
Nested Temporal Networks with Alternatives

Roman Barták*, Ondřej Čepek*

*Charles University, Faculty of Mathematics and Physics
Malostranské nám. 2/25, 118 00 Praha 1, Czech Republic

{roman.bartak, ondrej.cepek}@mff.cuni.cz

Institute of Finance and Administration
Estonská 500, 101 00 Praha 10, Czech Republic

Abstract
Temporal networks play a crucial role in modeling temporal
relations in planning and scheduling applications. Recently,
several extensions of temporal networks were proposed to
integrate non-temporal information such as resource
consumption or logical dependencies. Temporal Networks
with Alternatives were proposed to model alternative and
parallel processes, however the problem of deciding which
nodes can be consistently included in such networks is NP-
complete. In this paper we propose a tractable subclass of
Temporal Networks with Alternatives that can still cover a
wide range of real-life processes, while the problem of
deciding node validity is solvable in polynomial time. We
also present an algorithm that can effectively recognize
whether a given network belongs to the proposed sub-class.

Introduction
Current temporal networks handle well temporal
information including disjunction of temporal constraints
(Stergiou and Koubarakis 1998) or uncertainty (Blythe,
1999). Several other extensions of temporal networks
appeared recently such as resource temporal networks
(Laborie 2003) or disjunctive temporal networks with
finite domain constraints (Moffitt, Peintner, Pollack 2005).
These extensions integrate temporal reasoning with
reasoning on non-temporal information, such as fluent
resources. All these approaches assume that all nodes are
present in the network, though the position of nodes in
time may be influenced by other than temporal constraints.
Conditional Temporal Planning (Tsamardinos, Vidal,
Pollack 2003) introduced an option to decide which node
will be present in the solution depending on a certain
external condition. Hence CTP can model conditional
plans where the nodes actually present in the solution are
selected based on external forces. In other problems, such
as log-based reconciliation (Hamadi 2004), we need to
model inter-dependencies between nodes which concern
their presence/absence in the final solution. For example,
the logical dependency A ⇒ B used in log-based
reconciliation problems says that if node A is present in the
solution then node B must be present as well. The task is to

Compilation copyright © 2007, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

select a subset of nodes that satisfy both logical and
temporal constraints and respect some other constraints,
(e.g. some nodes may be pre-selected to be present), or
optimize certain objectives (e.g. maximize the number of
selected nodes). The possibility to select nodes according
to logical, temporal, and resource constrains was
introduced to manufacturing scheduling by ILOG in their
MaScLib (Nuijten at al. 2003). The same idea was
independently formalized in Extended Resource
Constrained Project Scheduling Problem (Kuster, Jannach,
Friedrich 2007). In the common model each node has a
Boolean validity variable indicating whether the node is
selected to be in the solution. These variables are a
discrete version of PEX variables used by Beck and Fox
(1999) for modeling presence of alternative activities in the
schedule. In many recent approaches, these variables are
interconnected by logical constraints such as the
dependency constraint described above. Recall that nodes
usually correspond to activities (their start and/or end time)
and the task is to allocate activities to time (and to
resources), and also to decide which activities will actually
be present in the solution. Hence, these frameworks are
appropriate for modeling and solving over-subscribed
scheduling problems or problems with alternative
activities. Still, all these models handle logical and
temporal constraints separately so they cannot take
advantage of integrated reasoning similar to constraint
filtering techniques proposed in (Barták and Čepek 2006).
Temporal Networks with Alternatives (Barták and Čepek
2007) introduced a different type of alternatives with so
called parallel and alternative branching. Temporal and
logical constraints are closely integrated here – logical
constraints are described as a part of branching in nodes.
Unfortunately, the paper also showed that the problem of
deciding which nodes can be consistently selected, if some
nodes are pre-selected, is NP-hard. This result goes against
a common-sense intuition which says that the selection of
activities among several alternatives should be an easy
task. This discrepancy may be caused by the fact that the
presented model of Temporal Networks with Alternatives
(TNA) is too general, while most real-life processes can be
described using a very specific TNA.
 In this paper we propose a restricted form of TNA which
we call Nested Temporal Networks with Alternatives. This
restriction is motivated by real-life manufacturing

scheduling problems where the network of alternatives has
a specific topology. The main advantage of Nested TNA is
the tractability of the assignment problem (decision about
which nodes are valid). After a motivation example and
recapitulation of TNA, we will formally define Nested
TNA and present an algorithm that can recognize whether
a given TNA is nested. The same algorithm (after a small
extension) can also be used to decide which nodes can be
present in the network, that is, to solve the TNA
assignment problem (Barták and Čepek 2007). We
conclude the paper by proposing new filtering rules for
temporal relations that improve domain pruning proposed
in (Barták and Čepek 2007).

Motivation and Background
Let us consider a manufacturing scheduling problem of
piston production. Each piston consists of a rod and a tube
that need to be assembled together to form the piston. Each
rod consists of the main body and a special kit that is
welded to the rod (the kit needs to be assembled before
welding). The rod body is sawn from a large metal stick.
The tube can also be sawn from a larger tube. Rod body,
the kit, and tube must be collected together from the
warehouse to ensure that their diameters fit. If the tube is
not available, it can be bought from an external supplier. In
any case some welding is necessary to be done on the tube
before it can be assembled with the rod. Finally, between
sawing and welding, both rod and tube must be cleared of
metal cuts produced by sawing. Assume that welding and
sawing operations require ten time units, assembly
operation requires five time units, clearing can be done in
two time units, and the material is collected from
warehouse in one time unit. If the tube is bought from an
external supplier then it takes fifty time units to get it.
Moreover, tube and rod must cool-down after welding
which takes five time units.

Figure 1. Example of a manufacturing process with alternatives.

The manufacturing processes from the above problem can
be described using a Simple Temporal Network with

Alternatives depicted in Figure 1. Nodes correspond to
start times of operations and arcs are annotated by simple
temporal constraints in the form [a, b], where a describes
the minimal distance (in time) between the nodes and b
describes the maximal distance. Informally, this network
describes the traditional simple temporal constraints
(Dechter, Meiri, Pearl 1991) together with the specification
of branching of processes. There is a parallel branching
marked by a semi-circle indicating that the process splits
and runs in parallel and an alternative branching marked
by ALT indicating that the process will consists of exactly
one alternative path (we can choose between buying a tube
and producing it in situ). We can see that this TNA has a
very specific topology that we will try to address in the rest
of the paper.
 Let us now formally define Simple Temporal Networks
with Alternatives from (Barták and Čepek 2007). Let G be
a directed acyclic graph. A sub-graph of G is called a fan-
out sub-graph if it consists of nodes x, y1,…, yk (for some
k) such that each (x, yi), 1 ≤ i ≤ k, is an arc in G. If y1,…, yk
are all and the only successors of x in G (there is no z such
that (x, z) is an arc in G and ∀i = 1,…,k: z ≠ yi) then we call
the fan-out sub-graph complete. Similarly, a sub-graph of
G is called a fan-in sub-graph if it consists of nodes x,
y1,…, yk (for some k) such that each (yi, x), 1 ≤ i ≤ k, is an
arc in G. A complete fan-in sub-graph is defined similarly
as above. In both cases x is called a principal node and all
y1,…, yk are called branching nodes.
Definition 1: A directed acyclic graph G together with its
pair wise edge-disjoint decomposition into complete fan-
out and fan-in sub-graphs, where each sub-graph in the
decomposition is marked either as a parallel sub-graph or
an alternative sub-graph, is called a P/A graph.
Definition 2: Simple Temporal Network with Alternatives
is a P/A graph where each arc (X,Y) is annotated by a pair
of numbers [a,b] where a describes the minimal distance
between nodes X and Y and b describes the maximal
distance, formally, a ≤ Y-X ≤ b.
Figure 1 shows an example of Simple Temporal Network
with Alternatives. If we remove the temporal constraints
from this network then we get a P/A graph. Note that the
arcs (sawTube, clearTube), (sawRode, clearRod), and
(assemblePiston, shipPiston) form simple fan-in (or fan-
out, it does not matter in this case) sub-graphs. As we will
see later, it does not matter whether the sub-graphs
consisting of a single arc are marked as parallel or
alternative – the logical constraint imposed by the sub-
graph will be always the same. Hence, we can omit the
explicit marking of such single-arc sub-graphs to make the
figure less overcrowded.
 In this paper, we focus mainly on handling special
logical relations imposed by the fan-in and fan-out sub-
graphs – we call then branching constraints. Temporarily,
we omit the temporal constraints, so we will work with
P/A graphs only, but we will go back to temporal
constraints later in the paper. In particular, we are
interested in finding whether it is possible to select a subset
of nodes in such a way that they form a feasible graph

weldTube
weldRod

[50,∞]

[5,∞]

assembleKit

shipPiston

buyTube

sawTube

clearTube

sawRod

clearRod

assemblePiston

ALT

ALT

[1,∞] [0,0]

[0,0]

[10,∞] [10,∞]

[2,∞] [2,∞]

[1,∞]

[15,∞] [15,∞

collectMaterial

[5,∞]

[1,∞]

according to the branching constraints. Formally, the
selection of nodes can be described by an assignment of
0/1 values to nodes of a given P/A graph, where value 1
means that the node is selected and value 0 means that the
node is not selected. The assignment is called feasible if
• in every parallel sub-graph all nodes are assigned the

same value (both the principal node and all branching
nodes are either all 0 or all 1),

• in every alternative sub-graph either all nodes (both the
principal node and all branching nodes) are 0 or the
principal node and exactly one branching node are 1
while all other branching nodes are 0.

Notice that the feasible assignment naturally describes one
of the alternative processes in the P/A graph. For example,
weldRod is present if and only if both clearRod and
assembleKit are present (Figure 1). Similarly, weldTube is
present if exactly one of nodes buyTube or clearTube is
present (but not both). Though, the alternative branching is
quite common in manufacturing scheduling, it cannot be
described by binary logical constraints from MaScLib
(Nuijten at al. 2003) or Extended Resource Constrained
Project Scheduling Problem (Kuster, Jannach, Friedrich
2007). On the other hand, the branching constraints are
specific logical relations that cannot capture all logical
relations between the nodes.
 It can be easily noticed that given an arbitrary P/A graph
the assignment of value 0 to all nodes is always feasible.
On the other hand, if some of the nodes are required to take
value 1, then the existence of a feasible assignment is by
no means obvious. Let us now formulate this decision
problem formally.
Definition 3: Given a P/A graph G and a subset of nodes
in G which are assigned to 1, P/A graph assignment
problem is “Is there a feasible assignment of 0/1 values to
all nodes of G which extends the prescribed partial
assignment?”
Intuition motivated by real-life examples says that it should
not be complicated to select the nodes to form a valid
process according to the branching constraints described
above. The following proposition from (Barták and Čepek
2007) says the opposite.

Proposition 1: The P/A graph assignment problem is NP-
complete.

In the rest of the paper, we will propose a restricted form
of the P/A graph, a so called nested P/A graph that can
cover many real-life problems while keeping the P/A graph
assignment problem tractable.

Nested P/A Graphs
When we analyzed how the P/A graphs modeling real-life
processes look, we noticed several typical features. First,
the process has usually one start point and one end point.
Second, the graph is built by decomposing meta-processes
into more specific processes until non-decomposable

processes (operations) are obtained. There are basically
two (three) types of decomposition. The meta-process can
split into two or more processes that run in a sequence, that
is, after one process is finished, the subsequent process can
start. The meta-process can split into two or more sub-
processes that run in parallel, that is, all sub-processes start
at the same time and the meta-process is finished when all
sub-processes are finished. Finally, the meta-process may
consists of several alternative sub-processes, that is,
exactly one of these sub-processes is selected to do the job
of the meta-process. Notice, that the last two
decompositions have the same topology of the network
(Figure 2), they only differ in the meaning of the branches
in the network. Note finally, that we are focusing on
modeling instances of processes with particular operations
that will be allocated to time. Hence we do not assume
loops that are sometimes used to model abstract processes.

Figure 2. Possible decompositions of the process.

Based on above observations we propose a recursive
definition of a nested graph.
Definition 4: A directed graph G = ({s,e}, {(s,e)}) is a
(base) nested graph. Let G = (V, E) be a graph, (x,y) ∈ E
be its arc, and z1,…, zk (k > 0) be nodes such that neither zi
is in V. If G is a nested graph (and I = {1,…,k}) then graph
G’ = (V ∪ {zi | i∈I}, E ∪ {(x,zi), (zi,y) | i∈I} – {(x,y)}) is
also a nested graph.
According to Definition 4, any nested graph can be
obtained from the base graph with a single arc by repeated
substitution of any arc (x,y) by a special sub-graph with k
nodes (see Figure 3). Notice that a single decomposition
rule covers both the serial process decomposition (k = 1)
and the parallel/alternative process decomposition (k > 1).
Though this definition is constructive rather than fully
declarative, it is practically very useful. Namely,
interactive process editors can be based on this definition
so the users can construct only valid nested graphs by
decomposing the base nested graph.

Figure 3. Arc decomposition in nested graphs.

The directed nested graph defines topology of the nested
P/A graph but we also need to annotate all fan-in and fan-

z z z

x x

y y

x

y

z z

x

y

z

k = 1 k = 2 k = 3

parallel/alternative
decomposition

serial
decomposition

out sub-graphs as either alternative or parallel sub-graphs.
Moreover, we need to do the annotation carefully so the
assignment problem can be solved easily for nested graphs
and no node is inherently invalid. The idea is to annotate
each node by input and output label which defines the type
of branching (fan-in or fan-out sub-graph).
Definition 5: Labeled nested graph is a nested graph
where each node has (possibly empty) input and output
labels defined in the following way. Nodes s and e in the
base nested graph and nodes zi introduced during
decomposition have empty initial labels. Let k be the
parameter of decomposition when decomposing arc (x,y).
If k > 1 then the output label of x and the input label of y
are unified and set either to PAR or to ALT (if one of the
labels is non-empty then this label is used for both nodes).
Figure 4 demonstrates how the labeled nested graph is
constructed for the motivation example from Figure 1. In
particular, notice how the labels of nodes are introduced (a
semicircle for PAR label and A for ALT label). When a
label is introduced for a node, it never changes in the
generation process.

Figure 4. Building a labeled nested graph.

If an arc (x, y) is being decomposed into a sub-graph with k
new nodes where k > 1, then we require that the output
label of x is unified with the input label of y. This can be
done only if either both labels are identical or at least one
of the labels is empty. The following lemma shows that the
second case always holds.
Lemma 1: For any arc (x, y) in the labeled nested graph,
either the output label of x or the input label of y is empty.
Proof: The base nested graph contains a single arc (s, e)
and labels for s and e are empty so the arc (the graph)
satisfies the lemma. Assume now that graph G satisfies the
lemma and we decompose some arc (x, y). During the
decomposition, arc (x, y) is removed from the graph and
substituted by arcs (x, zi) and (zi, y) for new nodes zi,
1 ≤ i ≤ k, which have empty labels. Hence, the new arcs
satisfy the lemma. According to Definition 5 if k > 1 the
output label of x and the input label of y are set (both or
just one of them, if the other one was set already) so we
need to check the other arcs going from x or going to y. If
there was another arc (x, b) in G in addition to removed
(x, y) then some arc (x, c) has already been decomposed to
obtain two or more arcs going from x. Hence the output
label of x has already been set in G and according to
assumption the input label of b was empty which is
preserved in the new graph. Symmetrically, if there was
additional arc (b, y) in G then the output label of b is

empty. So, all arcs in graph G that remain in the new graph
still satisfy the lemma.

Now, we can formally introduce a nested P/A graph.
Definition 6: A nested P/A graph is obtained from a
labeled nested graph by removing the labels and defining
the fan-in and fan-out sub-graphs in the following way. If
the input label of node x is non-empty then all arcs (y, x)
form a fan-in sub-graph which is parallel for label PAR or
alternative for label ALT. Similarly, nodes with a non-
empty output label define fan-out sub-graphs. Each arc
(x, y) such that both output label of x and input label of y
are empty forms a parallel fan-in sub-graph.
Note, that requesting a single arc to form a parallel fan-in
sub-graph is a bit artificial. We use this requirement to
formally ensure that each arc is a part of some sub-graph.

Proposition 2: A nested P/A graph is a P/A graph.
Proof: A nested P/A graph is a directed acyclic graph
because the base nested graph is acyclic and the
decomposition rule does not add a cycle. From Lemma 1,
for each arc (x, y) either the output label of x or the input
label of y is empty If both labels are empty then the arc
forms a separate fan-in sub-graph. If the input label of x is
non-empty then the arc belongs to a fan-out sub-graph with
principal node x. Similarly, if the output label of y is non-
empty then the arc belongs to a fan-in sub-graph with
principal node y. Consequently, each arc belongs to exactly
one sub-graph so the nested P/A graph is a P/A graph.

Recognizing Nested P/A Graphs
Proposition 2 claims that a nested P/A graph is a special
form of a P/A graph. It is easy to show that there exist P/A
graphs which are not nested (see Conclusions). Hence, an
interesting question is whether we can efficiently recognize
whether a given P/A graph is nested. In this section we will
present a polynomial algorithm that can recognize nested
P/A graphs by reconstructing how they are built.
 First, notice that in a nested P/A graph there are no two
different fan-in (fan-out) sub-graphs sharing the same
principal node (Definition 6). In other words, either all arcs
going to (from) a given node x belong to a single fan-in
(fan-out) sub-graph with the principal node x or there is no
fan-in (fan-out) sub-graph with that principal node. This
feature is easy to detect so in the rest of the paper, we
assume that each node participates as a principal node in at
most one fan-in and at most one fan-out sub-graph. This is
reflected in the following representation of P/A graphs
(Figure 5). The P/A graph is represented as a set of nodes
where each node x is annotated by sets of predecessors
pred(x) and successors succ(x) in the graph and by labels
inLab(x) and outLab(x). inLab(x) = PAR if x is a principal
node in a fan-in parallel sub-graph, inLab(x) = ALT if x is
a principal node in a fan-in alternative sub-graph. If x is not
a principal node in any fan-in sub-graph then inLab(x) is
empty. A similar definition is done for outLab(x) with
relation to fan-out sub-graphs. Notice the similarity of
labels to labeled nested graphs (Definition 5). The reader

A

A

A

A

should realize that any nested P/A graph can be
represented this way: all fan-in and fan-out sub-graphs
correspond to non-empty labels and for any arc (x, y) either
the label outLab(x) or inLab(y) is empty.

Figure 5. Representation of a (nested) P/A graph.

The following algorithm DetectNested recognizes labeled
nested graphs by reconstructing how they are built.

algorithm DetectNested(input: graph G, output: {success, failure})
1. select all nodes x in G such that |pred(x)| = |succ(x)| = 1
2. sort the selected nodes lexicographically according to index
 (pred(x), succ(x)) to form a queue Q
3. while non-empty Q do
4. select and delete a sub-sequence L of size k in Q such that
 all nodes in L have an identical index ({x}, {y}) and
 either |succ(x)| = k or |pred(y)| = k
5. if no such L exists then stop with failure
6. if k > 1 & outLab(x) ≠ inLab(y) then stop with failure
7. remove nodes z∈L from the graph
8. remove nodes x, y from Q (if they are there)
9. add arc (x,y) to the graph (an update succ(x) and pred(y))
10. if |pred(x)| = |succ(x)| = 1 then insert x to Q
11. if |pred(y)| = |succ(y)| = 1 then insert y to Q
12.end while
13.if the graph consists of two nodes connected by an arc then
14. stop with success
15.else stop with failure

Proposition 3: Algorithm DetectNested always terminates
and it stops with success if and only if the input P/A graph
is nested.
Proof: Each line of the algorithm terminates. The body of
the while loop either terminates with a failure or at least
one node is removed from the graph. Because the queue Q
consists of nodes that are part of the current graph, it must
become empty sometime so the while loop terminates and
hence the whole algorithm terminates.
 We will show that the algorithm recognizes labeled
nested graphs by induction on the number of
decomposition steps necessary to generate a graph. The
base nested graph is trivially recognized in line 13. Assume
now that the algorithm can recognize all nested graphs
built using m steps. We shall show that:
(i) if DetectNested fails to find a set L of nodes to be

contracted then the input graph is not a labeled nested
graph, and

(ii) if DetectNested finds a set L of nodes and contracts
them and the input graph is a labeled nested graph build

using (m+1) steps, then the resulting graph is a labeled
nested graph which can be built using m steps.

It is easy to see that these two claims are sufficient for the
proof of the equivalence part of the proposition.
 To prove (i) it is enough to realize that in any labeled
nested graph constructed in accordance with Definition 4,
the nodes added in the last decomposition step always
fulfill the requirements on the set L in DetectNested. Thus
if DetectNested fails to find a suitable set L then the input
graph is not a labeled nested graph.
 The proof of (ii) is more difficult because of the fact that
there may be many suitable sets L = { z1, …, zk } which
DetectNested may find and contract. We have to show that
any such choice produces a graph, which is labeled nested
and can be built using m steps. Let us consider two cases:
a) k > 1. In this case a parallel or alternative sub-graph

with nodes x, y, z1, …, zk and arcs (x, zi), (zi, y) is
contracted into arc (x, y). Notice, that (using the
assumption that the input graph is nested) this sub-
graph must be a result of an arc decomposition of (x, y)
during the recursive construction and moreover no arc
inside this sub-graph is further decomposed. Therefore
the graph which is obtained from the input graph by
contraction of L is a labeled nested graph obtainable in
m steps. The sequence of decomposition steps is the
same as for the input graph except that the
decomposition of (x, y) is skipped.

b) k = 1. In this case a chain of length ≥ 2 is shortened (by
one vertex and one arc) by the contraction of L. In this
case there is no guarantee that the contraction can be
matched to a decomposition step which built the input
graph (see example below).

However, the chain of length l can be produced from a
single arc by (l-1) decompositions and can be
contracted back into a single arc by (l-1) contractions in
DetectNested (all with |L| = 1). Thus, similarly as in
case a) the graph which is obtained from the input
graph by contraction of L is a labeled nested graph
obtainable in m steps. The sequence of decomposition
steps is the same as for the input graph except that the
sub-sequence (not necessarily a sub-interval) of (l-1)
decompositions which built the chain is replaced by
(l-2) decompositions which build the shorter chain.

Proposition 4: The worst-case time complexity of
algorithm DetectNested is O(n2), where n is a number of
nodes in the graph.
Proof: The initial selection of nodes for the queue can be
done in time O(n). Time O(n.log n) is necessary to sort the
queue. The sub-list for contraction can be selected in time
O(n) and insertion of nodes into the list can be done in
O(n). All other operations can be implemented in constant

node pred succ inLab outLab
1 2,3,4 - PAR
2 1 5,6 - ALT
3 1 8 - -
4 1 10 - -
5 2 9 - -
6 2 7 - -
7 6 9 PAR -
8 3 10 PAR -
9 5,7 11 ALT -

10 4,8 11 PAR -
11 9,10 12 PAR -
12 11 PAR -

A

A

1

2
3 4

5 6

7 8

9 10

11

12

x xxx x

y y y y y

contr contr
zz

w w
deco deco

time. The while loop is repeated at most n times because
each time at least one node is removed from the graph.
Together, the while loop takes time O(n2) so the whole
algorithm takes time O(n2).

Tractability of Nested P/A Graphs
The main motivation for introducing nested P/A graphs
was to make the P/A graph assignment problem tractable
for this special group of graphs. Recall that the assignment
problem consists of deciding whether it is possible to
complete a partial assignment of validity variables for
nodes to obtain a complete feasible assignment. We can
reformulate the P/A graph assignment problem as a
constraint satisfaction problem in the following way. Each
node x is represented using a Boolean validity variable vx,
that is a variable with domain {0,1}. If the arc between
nodes x and y is a part of some parallel sub-graph then we
define the following constraint:

vx = vy.
If x is a principal node and y1,…, yk for some k are all
branching nodes in some alternative sub-graph then the
logical relation defining the alternative branching can be
described using the following arithmetic constraint:

vx = Σj=1,…,k vyj
.

Notice that if k = 1 then the constraints for parallel and
alternative branching are identical (hence, it is not
necessary to distinguish between them). Notice also that
the arithmetic constraint for alternative branching together
with using the {0,1} domains defines exactly the logical
relation between the nodes – vx is assigned to 1 if and only
if exactly one of vyj

 is assigned to 1. Using the arithmetic
constraint simplifies a formal description of the relation
and also simplifies the proof of the following proposition.
The task whether a completion of the partial assignment of
validity variables exists is clearly equivalent to the
assignment problem for the original P/A graph. We will
show now that the contraction operations of the
DetectNested algorithm can be described as simple
arithmetic operations over the above constraint model
describing the nested P/A graph which leads to solving the
P/A graph assignment problem.

Proposition 5: The assignment problem for a nested P/A
graph is tractable (can be solved in polynomial time).
Proof: We will show how to find a feasible assignment for
a nested P/A graph, if it exists, or to prove that no
assignment exists. The main idea is to use the DetectNested
algorithm from the previous section.
 The contraction operation of the DetectNested algorithm
is a reverse operation to the decomposition operation used
when building the nested graph (Figure 3). Let us assume
that a sub-graph with nodes x, y, z1, …, zk and arcs (x, zi),
(zi, y) is being contracted into arc (x, y). The contraction
operation is allowed if and only if z1, …, zk are either all
successors of x or all predecessors of y (line 4 of the
algorithm) and the type of fan-out graph with the principal
node x is identical to the type of fan-in graph for y (line 6)

(if k = 1 then the equality of types does not matter as we
mentioned above hence it is not requested in the
contraction algorithm). We also know that no node zi
appears elsewhere in the graph. Without lost of generality,
let us assume that zi are all predecessors of y and zj’,
j = 1,…, m (m ≥ 0) are the remaining successors of x. We
distinguish two cases: parallel and alternative branching. In
the case of parallel branching, the P/A graph assignment
problem before contraction is described using constraints
C, x = zi, x = zj’, zi = y, where C is the set of constraints for
the rest of the graph (note that C does not contain zi). The
problem after contraction is described by constraints C,
x = y, x = zj’. These two sets of constraints are visibly
equivalent, meaning that a solution for constraints before
contraction exists if and only if a solution for constraints
after contraction exists. In the case of alternative
branching, we have the constraints C, x = Σi=1,…,k zi +
Σj=1,…,m zj’, Σi=1,…,k zi = y before contraction and constraints
C, x = y + Σj=1,…,m zj’ after contraction. Again, these sets of
constraints are equivalent. Assume now that a partial
assignment of variables is given. If neither zi is part of the
assignment then we can contract the graph, find a feasible
assignment for the contracted graph (if it exists) and then
extend this assignment to variables zi. If any zi is part of the
partial assignment then we check whether the removed
constraint(s), either zi = y or Σi=1,…,k zi = y, can be satisfied.
If the answer is yes then we compute the (unique) value for
y (and values for not-yet instantiated zi), add it to the partial
assignment, and continue as before. Otherwise no feasible
assignment exists and the algorithm can stop. To finish the
proof, one needs to realize that for a nested P/A graph the
algorithm stops with a single arc (s, e) and the assignment
problem can be trivially solved for this graph.

Temporal Constraints

So far, we ignored the temporal part of Simple Temporal
Networks with Alternatives and we focused merely on
logical relations imposed by the branching constraints. The
reason was to show that logical reasoning is easy for nested
P/A graphs (while it is hard for general P/A graphs even
without temporal relations). Now we can return back the
simple temporal constraints. Notice that the selected
feasible set of nodes together with arcs between them
forms a sub-graph of the original P/A graph. We require
this sub-graph to be also temporally feasible, which means
that all the simple temporal constraints between the valid
nodes are satisfied in the sense of simple temporal
networks (Dechter, Meiri, Pearl 1991). Naturally, the
logical and temporal reasoning is interconnected – if a
temporal constraint between nodes x and y cannot be
satisfied then (at least) one of the nodes must be invalid (it
is assigned to 0). Formally, we can extend the constraint
model introduced in the previous section by annotating
each node i by a temporal variable ti indicating the position
of the node in time. For simplicity reasons we assume that
the domain of such variables is an interval 〈0, MaxTime〉 of
integers, where MaxTime is a constant given by the user.

Recall that the temporal relation between nodes i and j is
described by a pair [ai,j, bi,j]. This relation can now be
naturally represented using the following constraint:

vi * vj * (ti + ai,j) ≤ tj ∧ vi * vj * (tj – bi,j) ≤ ti.
If bi,j = ∞ then the second part of conjunction is omitted
and similarly if ai,j = -∞ then the first part of conjunction
is omitted. Notice that if any vi or vj equals zero, that is,
some involved node is invalid, then the constraint is
trivially satisfied (we get 0 ≤ tj ∧ 0 ≤ ti). If both vi and vj
equal 1 then we get (ti + ai,j ≤ tj ∧ tj – bi,j ≤ ti), which is
exactly the simple temporal relation between nodes i and j.
Figure 6 shows how the domains from the previous
example (Figure 1) will look after filtering out the
infeasible values by making the above constraint model arc
consistent. We assume that shipPiston (the bottom node) is
a valid node and MaxTime = 70. Black nodes are valid;
validity of white nodes is not decided yet. Notice weak
domain pruning of time variables in the white nodes
caused by a disjunctive character of the problem. Actually,
the left most path (with buyTube) cannot be selected due to
time constraints but this is not discovered by making the
constraints arc consistent.

Figure 6. Domain filtering using the proposed constraint model.

The above described temporal constraints with validity
variables do not take in account information about the type
of branching. In (Barták and Čepek 2006) we showed that
integrating logical and temporal reasoning can significantly
improve domain pruning. In particular, we can take in
account information about relations between the validity
variables when propagating the temporal constraint. We
propose to always propagate the temporal constraint, that
is, to prune domains of temporal variables. If the temporal
constraint is violated then, instead of generating a failure,

we set some validity variable to 0. We shall describe the
proposed filtering rules in more detail now. Note that the
filtering rule propagates changes of domains between the
constrained variables, namely, the values that violate the
constraint are removed from the domains. Let d(x) by a
domain of variable x. In our model, the domain of a
temporal variable is an interval so we can use interval
arithmetic to propagate the temporal constraints. Namely,
〈l, u〉 + 〈a, b〉 = 〈l+a, u+b〉 and 〈l, u〉 – 〈a, b〉 = 〈l–b, u–a〉.
Assume that arc (i, j) is a part of parallel branching, so in
the solution either both nodes are valid and the temporal
relation must hold, or both nodes are invalid and the
temporal relation does not play any role (the domains of
temporal variables are irrelevant provided that they are
non-empty). Hence, we can always propagate the temporal
relation provided that we properly handle its violation. Let
UP = d(tj) ∩ (d(ti) + 〈ai,j, bi,j〉). The following filtering rule
is applied whenever d(ti) changes:
 d(tj) ← UP if UP ≠ ∅
 d(vj) ← d(vj) ∩ {0} if UP = ∅.
Note that UP = ∅ means violation of the temporal relation
which is accepted only if the nodes are invalid. If the nodes
are valid then a failure is generated because the above rule
makes the domain of the validity variable empty.
Symmetrically, let DOWN = d(ti) ∩ (d(tj) – 〈ai,j, bi,j〉). The
following filtering rule is applied whenever d(tj) changes:
 d(ti) ← DOWN if DOWN ≠ ∅
 d(vi) ← d(vi) ∩ {0} if DOWN = ∅.
The following example demonstrates the effect of above
filtering rules. Assume that the initial domain of temporal
variables is 〈0, 70〉, the validity of nodes is not yet decided,
and there are arcs (i, j) and (j, k) with temporal constraints
[10, 30] and [20, 20] respectively. The original constraints
do not prune any domain, while our extended filtering rules
set the domains of temporal variables ti, tj, and tk to 〈0, 40〉,
〈10, 50〉, and 〈30, 70〉 respectively. If the initial domain is
〈0, 20〉 then the original constraints again prune nothing,
while our extended filtering rules deduce that the
participating nodes are invalid (we assume that logical
constraints in the form vx = vy are also present).
 The propagation of temporal constraints in the
alternative branching is more complicated because we need
to propagate them together. Let x be the principal node of a
fan-in alternative sub-graph and y1,…, yk be all branching
nodes. We first show how the information from the
branching nodes is propagated to the principal node. Let
UP = d(tx) ∩ ∪j = 1,…,k { (d(tyj) + 〈ayj,x, byj,x〉) | d(vyj) ≠ {0}}.
The following filtering rule is applied whenever any d(tyj)
or d(vyj) changes:
 d(tx) ← UP if UP ≠ ∅
 d(vx) ← d(vx) ∩ {0} if UP = ∅.
In the alternative branching we do not know which arc is
used in the solution so we need to assume them all.
Therefore, the above rule uses a union of pruned domains
proposed by individual arcs (from non-invalid nodes).
Symmetrically, let DOWNj = d(tyj) ∩ (d(tx) – 〈ayj,x, byj,x〉).
The following filtering rule is applied to all tyj whenever

[0,70]

[0,50]

[0,70]

[0,70]

[1,38]

[11,48]

[1,45]

[13,50]

[28,65]

ALT

ALT

[1,∞]

[0,0]

[0,0]

[10,∞]
[10,∞]

[50,∞]

[2,∞] [2,∞]

[1,∞]

[5,∞]

[15,∞] [15,∞]

[0,37]

[5,∞]

[33,70]

[1,70]
[1,∞]

weldTube

buyTube

clearTube

shipPiston

d(tx) changes and the change is propagated to branching
nodes.
 d(tyj) ← DOWNj if DOWNj ≠ ∅
 d(vyj) ← d(vyj) ∩ {0} if DOWNj = ∅.
Similar filtering rules can be designed for fan-out
alternative sub-graphs. Again, the main advantage of these
rules is stronger pruning in comparison with the original
constraints as we shall show using the example from
Figure 6. In particular, if we propagate from weldTube to
buyTube and clearTube, we obtain 〈0, 0〉 and 〈0, 48〉 as
new domains of corresponding temporal variables. Now, if
we propagate through the alternative branching going to
buyTube, we deduce that this node is invalid because the
corresponding temporal constraint is violated.
Consequently, all remaining nodes are valid.

Conclusions
The paper proposes a recursive definition of temporal
networks with alternative processes, so called nested
temporal networks with alternatives. The definition is
motivated by a structure of typical manufacturing
processes that consists either of a sequence of serial sub-
processes or of a set of concurrent sub-processes which are
either parallel or alternative. This model is general enough
to cover many real-life processes, though we are aware that
there exist reasonable processes that are not covered such
as the following process.

We used the framework of Temporal Networks with
Alternatives (TNA) to formally describe our idea and we
also proved that the problem of selecting nodes to form a
valid process, that is, selecting nodes satisfying the
inherent logical dependencies, is tractable for the nested
subclass (while this problem is NP-complete for general
TNA). We also proposed an efficient algorithm for
recognizing nested temporal networks. Finally, we
presented preliminary filtering rules for temporal
constraints with validity variables. Though we have no
formal proof yet, we believe that the proposed extension
does not harm tractability of simple temporal constraints
provided that the network is nested. The background of
this paper is in the area of temporal networks that are
frequently used to model instances of processes. There also
exists a large research area of modeling abstract processes
using Petri Nets (van der Aalst 1998) which may serve as a
source of other generalizations of temporal networks.

Acknowledgements
The research is supported by the Czech Science
Foundation under the contract no. 201/07/0205 and by the
EMPOSME project under EU FP6 scheme.

References
W.M.P. van der Aalst. 1998. The Application of Petri Nets
to Workflow Management. The Journal of Circuits,
Systems and Computers, 8(1):21-66.
Barták, R.; Čepek, O. 2006. Incremental Filtering
Algorithms for Precedence and Dependency Constraints.
In Proceedings of the 18th IEEE International Conference
on Tools with Artificial Intelligence (ICTAI 2006), 416-
423. IEEE Press.
Barták, R. and Čepek, O. 2007. Temporal Networks with
Alternatives: Complexity and Model. In Proceedings of the
Twentieth International Florida AI Research Society
Conference (FLAIRS 2007). AAAI Press.
Beck, J.Ch. and Fox, M.S. 1999. Scheduling Alternative
Activities. Proceedings of AAAI-99, 680-687, AAAI Press.
Blythe, J. 1999. An Overview of Planning Under
Uncertainty. AI Magazine, 20(2): 37–54.
Dechter, R.; Meiri, I. and Pearl, J. 1991. Temporal
Constraint Networks. Artificial Intelligence, 49:61-95.
Focacci, F.; Laborie, P.; and Nuijten, W. 2000. Solving
Scheduling Problems with Setup Times and Alternative
Resources. In Proceedings of AIPS 2000.
Hamadi, Y. 2004. Cycle-cut decomposition and log-based
reconciliation. In ICAPS Workshop on Connecting
Planning Theory with Practice, 30-35.
Kuster, J.; Jannach, D.; Friedrich, G. 2007. Handling
Alternative Activities in Resource-Constrained Project
Scheduling Problems. In Proceedings of Twentieth
International Joint Conference on Artificial Intelligence
(IJCAI-07), 1960-1965.
Laborie, P. 2003. Resource temporal networks: Definition
and complexity. In Proceedings of the 18th International
Joint Conference on Artificial Intelligence, 948-953.
Moffitt, M. D.; Peintner, B.; and Pollack, M. E. 2005.
Augmenting Disjunctive Temporal Problems with Finite-
Domain Constraints. In Proceedings of the 20th National
Conference on Artificial Intelligence (AAAI-2005), 1187-
1192. AAAI Press.
Nuijten, W.; Bousonville, T.; Focacci, F.; Godard, D.; Le
Pape, C. 2003. MaScLib: Problem description and test bed
design, http://www2.ilog.com/masclib
Stergiou, K., and Koubarakis, M. 1998. Backtracking
algorithms for disjunctions of temporal constraints. In
Proceedings of the 15th National Conference on Artificial
Intelligence (AAAI-98), 248-253. AAAI Press.
Tsamardinos, I.; Vidal, T. and Pollack, M.E. 2003. CTP: A
New Constraint-Based Formalism for Conditional
Temporal Planning. Constraints, 8(4):365-388.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU (Use these settings to create PDF documents suitable for reliable viewing and printing of business documents. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B903C703B503B903C103B703BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002C0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020064506440627062606450629002006440644063906310636002006480627064406370628062706390629002006270644064506460627063306280629002006440648062B062706260642002006270644063906450644002E00200645064600200627064406450645064306460020062306460020064A062A064500200641062A062D00200648062B06270626064200200050004400460020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006800690076006100740061006C006F007300200064006F006B0075006D0065006E00740075006D006F006B0020006D00650067006200ED007A00680061007400F30020006D0065006700740065006B0069006E007400E9007300E900720065002000E900730020006E0079006F006D00740061007400E1007300E10072006100200061006C006B0061006C006D00610073002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A0061007000650077006E00690061006A010500630079006300680020006E00690065007A00610077006F0064006E0065002000770079015B0077006900650074006C0061006E00690065002000690020006400720075006B006F00770061006E0069006500200064006F006B0075006D0065006E007400F300770020006600690072006D006F0077007900630068002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E0432002C0020043E043104350441043F04350447043804320430044E04490438044500200433043004400430043D044204380440043E04320430043D043D044B04390020043F0440043E0441043C043E04420440002004380020043F0435044704300442044C002004340435043B043E0432044B044500200434043E043A0443043C0435043D0442043E0432002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF005400690063006100720069002000620065006C00670065006C006500720069006E0020006700FC00760065006E0069006C0069007200200062006900720020015F0065006B0069006C006400650020006700F6007200FC006E007400FC006C0065006E006D006500730069002000760065002000790061007A0064013100720131006C006D006100730131006E006100200075007900670075006E0020005000440046002000620065006C00670065006C0065007200690020006F006C0075015F007400750072006D0061006B0020006900E70069006E00200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents suitable for reliable viewing and printing of business documents. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /CZE <FEFF0049004500450045002000580050006c006f0072006500200066006f0072006d00610074>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

