
© Imperial College London

Repair and Local Search
in ECLiPSe

Joachim Schimpf

IC-Parc

© Imperial College LondonPage 2

Overview

• Tree Search vs. Local Search
• The ECLiPSe CLP system
• The repair library
• Classical Local Search with the repair library
• Repair Methods

IC-ParcPage 3

Exploring search spaces

CLP Tree search:

• constructive
• partial/total assignments
• systematic
• complete or incomplete

“Local” search:

• move-based (trajectories)
• only total assignments
• usually random element
• incomplete

partial assignments

© Imperial College LondonPage 4

Hybrids in CLP without special support

• E.g. Shuffle Search
– tree search within subtrees
– “local moves” between trees, preserving part of the previous

solution’s variable assignments

• Pesant & Gendreau, Neighbourhood Models

© Imperial College LondonPage 5

Issues with Classical Local Search in CP

• Efficient in CP implementation:
– small monotonic change, e.g. single variable instantiation, domain

narrowing
– the reverse operation on backtracking

• Inefficient in CP framework:
– small non-monotonic change, e.g. change value of a single variable
– requires potentially deep backtracking and many re-instantiations

• Required for Local Search:
– efficient small non-monotonic changes

IC-ParcPage 6

Linear Linear
ProgrammingProgramming

LibraryLibrary

ECLiPSe for Modelling and Solving

RepairRepair
LibraryLibrary

IntervalInterval
ReasoningReasoning

LibraryLibrary

BranchBranch
and boundand bound

LibraryLibrary

Algorithm

ModelModel

Other
Libraries
OtherOther

LibrariesLibraries

© Imperial College LondonPage 7

ECLiPSe Programming Language

• Logic Programming based
– Predicates over Logical Variables X#>Y, integers([X,Y])
– Disjunction via backtracking X=1 ; X=2
– Metaprogramming (e.g. constraints as data)

• Modelling extensions
– Arrays and structures
– Iteration/Quantification (foreach(X,Xs) do …)

• Constraint support
– Attributed variables X{1..5}
– Data-driven computation (propagation) suspend(…)
– Solver libraries :- lib(ic).

© Imperial College LondonPage 8

The repair library – Tentative Values

• Tentative values
X::1..5, X tent_set 3

In addition to other attributes (e.g. domain).
Tentative value can be changed freely (unlike domain)
Change can trigger computation (like domain change)

• Conflict variables
Tentative value not in domain

X{1..5, tent:3}

X{1..5, tent:7}

© Imperial College LondonPage 9

The repair library – Monitoring Constraints

• Annotating arbitrary constraints
X #\= Y r_conflict ConfSet

• Conflict constraint
If not satisfied with current tentative values

• Conflict set
conflict_constraints(ConfSet, Constrs)

Set of conflict constraints, dynamically maintained.
Constraints as data structures.

X{tent:3} Y{tent:4}
#\=

X{tent:3} Y{tent:3}
#\=

© Imperial College LondonPage 10

The repair library – Tentative Propagation

• Data-driven computation with tentative values
Suspend until tentative value changes, then execute

• Arithmetic
Z tent_is X+Y

Update tentative value of Z whenever tentative value of X or Y
changes (automatic and incremental)

• General
tent_call([X,Y], Z, Z is X+Y)

Recompute and update tentative value of Z whenever tentative
value of X or Y changes

© Imperial College LondonPage 11

knapsack(N, Profits, Weights, Capacity, Opt) :-

length(Vars, N), % N booleans

Capacity >= Weights*Vars, % constraint

Opt = Profits*Vars, % the objective

% search

:- lib(ic), lib(branch_and_bound).

knapsack(N, Profits, Weights, Capacity, Opt) :-

length(Vars, N), Vars :: 0..1, % N booleans

ic: Capacity >= Weights*Vars, % constraint

ic: Opt #= Profits*Vars, % the objective

minimize(labeling(Vars), -Opt). % search

Tree Search

:- lib(repair).

knapsack(N, Profits, Weights, Capacity, Opt) :-

length(Vars, N), % N booleans

Capacity >= Weights*Vars r_conflict cap, % constraint

Opt tent_is Profits*Vars, % the objective

local_search(cap, Vars, Opt). % search

Local Search

Local Search with repair library

IC-ParcPage 12

Local Search - algorithm template

local_search:
set starting state
while global_condition

while local_condition
select a move
if acceptable

do the move
if new optimum

remember it
endwhile
set restart state

endwhile

local_search:
set starting state
while global_condition

while local_condition
select a move
if acceptable

do the move
if new optimum

remember it
endwhile
set restart state

endwhile

Different parameters:
– hill climbing
– simulated annealing
– tabu search
– ... and many variants

Different parameters:
– hill climbing
– simulated annealing
– tabu search
– ... and many variants

E.g. Hill Climbing

try_move(Vars, ProfitVar, OldBest, NewBest) :-

(

ProfitVar tent_get OldProfit,

flip_random(Vars), % do a move

ProfitVar tent_get NewProfit,

NewProfit > OldProfit, % uphill?

conflict_constraints(cap, []) % solution?

->

NewBest is max(OldBest,NewProfit) % accept

;

NewBest = OldBest % reject move

).

tentative value propagation

undo
move

IC-ParcPage 14

Techniques used here

• Move operation and acceptance test:
– If the acceptance test fails (no solution or objective not

improved) the move is automatically undone by backtracking!

• Detecting solutions:
– Constraint satisfaction is checked by checking whether the

conflict constraint set is empty

• Monitoring cost/profit:
– Retrieve tentative value of Profit-variable before and after the

move to check whether it is uphill
– Since the move changes the tentative values of some

variable(s), tent_is/2 will automatically and incrementally
update the Profit variable!

• Move operation and acceptance test:
– If the acceptance test fails (no solution or objective not

improved) the move is automatically undone by backtracking!

• Detecting solutions:
– Constraint satisfaction is checked by checking whether the

conflict constraint set is empty

• Monitoring cost/profit:
– Retrieve tentative value of Profit-variable before and after the

move to check whether it is uphill
– Since the move changes the tentative values of some

variable(s), tent_is/2 will automatically and incrementally
update the Profit variable!

© Imperial College LondonPage 15

Computing Violatedness

• Conflict monitoring not ideal for LS
Generic, works for any constraint (r_conflict annotation).
But many LS algorithms need measure of violatedness.

• E.g. capacity constraint
cap_con(Cap, Vars, Weights, Viol) :-

Viol tent_is max(0, Vars*Weights – Cap).

• Simple constraint (0..1 violations)
differ(X, Y, Viol) :-

tent_call([X,Y], Viol, (X\=Y -> Viol=0;Viol=1)).

• Conflict monitoring not ideal for LS
Generic, works for any constraint (r_conflict annotation).
But many LS algorithms need measure of violatedness.

• E.g. capacity constraint
cap_con(Cap, Vars, Weights, Viol) :-

Viol tent_is max(0, Vars*Weights – Cap).

• Simple constraint (0..1 violations)
differ(X, Y, Viol) :-

tent_call([X,Y], Viol, (X\=Y -> Viol=0;Viol=1)).

IC-ParcPage 16

Repair Techniques

• One Basic Technique
– Start with “good” inconsistent assignment
– Increase consistency incrementally

• Applications
– Repair Problems

“good” inconsistent assignment: the previous solution

– Repair-Based Constraint Satisfaction
“good” inconsistent assignment: the partially consistent soln. found by heuristics

– Repair-Based Constraint Optimization
“good” inconsistent assignment: but good with respect to optimization function

– Hybridization (e.g. Probing)
“good” inconsistent assignment: a good solution produced by a partial solver

• One Basic Technique
– Start with “good” inconsistent assignment
– Increase consistency incrementally

• Applications
– Repair Problems

“good” inconsistent assignment: the previous solution

– Repair-Based Constraint Satisfaction
“good” inconsistent assignment: the partially consistent soln. found by heuristics

– Repair-Based Constraint Optimization
“good” inconsistent assignment: but good with respect to optimization function

– Hybridization (e.g. Probing)
“good” inconsistent assignment: a good solution produced by a partial solver

IC-ParcPage 17

Repairing a Tentative Assignment

• The Conflict Region• The Conflict Region

Remaining Variables

Conflict
Region
of Violated
Constraints

Variables assigned
by tree search

Tentative

Fixed

© Imperial College LondonPage 18

Repairing a Tentative Assignment - detail

a

c

c

a

c

b

a

c

c

b

Conflict setNo further conflicts!

Tentative

Fixed

This is a
complete
search
algorithm!

© Imperial College LondonPage 19

model(…) :-

Vars tent_set StartingSolution,
…

<Constraint> r_conflict cs,
…

search :-
(find_var_in_conflict_constraint(cs, V) ->

search
;

true
).

model(…) :-

Vars tent_set StartingSolution,
…

<Constraint> r_conflict cs,
…

search :-
(find_var_in_conflict_constraint(cs, V) ->

change_tent_value(V),
search

;
true

).

Local Search with Tentative Assignments
Tree Search with Tent. Ass. and Domains

model(…) :-
Vars :: Domain,
Vars tent_set StartingSolution,
…
ic: <Constraint>,
<Constraint> r_conflict cs,
…

search :-
(find_var_in_conflict_constraint(cs, V) ->

indomain(V),
search

;
true

).

IC-ParcPage 20

Repairing solutions from partial solvers

Start End

Machine

Tasks

D1

D2

D3

D4

D5

Resource constraints (disjunctive, hard)
noclash(S1,D1,S2,D2) :-

S1 >= S2+D2 ; S2 >= S1+D1.

Precedence constraints (temporal,easy)
Start1 + Duration1 =< Start2

disjunction

One machine scheduling

© Imperial College LondonPage 21

Algorithmic Idea

• Temporal constraints
– handled by interval propagation without search:
– lower domain bounds are valid solutions for the temporal

subproblem!
– we use these values as tentative values

• Resource constraints
– initially only monitored for conflicts (with respect to the solution of

the temporal subproblem)
– when in conflict, make a choice for the disjunction
– in each branch a temporal constraint is added

IC-ParcPage 22

Annotated Model

Start End

Machine

Tasks

D1

D2

D3

D4

D5

model(…) :-
…
ic:(S1 + D1 =< S2)
…

noclash(S1,D1,S2,D2) r_conflict cs,
…

noclash(S1,D1,S2,D2) :-
ic:(S1 >= S2+D2) ; ic:(S2 >= S1+D1).

Precedence constraints
handled by interval solver

Resource constraints
monitored for conflict

Choice between two additional
precedence constraints

IC-ParcPage 23

(Quite generic) search routine

repair_label :-
conflict_vars(CVs),
tent_set_to_min(CVs),

conflict_constraints(cs,CCs),
(CCs == [] ->

true
;

CCs = [Constraint|_],
call(Constraint),

repair_label
).

tentative value propagation

Set tentative values to
sub-problem solution
(lower domain bound)

Select constraint to repair

interval propagation

Address the constraint:
Create choice point

Add temporal constraint
in each branch

IC-ParcPage 24

Repair heuristics: max overlap

Start End

Machine

Tasks

T1

T2

T3

T4

T5

Start of T1

overlap(S1,S2,D2,B12) :-
B12 tent_is (S1>=S2 and S1=<S2+D2).

Resource usage at start of T1:

R1 tent_is
1 + B12 + B13 + B14 + B15

© Imperial College LondonPage 25

Variant: Probing with linear subproblem

• Scenario
– more complex, but linear subproblem
– more complex objective, e.g. minimal perturbation

• Algorithm
– Send linear constraints to simplex
– Simplex solves subproblem for given objective (Probe)
– Set tentative values to simplex solution
– Propagate tentative values to overlap variables
– Identify bottleneck (maximum overlap)
– Add precedence constraint on two bottleneck tasks

© Imperial College LondonPage 26

Setting Tentative Values via eplex

:- lib(eplex), lib(repair).

eplex_to_tent(Expr, Opt) :-
eplex_solver_setup(Expr, Opt, [], 0

[new_constraint,post(set_ans_to_tent)]).

set_ans_to_tent :-
eplex_get(vars,Vars),
eplex_get(typed_solution,Solution),
Vars tent_set Solution.

IC-ParcPage 27

MIP vs Probe Backtrack Search

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

10 20 50

Number of Activities

LP
 N

od
es

MIP
Probe Backtrack Search

© Imperial College LondonPage 28

ECLiPSe

• Web site
http://www.icparc.ic.ac.uk/eclipse

• Free academic licence

• Successor for repair library is planned

