick convergence
 - Address both feasibility and optimization issues
 - keep constraints hard
- Difficulty to combine:
 - monotonic reasoning (CP)
 - non-monotonic modifications (LS)

Outline

1. Introduction

2. A didactic optimization problem (dTP)

Motivations for cooperation

3. A zoo of CP / LS hybrids

- Sequential combination
- Master / sub-problem decomposition
- Improved neighborhood exploration
- CP Neighborhood search
- Large neighborhood search
- Local moves during construction
- Local moves over a heuristic

A didactic transportation problem

Collect goods from clients

- Set of trucks located in a depot
- Each truck can carry two bins
- Each bin may contain only goods from the same type
- Clients have time window constraints
- Bins have capacity constraints

A simple model for dTP

 $i, j \in \{1, ..., n\}$:
 clients (their locations)

 $k \in \{1, ..., M\}$:
 trucks

 $h \in \{1, ..., 2M\}$:
 bins

 $l \in \{1, ..., P\}$:
 types of goods

Model

Minimize $totCost = \sum_{k=1}^{M} cost_k$

On $\forall k, \ cost_k \ge 0$ $truck_k: \ UnaryResource(tt,c,cost_k)$ $\forall h, \ collects_h \in [1 .. P]$ $\forall i, \ start_i \in [a_i .. b_i]$ $service_i: \ Activity(start_i, d_i, i)$ $visitedBy_i \in [1 .. M]$ $collectedIn_i \in [1 .. 2M]$

Subject to

 $\forall i, service_i requires truck[visitedBy_i]$ $\forall h, \Sigma_{i \mid collectedIn \ i = h} q_i \leq C$ $\forall i, collects[collectedIn_i] = type_i$ $\forall i, visitedBy_i = \lceil collectedIn_i / 2 \rceil$

A CP approach

- Strengthen the model
 - Add redundant constraints
 - Add global constraints
 - Add constraints evaluating the cost of the solutions
 - Symmetry breaking (dominance) constraints

Find a search heuristic

Variable / value orderings

 Explore part of the search tree through Branch and Bound

A CP approach

Redundant models for stronger propagation Example: redundant routing model $\forall k$, first_k \in [1...N] $\forall i, \quad next_i \in [1 \dots N+M]$ $succ_i \in [\{\} ... \{1, ..., N\}]$ multiPath(first,next,succ,visitedBy) costPaths(first,next,succ,c,totCost) $\forall i, j, j \in SUCC_i \Leftrightarrow$ $(visitedBy_i = visitedBy_i \land start_i < start_i)$

Solving through CP

Instantiate visitedBy_i
Rank all activities on the routes (instantiate next_i / succ_i)
Instantiate start_i to their earliest possible value

Difficulties with CP

- Poor global reasoning
- Poor cost anticipation
- Goes backtracking « forever »
- As propagation is strengthened, the model is slowed down

A local search approach

• Two possibilities:

Work in the space of feasible solutions

 Accept infeasible solutions by turning constraints into penalties

 Possible combinations, work with feasible but add, if needed, extra resources (trucks and bins)

Local search for dTP

 Generate an initial solution – Select clients *i* in random order Assign it to a truck that has a bin of $type_i$, or to a truck that can be added an extra bin of type, • Move from a solution to one of its neighbors, in order to improve the objective

Neighborhoods for dTP

Node transfer:

 Change values of visitedBy_i and collectedIn_i for some i

Bin swap:

- Select bins h_1 , h_2 on trucks $k_1 = \lceil h_1/2 \rceil$, $k_2 = \lceil h_2/2 \rceil$

- For all clients *i*, $collectedIn_i = h_1 \Rightarrow collectedIn_i = h_2$, $visitedBy_i = k_2$ $collectedIn_i = h_2 \Rightarrow collectedIn_i = h_1$, $visitedBy_i = k_1$ - Swap collects_{h1} and collects_{h2}

Neighborhoods

- *k*-opt:
 - select i1, i2, i3 such that visitedBy_{i1} = visitedBy_{i2} = visitedBy_{i3}
 - Exchange edges:
 - Replace next_{i1}=j1, next_{i2}=j2, next_{i3}=j3
 - By next_{i1}=j2, next_{i2}=j3, next_{i3}=j1

Driving the local search process

• Main iteration:

- Until a global stopping criterion is met:
- generate a new initial solution
- perform a local walk
- Each walk:

Until a local criterion is met:

- Iterate the neighborhood, until a neighbor satisfying all constraints as well as the acceptance criterion is found
- Perform the move

Difficulties with LS

As the problem gets more constrained...

- Generating a good feasible first solution becomes harder
- Exploring neighborhoods
 - takes longer: constraints checks
 - is less interesting: fewer valid nodes
 - more local optima appear

Conclusion

Neither of the "pure" approaches works

- Need for hybridization with other techniques
 - Try a cooperation between CP and LS
 - Expect to retain :
 - Good sides of CP: handling side constraints, building valid solutions, systematic search
 - Good sides of LS: quick easy improvements, quick convergence.

Outline

1. Introduction

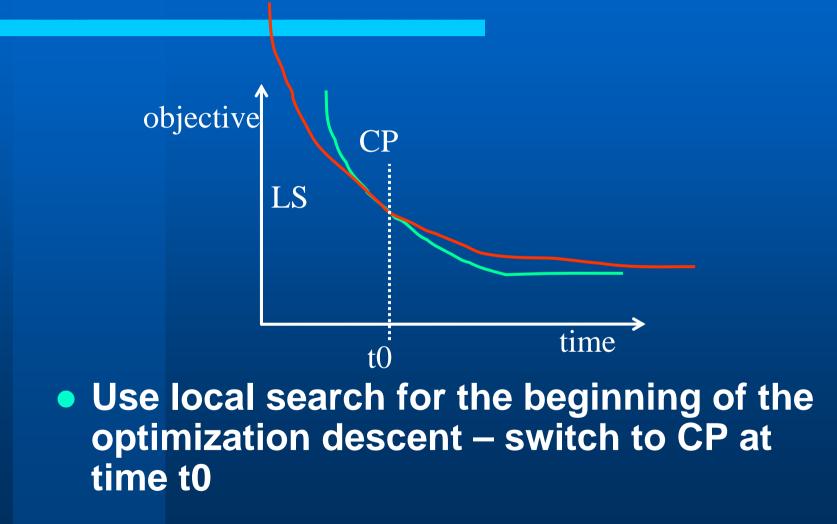
2. A didactic optimization problem (dTP)

Motivations for cooperation

3. A zoo of CP / LS hybrids

- Sequential combination
- Master / sub-problem decomposition
- Improved neighborhood exploration
- CP Neighborhood search
- Large neighborhood search
- Local moves during construction
- Local moves over a heuristic

Sequential combination: LS-CP



page 25

Discussion

A good idea

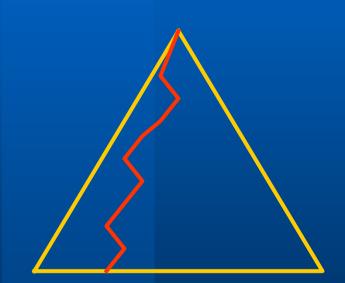
- When the feasibility problem is easy
- For time-constrained optimization
- But, the switch from LS to CP is not immediate
 - CP starts with a good upper bound, but without nogoods
- On the didactic Transportation Problem (dTP)
 - Lack of good lower bounds
 - => Systematic CP search gets stuck near the optimal region

Sequential combination: CP-LS

- Build a first feasible solution with CP
 Greedy heuristic
- Try to improve it through LS

 Constraints can be softened to support
 - dense neighborhoods

Greedy insertion algorithm

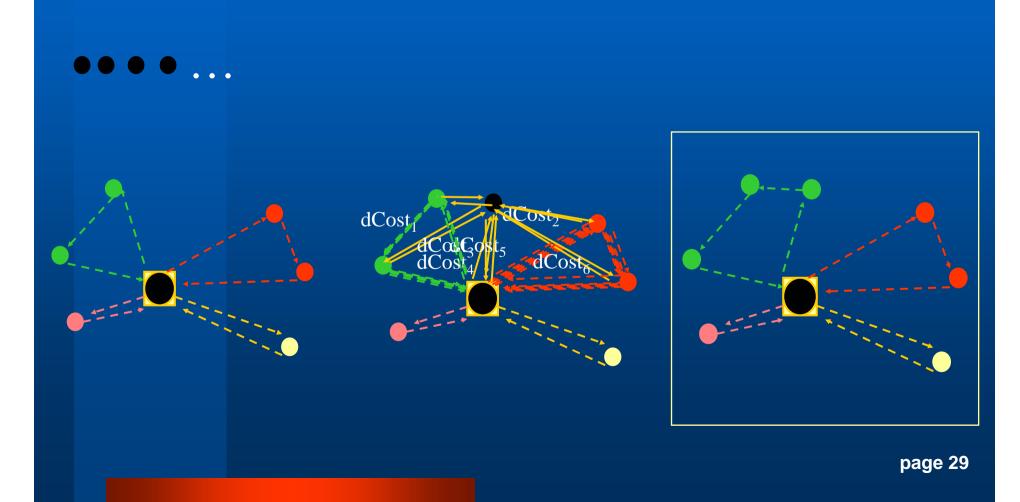


 At each choice point a function h is evaluated for all possible choices

• The choice that minimizes *h* is considered as preferred decision

 The preferred decision is taken

Greedy insertion for dTP



Discussion

CP then LS: can be interesting for dTP

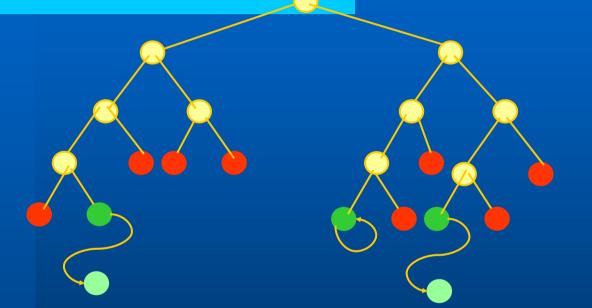
 In particular in case of tight side constraints

• « One-shot » use of CP:

 as long as no valid solution has been found, we look for one

Enables to start LS with a valid solution

A systematic combination



- Solve the problem through CP (global search tree)
- Try to improve each solution found through local search
- Improve the optimization cuts

Discussion

Local moves should change the assignment of « early » variables – Avoid visiting the same region as with backtracking • Especially interesting in case of incomplete search CP provides a set of diversified seeds for local search

Outline

1. Introduction

2. A didactic optimization problem (dTP)

Motivations for cooperation

3. A zoo of CP / LS hybrids

- Sequential combination
- Master / sub-problem decomposition
- Improved neighborhood exploration
- CP Neighborhood search
- Large neighborhood search
- Local moves during construction
- Local moves over a heuristic

Master / sub-problem decomposition

Idea: identify two sub-problems and solve them by different techniques

Master problem
Induced sub-problem

Decomposition: the sub-problem can only be stated once the master problem is solved.

Purpose of decomposition

Decompose into easier problems

 Smaller size
 Simpler models
 Well known structure

 Traditional approach with exact methods (Dantzig, Lagrangean, Benders)

A decomposition on dTP

Master Problem:

- Assignment of clients to trucks (visitedBy)
- Induced sub-problem:
 - Traveling salesman with time windows

Algorithms:

- Assess a cost for each client (e.g. distance to neighbor), solve assignment with some method
- Solve small TSPs with CP
- Analyze TSPs, re-assess client cost and try improving local moves on the master problem.

Discussion

- Decomposition makes the problem easier to solve
- Estimating the cost in the master problem may be difficult
- Try local changes on the evaluated cost of the master problem
 - improve subsequent optimization (feedback from the sub-problem)

Outline

1. Introduction

2. A didactic optimization problem (dTP)

Motivations for cooperation

3. A zoo of CP / LS hybrids

- Sequential combination
- Master / sub-problem decomposition
- Improved neighborhood exploration
- CP Neighborhood search
- Large neighborhood search
- Local moves during construction
- Local moves over a heuristic

Constrained local search

Small neighborhoods

 A neighbor solution S₁ can be reached from a given solution S* by performing "simple" modifications of S*.

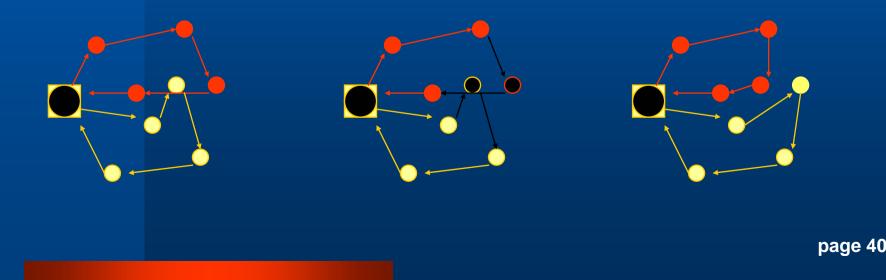
– Examples:

- Choose two visits i_1 and i_2 , remove i_1 from its current position and reinsert it after i_2
- Choose two visits *i*₁ and *i*₂ and exchange their positions

Constrained local search

Node Exchange

- Choose two visits *i*₁ and *i*₂ assigned to different trucks and exchange their positions
- Accept the first exchange improving the cost



Procedure exchange(P,S)
forall nodes i₁

forall nodes i₂ | (svisitedBy_{i1} ≠ svisitedBy_{i2})
| exchangeInstantiate(P,S,i₁,i₂)

// check feasibility and check cost function

if (propagate(P) && improving(P,S))

storeSolution(P,S)

resetProblem(P)

exit iterations

// reinitialize the domain variables

resetProblem(P)

Procedure exchangeInstantiate(P,S,i₁,i₂)
// exchange i₁ and i₂
next[sprev_{i1}] = i₂; next[i₂] = snext_{i1};
next[sprev_{i2}] = i₁; next[i₁] = snext_{i2};
// restore the rest
forall k ∉{i₁,i₂,sprev_{i1},sprev_{i2}}
next[k] = snext_k;



• Pros:

Independent from side-constraints

Cons:

- CP imposes monotonic changes
 - while moving from one neighbor to the next one all problem variables are un-instantiated and re-instantiated
- Constraints are checked in "generate and test"
 → inefficient

Add inlined constraint checks

```
Procedure exchange(P,S)
    forall nodes i_1
      forall truks k | (k \neq svisitedBy<sub>11</sub> )
          if (not binCompatible(P,S,svisitedBy<sub>i1</sub>,k)) continue
          forall nodes i_2 \mid (svisitedBy_{i2} = k)
               if (not timeWindowCompatible(P,S,i<sub>1</sub>,i<sub>2</sub>)) continue
               if (not improving(P,S,i<sub>1</sub>,i<sub>2</sub>)) continue
               exchangeInstantiate(P,S,i_1,i_2)
               // check feasibility && check cost function
               if (propagate(P) && improving(P,S))
                  storeSolution(P,S)
                  resetProblem(P)
                  exit iterations
               resetProblem(P); // reinitialize the domains page 44
```

• Pros:

- "Almost" independent from side-constraints
- Some constraints are tested before performing the move
 - much more efficient
- Cons:
 - CP imposes monotonic changes
 - Some constraints are still checked in "generate and test"

Outline

1. Introduction

2. A didactic optimization problem (dTP)

Motivations for cooperation

3. A zoo of CP / LS hybrids

- Sequential combination
- Master / sub-problem decomposition
- Improved neighborhood exploration
- CP Neighborhood search
- Large neighborhood search
- Local moves during construction
- Local moves over a heuristic

CP Based Operators

- Operators define neighborhoods
- Finding the best solution in a neighborhood is an optimization problem
- Which can be solved with constraint programming

Neighborhood search problem can be expressed:

- With a specific model and interface constraints
- With the original model and additional constraints

Specific Model

- A special model is developed to represent the neighborhood
- Interface constraints link the new model to the original model
- All the constraints stated in the original model are enforced in the specific model via the interface constraints
- During search, constraint propagation allows to prune (via the interface) regions of the neighborhood
- No restrictions on the neighborhood which can be defined

Original Model

- The neighborhood is defined simply by adding additional constraints to the original model
- No need to define a new model and interface constraints
- All the constraints in the original model are naturally enforced
- During search, constraint propagation allows to prune directly large regions of the neighborhood
- Not all neighborhoods can defined inside the original model (i.e. GENeralized Insertion)

Original model for the problem

Additional constraints for the neighborhood

Node Exchange

CP based neighborhoods

The neighborhood of a solution S for a problem P is defined by a constraint problem

 $NP(P,S) :: [\{I_1,...,I_n\}, \{C_1,...,C_m\}]$

 Each solution of NP represents a neighbor of S for P

Variables: I::[0..n-1], J::[0..n-1], DCost::[-∞..0]

I, J are domain-variables representing the nodes *i*,*j* that we want to exchange.

Constraints:

// neighborhood cst

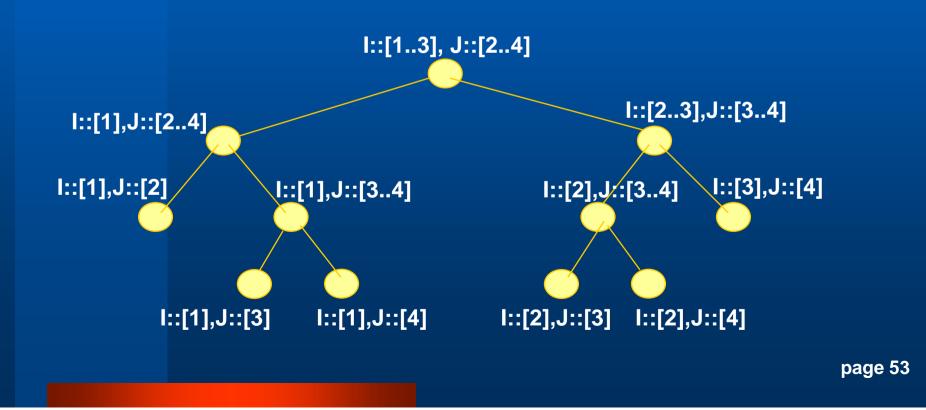
sprev_{i2} | > Jsprev_{i2} svisitedBy[I] ≠ svisitedBy[J] next[l] = snext[J] $snext_{12}^{1}$ snext_{i2} next[J] = snext[l] next[sprev[I]] = J $sprev_{i}$ snext_{i1} sprev next[sprev[J]] = I snext; // interface cst forall k, $(k \neq I \land k \neq J)$ \Rightarrow next[k] = snext[k], visitedBy[k] = svisitedBy[k] page 51

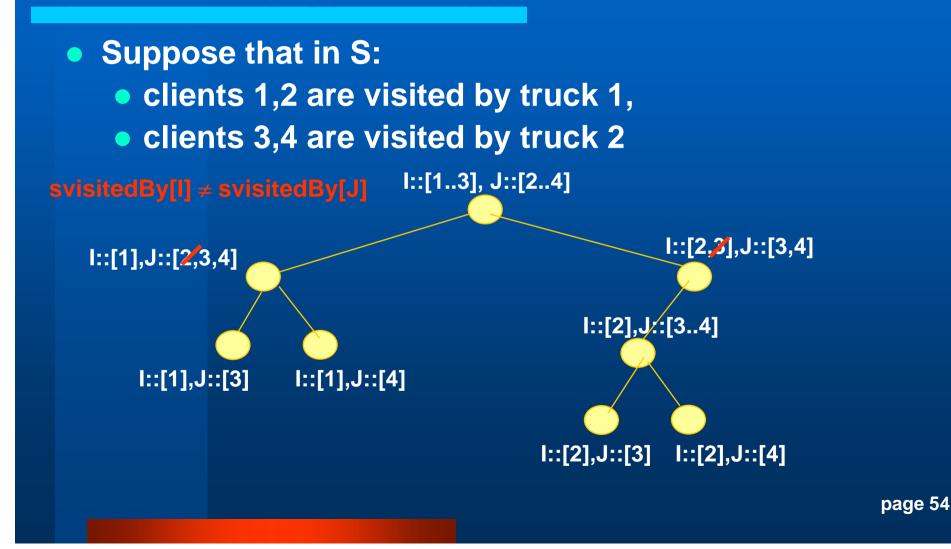
• DCost represents the gain w.r.t S:

DCost = cost[sprev[J], I] + cost[I, snext[J]] +
 cost[sprev[I],J] + cost[J,snext[I]] cost[sprev[I], I] - cost[I,snext[I]] cost[sprev[J],J] - cost[J,snext[J]]
// improving cst
DCost < 0</pre>

 Search (explore via tree search): instantiate(I) && instantiate(J)

Search: instantiate(I) && instantiate(J)
Each leaf defines a feasible exchange





• Pros:

- Independent from side-constraints
- Constraint Propagation removes infeasible neighbors a priori.
 - ➔ efficient when many side constraints
 - → efficient when large neighborhoods
- May freely mix tree search and local search

Cons:

Overhead due to tree search

Overhead due to tree search

- Often most problem variables are instantiated by the interface constraints only when ALL neighborhood variables are instantiated (at every leaf of the nhood tree search)
- In this case the nhood tree search keeps "doing" and "undoing" the instantiations of ALL the problem variables

Local Search via solution deltas

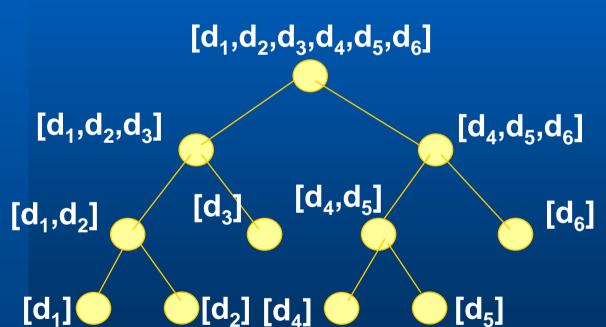
- Goal: avoid instantiating and uninstantiating ALL problem variables while moving from one neighbor to the other
 - A neighbor is identified by the modification over the original solution S. This modification is defined solution delta.
 - A neighborhood is an array of *deltas.*
 - The exploration of the neighborhood takes place on a tree search.

LS via solution deltas : Node Exchange

LS via solution deltas: explore the neighborhood

- Map the array of deltas in a tree search
 - recursively split the array of deltas in two parts
 - a split correspond to a branching node in the tree search
 - each feasible neighbor is a leaf of the tree
 - at each node restore the fraction of S that is shared by all neighbors in that node

• Example: $deltas = [d_1, d_2, d_3, d_4, d_5, d_6]$



Local Search via solution deltas

• Pros:

- Independent from side-constraints
- Constraint Propagation removes infeasible neighbors a priori.
 - → efficient when many side constraints
 - → efficient when large neighborhood
- May freely mix tree search and local search
- Reduced overhead of the tree search
- Cons:
 - Requires an explicit generation of the neighborhood
 - Requires to fully specify each move

Outline

1. Introduction

2. A didactic optimization problem (dTP)

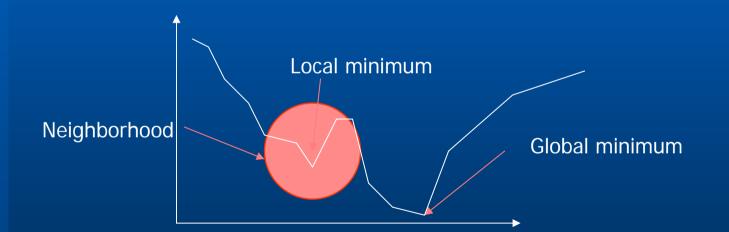
Motivations for cooperation

3. A zoo of CP / LS hybrids

- Sequential combination
- Master / sub-problem decomposition
- Improved neighborhood exploration
- CP Neighborhood search
- Large neighborhood search
- Local moves during construction
- Local moves over a heuristic

LS and Local Minima

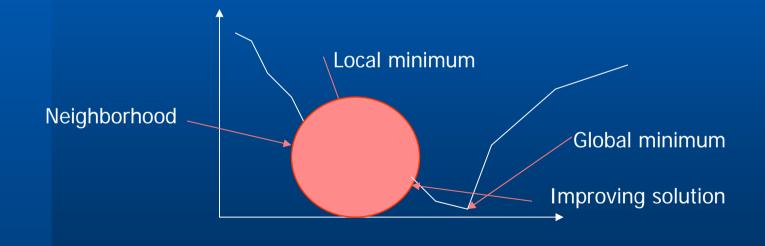
 A local minimum is reached when no solutions in the neighborhood is better than the current solution



 Usual solution is to use metaheuristics to allow a temporary degradations of the objective

Large Neighborhoods: Gains

- A larger neighborhood means:
 - More solutions are considered
 - Better chance of avoiding local minima



Can still use metaheuristics

Large Neighborhoods: loss

- A larger neighborhood also means:
 - More solutions need to be evaluated
 - The complexity of evaluating all solutions makes having neighborhoods too large unattractive

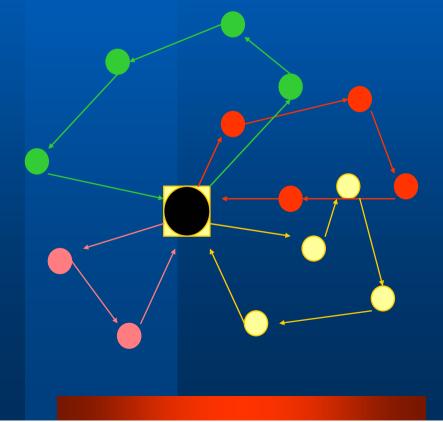
Unless we don't evaluate all the solutions !
 This is were Constraint Programming is useful

Large neighborhood search

Idea: partition the variables of the current solution into two subsets
 A fragment: assignments are kept as they are
 A shuffle set: assignments may be

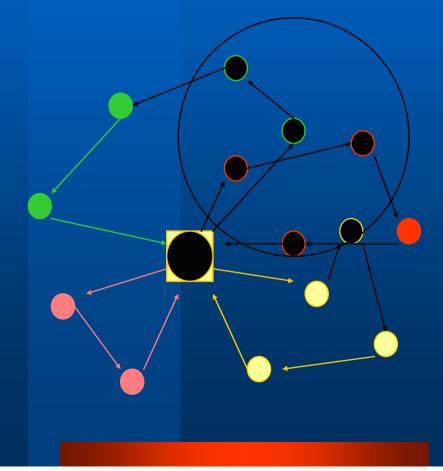
 A shuffle set: assignments may be changed

From a solution



page 67

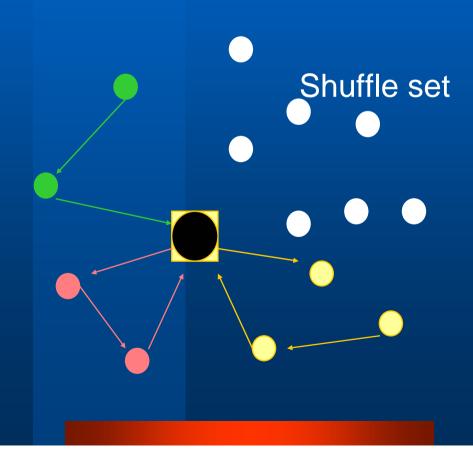
Select a shuffle set



Select a subset of clients $i_1, i_2, ..., i_k \subset C$

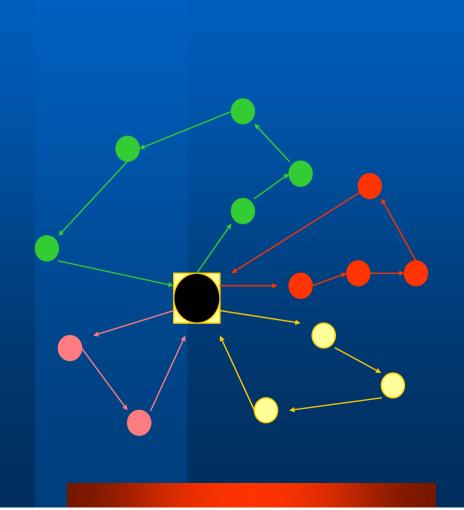
page 68

Example on dTP



For all clients *i* from the shuffle set :

- Unassign variable:
- visitedBy, collectedIn,
- start_i
- Undo all ordering decisions between *i* and other clients *j*
- Unassign all cost variables
- Post a cost improvement cut cost ≤ getValue(cost, S)_{pāgê 69}



• Look for a new solution by solving the remaining sub-problem

page 70

Large neighborhood search

Exploring the neighborhood

Selecting shuffle sets

Select a set:

- large enough to introduce enough flexibility
- small enough to reduce the overall problem
- of inter-dependent variables
- of ill-assigned variables (an improvement can be expected)
- Vary the types of sets that are shuffled
- Vary the size of sets that are shuffled
 - variable neighborhood search

Shuffle sets for dTP

A set of clients that are

- Within short distance of some specific client
- Visited by the same truck
- Sharing a common type of goods
- Visited within a common time frame

A few hints for LNS with CP

- Use incomplete tree search to speedup the subproblem solution (e.g. LDS)
- Use strong constraint propagation to reduce the neighborhood exploration
- Compute relaxations to prune non-improving neighbors
- Rather switch neighborhood than fully explore one by backtracking

Outline

1. Introduction

2. A didactic optimization problem (dTP)

Motivations for cooperation

3. A zoo of CP / LS hybrids

- Sequential combination
- Master / sub-problem decomposition
- Improved neighborhood exploration
- CP Neighborhood search
- Large neighborhood search
- Local moves during construction
- Local moves over a heuristic

Local Search and Greedy Construction

- Local search is most often applied to complete solutions
- First build a solution, then improve it
- Idea: better repair while building than afterwards.
 - => Incremental Local Optimization

Incremental Local Optimization

- The greedy algorithm makes a mistake at step n
- The mistake is discovered at step n+k
- Try to repair the steps *n* .. *n*+*k*
- Resume the greedy construction at step n+k+1

ILO for general CSPs

A simple incomplete method:

- For a variable ordering $v_1 \dots v_n$
- Compute a lower bound *lb*
- Start assigning variables
- Choose the value a_{ik} such that v_i = a_{ik} yields the least increase in *Ib*
- Whenever *Ib* strictly increases,

- keep $v_i = a_{ik}$,

- un-assign all variables linked to v_i and

try to re-assign them to find the least increase for *lb*

page 78

ILO illustrated on dTP

Enriched greedy construction scheme:

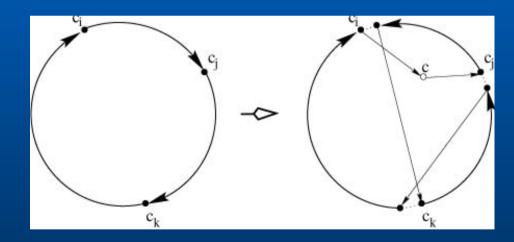
- Place clients on a stack
- Insert them one by one minimizing the insertion cost.
 For client *i*, instantiate
 - visitedBy_i
 - SUCC_i

- Apply local optimization on the truck assigned to *i*

- Change the order of visits j (forall j | visitedBy_i = visitedBy_i)
- If an improving sub-route is found, change it

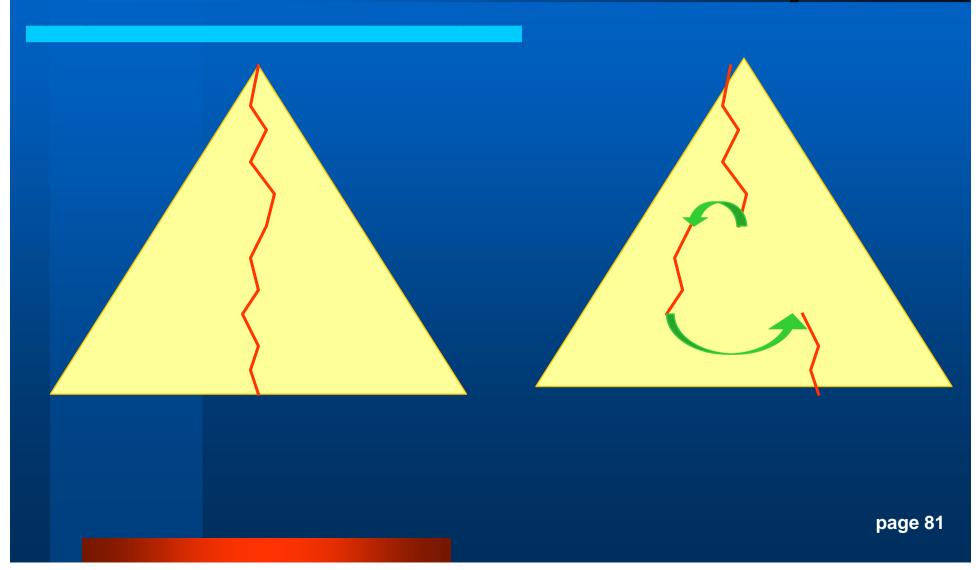
GENeralized Insertion in CP

- Allows insertion between non-adjacent customers
- Performs a local optimization simultaneously with the insertion



c_i c_j and c_k are defined as finite domain variable and their value are identified thru the solution of specific constraint programming model link to the original routing model page 80

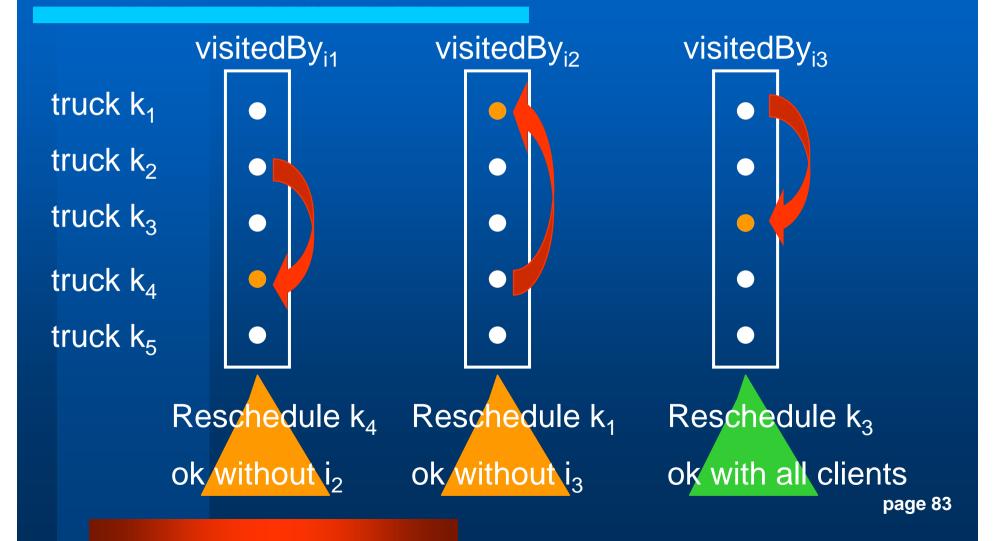
Illustration on a search space



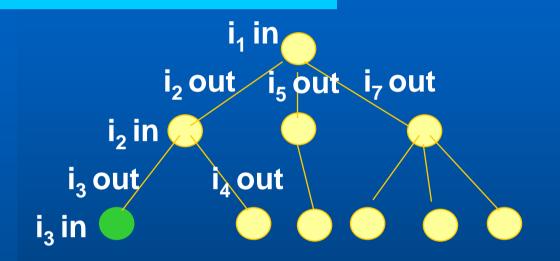
Ejection chains during a greedy process

- Recursive version of the ILO approach
 - For a variable ordering $v_1 \dots v_n$
 - Choose the value a_{ik} such that $v_i = a_{ik}$ yields the least increase ΔIb in Ib
 - When $\Delta Ib > 0$, un-assign some variable v_I so that *Ib* decreases
 - Reassign v_l to some other value
 - Go-on un-assigning / re-assigning past variables until the least increase in *lb* is found

Ejection chains on dTP



Finding a good ejection chain



- Search for the smallest ejection chain in breadth first search
- Similar to the search for augmenting paths (flows)

page 84

Outline

1. Introduction

2. A didactic optimization problem (dTP)

Motivations for cooperation

3. A zoo of CP / LS hybrids

- Sequential combination
- Master / sub-problem decomposition
- Improved neighborhood exploration
- CP Neighborhood search
- Large neighborhood search
- Local moves during construction
- Local moves over a heuristic

Local moves over a heuristic

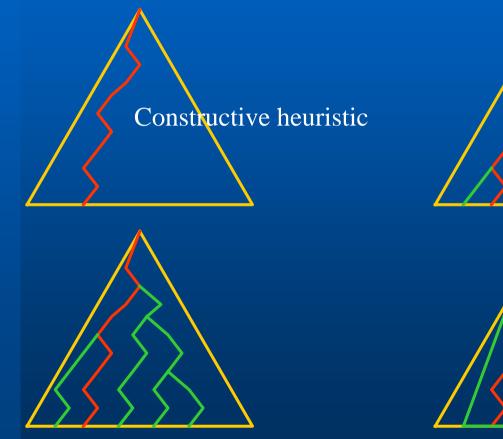
- LS is defined as variations over a solution.
- LS can also be applied over an encoding of a solution
 - For a greedy CP method, the search heuristic itself is an encoding
 - Idea: instead of exploring the whole tree, explore variations of the constructive heuristic.

Local search over a heuristic

Two families of methods

- Local moves over a value ordering heuristic
 - Restricted candidate lists
 - GRASP
 - Discrepancy based search
- Local moves over a variable ordering heuristic
 - List scheduling heuristics
 - Preference-based programming

Local search over the value selection heuristic

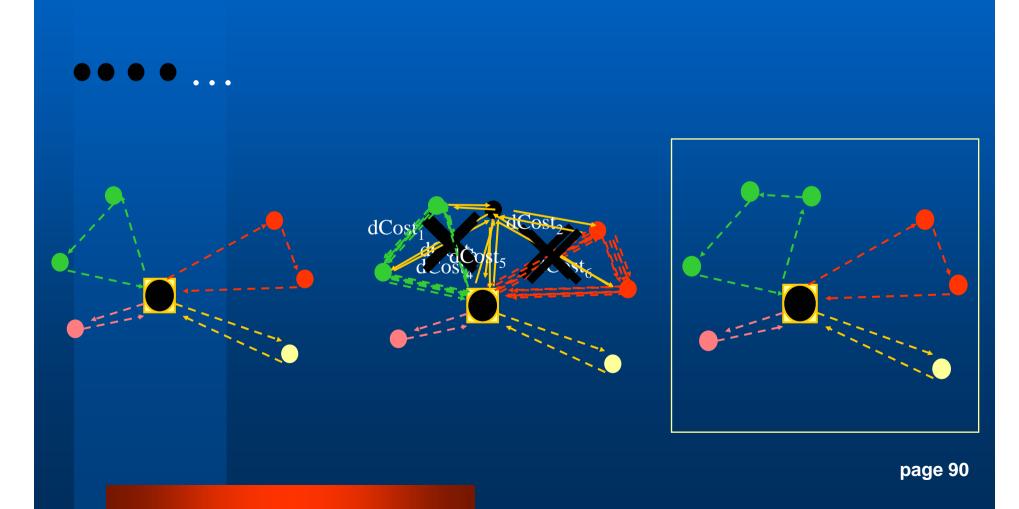


page 88

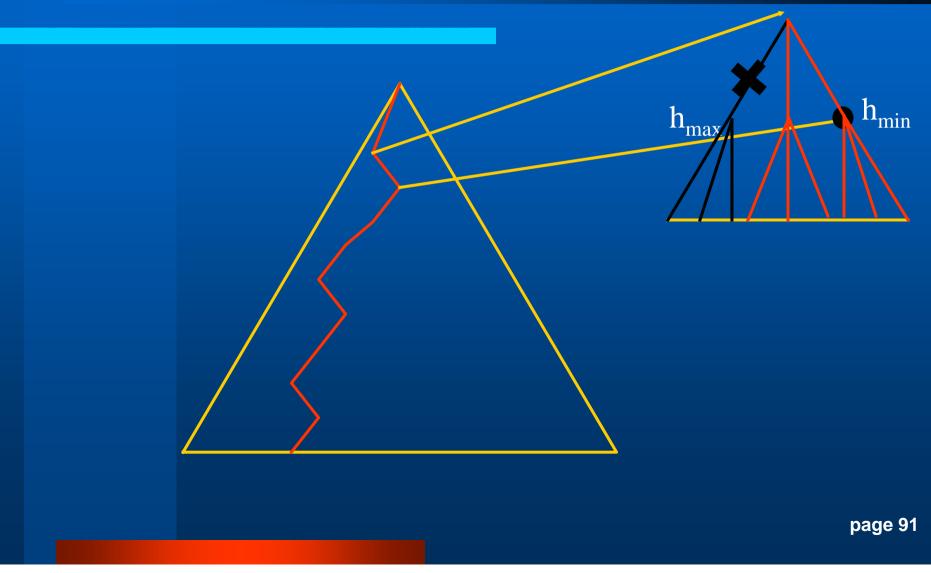
Restricted candidate list

- At each choice point a function h is evaluated for all possible choices:
 - the k "worst" choices (with high value for h) are discarded
 - the choice that minimizes *h* is considered as preferred decision
 - the preferred decision is taken, the remaining choices are taken upon backtracking

Restricted candidate list

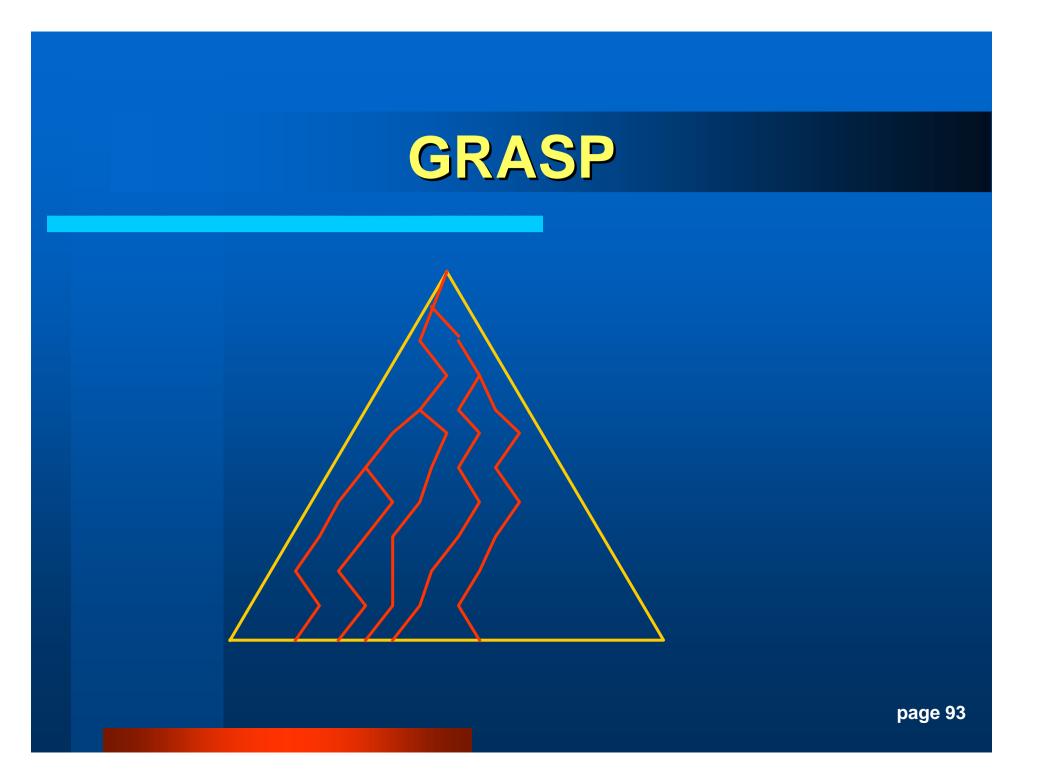


Restricted candidate list



GRASP

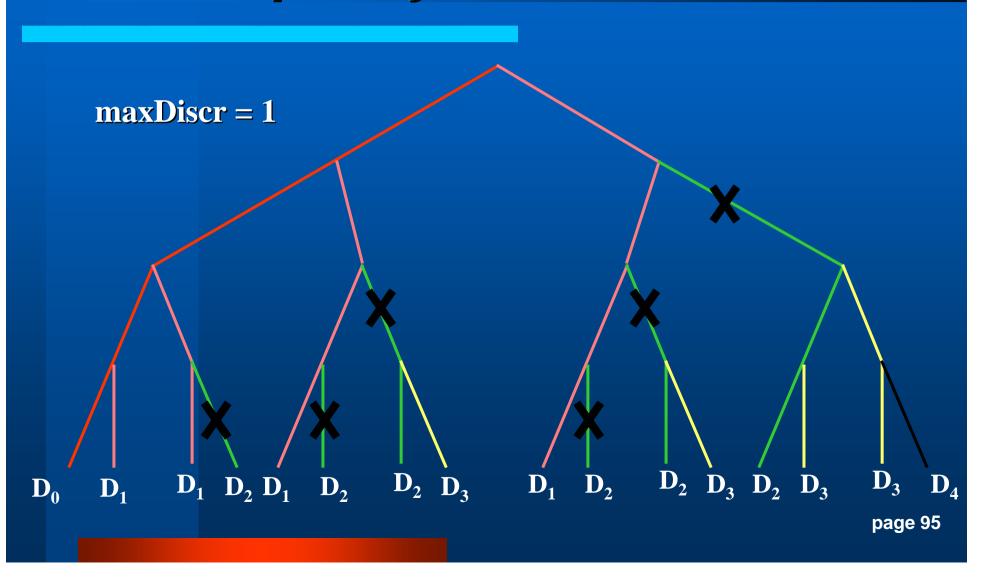
- "Greedy Randomized Adaptative Search Procedure"
- At each choice point a function h is evaluated for all possible choices:
 - the preferred decision is chosen by a random function biased towards choices having small value for h
 - the preferred decision is taken
 - the process is iterated until a stopping condition is met



Discrepancy based search

- Idea: good solutions are more likely to be constructed by following always but a few times the heuristic
 - during search, count the number of times the heuristic is not followed (number of discrepancies)
 - a maximal number of discrepancies is allowed when generating solutions in the tree.

Discrepancy based search



CP + some LS: putting things together

• Example:

```
Procedure solve(P)
while (not stopping condition)
Solution S = Ø
int failLimit = 50
bool result = solveGRASP(P,S,failLimit)
if (result)
P = (P \wedge (Cost(P) < Cost(S))</pre>
```

CP + some LS: putting things together

• Example:

Local search over the variable selection heuristic

- In some problems, a solution can be described by a variable ordering
 - Natural value ordering heuristics
- Examples:
 - List-scheduling heuristics
 - Configuration problems

Local moves can be applied on the variable sequence itself

Local moves on a heuristic

Standard process in Genetic Algorithms:

 Encode the solution
 Apply local changes to the encoding
 Construct the new solution (can be done by a CP-based solver)

 In CP: Preference-based programming

Preference-based programming

Example on Job-Shop scheduling:
 – Consider a ordered list of tasks (priority list)

Choice point: (Schedule asap OR Postpone)

- Take one task at a time from the list and schedule it at its earliest start time
- otherwise "postpone" the decision on the task for later
- Local moves on the preferred list of tasks generate different schedules
- Use tree search to explore a neighborhood of the preferred list

page 100

Conclusion

Real life combinatorial optimization problems often require crafting hybrid optimization methods:

- local search is a technique that can complement CP
- many hybrids are possible

« Is it cookery or alchemy ? » M. Wallace

Recipes and tools are emerging ...