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Abstract 
Temporal networks play a crucial role in modeling temporal 
relations in planning and scheduling applications. Recently, 
several extensions of temporal networks were proposed to 
integrate non-temporal information such as resource 
consumption or logical dependencies. Temporal Networks 
with Alternatives were proposed to model alternative and 
parallel processes, however the problem of deciding which 
nodes can be consistently included in such networks is NP-
complete. In this paper we propose a tractable subclass of 
Temporal Networks with Alternatives that can still cover a 
wide range of real-life processes, while the problem of 
deciding node validity is solvable in polynomial time. We 
also present an algorithm that can effectively recognize 
whether a given network belongs to the proposed sub-class. 

Introduction   
Current temporal networks handle well temporal 
information including disjunction of temporal constraints 
(Stergiou and Koubarakis 1998) or uncertainty (Blythe, 
1999). Several other extensions of temporal networks 
appeared recently such as resource temporal networks 
(Laborie 2003) or disjunctive temporal networks with 
finite domain constraints (Moffitt, Peintner, Pollack 2005). 
These extensions integrate temporal reasoning with 
reasoning on non-temporal information, such as fluent 
resources. All these approaches assume that all nodes are 
present in the network, though the position of nodes in 
time may be influenced by other than temporal constraints. 
Conditional Temporal Planning (Tsamardinos, Vidal, 
Pollack 2003) introduced an option to decide which node 
will be present in the solution depending on a certain 
external condition. Hence CTP can model conditional 
plans where the nodes actually present in the solution are 
selected based on external forces. In other problems, such 
as log-based reconciliation (Hamadi 2004), we need to 
model inter-dependencies between nodes which concern 
their presence/absence in the final solution. For example, 
the logical dependency A ⇒ B used in log-based 
reconciliation problems says that if node A is present in the 
solution then node B must be present as well. The task is to 
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select a subset of nodes that satisfy both logical and 
temporal constraints and respect some other constraints, 
(e.g. some nodes may be pre-selected to be present), or 
optimize certain objectives (e.g. maximize the number of 
selected nodes). The possibility to select nodes according 
to logical, temporal, and resource constrains was 
introduced to manufacturing scheduling by ILOG in their 
MaScLib (Nuijten at al. 2003). The same idea was 
independently formalized in Extended Resource 
Constrained Project Scheduling Problem (Kuster, Jannach, 
Friedrich 2007). In the common model each node has a 
Boolean validity variable indicating whether the node is 
selected to be in the solution.  These variables are a 
discrete version of PEX variables used by Beck and Fox 
(1999) for modeling presence of alternative activities in the 
schedule. In many recent approaches, these variables are 
interconnected by logical constraints such as the 
dependency constraint described above.  Recall that nodes 
usually correspond to activities (their start and/or end time) 
and the task is to allocate activities to time (and to 
resources), and also to decide which activities will actually 
be present in the solution. Hence, these frameworks are 
appropriate for modeling and solving over-subscribed 
scheduling problems or problems with alternative 
activities. Still, all these models handle logical and 
temporal constraints separately so they cannot take 
advantage of integrated reasoning similar to constraint 
filtering techniques proposed in (Barták and Čepek 2006). 
Temporal Networks with Alternatives (Barták and Čepek 
2007) introduced a different type of alternatives with so 
called parallel and alternative branching. Temporal and 
logical constraints are closely integrated here – logical 
constraints are described as a part of branching in nodes.  
Unfortunately, the paper also showed that the problem of 
deciding which nodes can be consistently selected, if some 
nodes are pre-selected, is NP-hard. This result goes against 
a common-sense intuition which says that the selection of 
activities among several alternatives should be an easy 
task. This discrepancy may be caused by the fact that the 
presented model of Temporal Networks with Alternatives 
(TNA) is too general, while most real-life processes can be 
described using a very specific TNA. 
 In this paper we propose a restricted form of TNA which 
we call Nested Temporal Networks with Alternatives. This 
restriction is motivated by real-life manufacturing 



scheduling problems where the network of alternatives has 
a specific topology. The main advantage of Nested TNA is 
the tractability of the assignment problem (decision about 
which nodes are valid). After a motivation example and 
recapitulation of TNA, we will formally define Nested 
TNA and present an algorithm that can recognize whether 
a given TNA is nested. The same algorithm (after a small 
extension) can also be used to decide which nodes can be 
present in the network, that is, to solve the TNA 
assignment problem (Barták and Čepek 2007). We 
conclude the paper by proposing new filtering rules for 
temporal relations that improve domain pruning proposed 
in (Barták and Čepek 2007). 

Motivation and Background 
Let us consider a manufacturing scheduling problem of 
piston production. Each piston consists of a rod and a tube 
that need to be assembled together to form the piston. Each 
rod consists of the main body and a special kit that is 
welded to the rod (the kit needs to be assembled before 
welding). The rod body is sawn from a large metal stick. 
The tube can also be sawn from a larger tube. Rod body, 
the kit, and tube must be collected together from the 
warehouse to ensure that their diameters fit. If the tube is 
not available, it can be bought from an external supplier. In 
any case some welding is necessary to be done on the tube 
before it can be assembled with the rod. Finally, between 
sawing and welding, both rod and tube must be cleared of 
metal cuts produced by sawing. Assume that welding and 
sawing operations require ten time units, assembly 
operation requires five time units, clearing can be done in 
two time units, and the material is collected from 
warehouse in one time unit. If the tube is bought from an 
external supplier then it takes fifty time units to get it. 
Moreover, tube and rod must cool-down after welding 
which takes five time units. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Example of a manufacturing process with alternatives. 

The manufacturing processes from the above problem can 
be described using a Simple Temporal Network with 

Alternatives depicted in Figure 1. Nodes correspond to 
start times of operations and arcs are annotated by simple 
temporal constraints in the form [a, b], where a describes 
the minimal distance (in time) between the nodes and b 
describes the maximal distance. Informally, this network 
describes the traditional simple temporal constraints 
(Dechter, Meiri, Pearl 1991) together with the specification 
of branching of processes. There is a parallel branching 
marked by a semi-circle indicating that the process splits 
and runs in parallel and an alternative branching marked 
by ALT indicating that the process will consists of exactly 
one alternative path (we can choose between buying a tube 
and producing it in situ). We can see that this TNA has a 
very specific topology that we will try to address in the rest 
of the paper. 
 Let us now formally define Simple Temporal Networks 
with Alternatives from (Barták and Čepek 2007). Let G be 
a directed acyclic graph. A sub-graph of G is called a fan-
out sub-graph if it consists of nodes x, y1,…, yk (for some 
k) such that each (x, yi), 1 ≤ i ≤ k, is an arc in G. If y1,…, yk 
are all and the only successors of x in G (there is no z such 
that (x, z) is an arc in G and ∀i = 1,…,k: z ≠ yi) then we call 
the fan-out sub-graph complete. Similarly, a sub-graph of 
G is called a fan-in sub-graph if it consists of nodes x, 
y1,…, yk (for some k) such that each (yi, x), 1 ≤ i ≤ k, is an 
arc in G. A complete fan-in sub-graph is defined similarly 
as above. In both cases x is called a principal node and all 
y1,…, yk are called branching nodes. 
Definition 1: A directed acyclic graph G together with its 
pair wise edge-disjoint decomposition into complete fan-
out and fan-in sub-graphs, where each sub-graph in the 
decomposition is marked either as a parallel sub-graph or 
an alternative sub-graph, is called a P/A graph. 
Definition 2: Simple Temporal Network with Alternatives 
is a P/A graph where each arc (X,Y) is annotated by a pair 
of numbers  [a,b] where a describes the minimal distance 
between nodes X and Y and b describes the maximal 
distance, formally, a ≤ Y-X ≤ b. 
Figure 1 shows an example of Simple Temporal Network 
with Alternatives. If we remove the temporal constraints 
from this network then we get a P/A graph. Note that the 
arcs (sawTube, clearTube), (sawRode, clearRod), and 
(assemblePiston, shipPiston) form simple fan-in (or fan-
out, it does not matter in this case) sub-graphs. As we will 
see later, it does not matter whether the sub-graphs 
consisting of a single arc are marked as parallel or 
alternative – the logical constraint imposed by the sub-
graph will be always the same. Hence, we can omit the 
explicit marking of such single-arc sub-graphs to make the 
figure less overcrowded. 
 In this paper, we focus mainly on handling special 
logical relations imposed by the fan-in and fan-out sub-
graphs – we call then branching constraints. Temporarily, 
we omit the temporal constraints, so we will work with 
P/A graphs only, but we will go back to temporal 
constraints later in the paper. In particular, we are 
interested in finding whether it is possible to select a subset 
of nodes in such a way that they form a feasible graph 
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according to the branching constraints. Formally, the 
selection of nodes can be described by an assignment of 
0/1 values to nodes of a given P/A graph, where value 1 
means that the node is selected and value 0 means that the 
node is not selected. The assignment is called feasible if 
• in every parallel sub-graph all nodes are assigned the 

same value (both the principal node and all branching 
nodes are either all 0 or all 1), 

• in every alternative sub-graph either all nodes (both the 
principal node and all branching nodes) are 0 or the 
principal node and exactly one branching node are 1 
while all other branching nodes are 0. 

Notice that the feasible assignment naturally describes one 
of the alternative processes in the P/A graph. For example, 
weldRod is present if and only if both clearRod and 
assembleKit are present (Figure 1). Similarly, weldTube is 
present if exactly one of nodes buyTube or clearTube is 
present (but not both). Though, the alternative branching is 
quite common in manufacturing scheduling, it cannot be 
described by binary logical constraints from MaScLib 
(Nuijten at al. 2003) or Extended Resource Constrained 
Project Scheduling Problem (Kuster, Jannach, Friedrich 
2007). On the other hand, the branching constraints are 
specific logical relations that cannot capture all logical 
relations between the nodes. 
 It can be easily noticed that given an arbitrary P/A graph 
the assignment of value 0 to all nodes is always feasible. 
On the other hand, if some of the nodes are required to take 
value 1, then the existence of a feasible assignment is by 
no means obvious. Let us now formulate this decision 
problem formally. 
Definition 3:  Given a P/A graph G and a subset of nodes 
in G which are assigned to 1, P/A graph assignment 
problem is “Is there a feasible assignment of 0/1 values to 
all nodes of G which extends the prescribed partial 
assignment?” 
Intuition motivated by real-life examples says that it should 
not be complicated to select the nodes to form a valid 
process according to the branching constraints described 
above. The following proposition from (Barták and Čepek 
2007) says the opposite. 

Proposition 1: The P/A graph assignment problem is NP-
complete. 

In the rest of the paper, we will propose a restricted form 
of the P/A graph, a so called nested P/A graph that can 
cover many real-life problems while keeping the P/A graph 
assignment problem tractable. 

Nested P/A Graphs 
When we analyzed how the P/A graphs modeling real-life 
processes look, we noticed several typical features. First, 
the process has usually one start point and one end point. 
Second, the graph is built by decomposing meta-processes 
into more specific processes until non-decomposable 

processes (operations) are obtained. There are basically 
two (three) types of decomposition. The meta-process can 
split into two or more processes that run in a sequence, that 
is, after one process is finished, the subsequent process can 
start. The meta-process can split into two or more sub-
processes that run in parallel, that is, all sub-processes start 
at the same time and the meta-process is finished when all 
sub-processes are finished. Finally, the meta-process may 
consists of several alternative sub-processes, that is, 
exactly one of these sub-processes is selected to do the job 
of the meta-process. Notice, that the last two 
decompositions have the same topology of the network 
(Figure 2), they only differ in the meaning of the branches 
in the network. Note finally, that we are focusing on 
modeling instances of processes with particular operations 
that will be allocated to time. Hence we do not assume 
loops that are sometimes used to model abstract processes. 
 
 
 
 

Figure 2. Possible decompositions of the process. 

Based on above observations we propose a recursive 
definition of a nested graph. 
Definition 4: A directed graph G = ( {s,e}, {(s,e)} ) is a 
(base) nested graph. Let G = (V, E) be a graph, (x,y) ∈ E 
be its arc, and z1,…, zk (k > 0) be nodes such that neither zi 
is in V. If G is a nested graph (and I = {1,…,k}) then graph 
G’ = ( V ∪ {zi | i∈I}, E ∪ {(x,zi), (zi,y) | i∈I} – {(x,y)}) is 
also a nested graph. 
According to Definition 4, any nested graph can be 
obtained from the base graph with a single arc by repeated 
substitution of any arc (x,y) by a special sub-graph with k 
nodes (see Figure 3). Notice that a single decomposition 
rule covers both the serial process decomposition (k = 1) 
and the parallel/alternative process decomposition (k > 1). 
Though this definition is constructive rather than fully 
declarative, it is practically very useful. Namely,   
interactive process editors can be based on this definition 
so the users can construct only valid nested graphs by 
decomposing the base nested graph. 
 
 
 
 
 
 

 
Figure 3. Arc decomposition in nested graphs. 

The directed nested graph defines topology of the nested 
P/A graph but we also need to annotate all fan-in and fan-
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out sub-graphs as either alternative or parallel sub-graphs. 
Moreover, we need to do the annotation carefully so the 
assignment problem can be solved easily for nested graphs 
and no node is inherently invalid. The idea is to annotate 
each node by input and output label which defines the type 
of branching (fan-in or fan-out sub-graph). 
Definition 5: Labeled nested graph is a nested graph 
where each node has (possibly empty) input and output 
labels defined in the following way. Nodes s and e in the 
base nested graph and nodes zi introduced during 
decomposition have empty initial labels. Let k be the 
parameter of decomposition when decomposing arc (x,y). 
If k > 1 then the output label of x and the input label of y 
are unified and set either to PAR or to ALT (if one of the 
labels is non-empty then this label is used for both nodes).  
Figure 4 demonstrates how the labeled nested graph is 
constructed for the motivation example from Figure 1. In 
particular, notice how the labels of nodes are introduced (a 
semicircle for PAR label and A for ALT label). When a 
label is introduced for a node, it never changes in the 
generation process. 
 
 
 
 
 
 
 

 
Figure 4. Building a labeled nested graph. 

If an arc (x, y) is being decomposed into a sub-graph with k 
new nodes where k > 1, then we require that the output 
label of x is unified with the input label of y. This can be 
done only if either both labels are identical or at least one 
of the labels is empty. The following lemma shows that the 
second case always holds.  
Lemma 1: For any arc (x, y) in the labeled nested graph, 
either the output label of x or the input label of y is empty. 
Proof: The base nested graph contains a single arc (s, e) 
and labels for s and e are empty so the arc (the graph) 
satisfies the lemma. Assume now that graph G satisfies the 
lemma and we decompose some arc (x, y). During the 
decomposition, arc (x, y) is removed from the graph and 
substituted by arcs (x, zi) and (zi, y) for new nodes zi, 
1 ≤ i ≤ k, which have empty labels. Hence, the new arcs 
satisfy the lemma. According to Definition 5 if k > 1 the 
output label of x and the input label of y are set (both or 
just one of them, if the other one was set already) so we 
need to check the other arcs going from x or going to y.  If 
there was another arc (x, b) in G in addition to removed 
(x, y) then some arc (x, c) has already been decomposed to 
obtain two or more arcs going from x. Hence the output 
label of x has already been set in G and according to 
assumption the input label of b was empty which is 
preserved in the new graph. Symmetrically, if there was 
additional arc (b, y) in G then the output label of b is 

empty. So, all arcs in graph G that remain in the new graph 
still satisfy the lemma.  

Now, we can formally introduce a nested P/A graph. 
Definition 6: A nested P/A graph is obtained from a 
labeled nested graph by removing the labels and defining 
the fan-in and fan-out sub-graphs in the following way. If 
the input label of node x is non-empty then all arcs (y, x)  
form a fan-in sub-graph which is parallel for label PAR or 
alternative for label ALT. Similarly, nodes with a non-
empty output label define fan-out sub-graphs. Each arc 
(x, y) such that both output label of x and input label of y 
are empty forms a parallel fan-in sub-graph. 
Note, that requesting a single arc to form a parallel fan-in 
sub-graph is a bit artificial. We use this requirement to 
formally ensure that each arc is a part of some sub-graph. 

Proposition 2: A nested P/A graph is a P/A graph. 
Proof: A nested P/A graph is a directed acyclic graph 
because the base nested graph is acyclic and the 
decomposition rule does not add a cycle. From Lemma 1, 
for each arc (x, y) either the output label of x or the input 
label of y is empty If both labels are empty then the arc 
forms a separate fan-in sub-graph. If the input label of x is 
non-empty then the arc belongs to a fan-out sub-graph with 
principal node x. Similarly, if the output label of y is non-
empty then the arc belongs to a fan-in sub-graph with 
principal node y. Consequently, each arc belongs to exactly 
one sub-graph so the nested P/A graph is a P/A graph.  

Recognizing Nested P/A Graphs 
Proposition 2 claims that a nested P/A graph is a special 
form of a P/A graph. It is easy to show that there exist P/A 
graphs which are not nested (see Conclusions). Hence, an 
interesting question is whether we can efficiently recognize 
whether a given P/A graph is nested. In this section we will 
present a polynomial algorithm that can recognize nested 
P/A graphs by reconstructing how they are built. 
 First, notice that in a nested P/A graph there are no two 
different fan-in (fan-out) sub-graphs sharing the same 
principal node (Definition 6). In other words, either all arcs 
going to (from) a given node x belong to a single fan-in 
(fan-out) sub-graph with the principal node x or there is no 
fan-in (fan-out) sub-graph with that principal node. This 
feature is easy to detect so in the rest of the paper, we 
assume that each node participates as a principal node in at 
most one fan-in and at most one fan-out sub-graph. This is 
reflected in the following representation of P/A graphs 
(Figure 5). The P/A graph is represented as a set of nodes 
where each node x is annotated by sets of predecessors 
pred(x) and successors succ(x) in the graph and by labels 
inLab(x) and outLab(x). inLab(x) = PAR if x is a principal 
node in a fan-in parallel sub-graph, inLab(x) = ALT if x is 
a principal node in a fan-in alternative sub-graph. If x is not 
a principal node in any fan-in sub-graph then inLab(x) is 
empty. A similar definition is done for outLab(x) with 
relation to fan-out sub-graphs. Notice the similarity of 
labels to labeled nested graphs (Definition 5). The reader 
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should realize that any nested P/A graph can be 
represented this way: all fan-in and fan-out sub-graphs 
correspond to non-empty labels and for any arc (x, y) either 
the label outLab(x) or inLab(y) is empty. 
 
 
 
 
 
 
 
 
 

 
Figure 5. Representation of a (nested) P/A graph. 

The following algorithm DetectNested recognizes labeled 
nested graphs by reconstructing how they are built. 
 
algorithm DetectNested(input: graph G, output: {success, failure}) 
1. select all nodes x in G such that |pred(x)| = |succ(x)| = 1 
2. sort the selected nodes lexicographically according to index 
   (pred(x), succ(x)) to form a queue Q 
3. while non-empty Q do 
4.  select and delete a sub-sequence L of size k in Q such that 
   all nodes in L have an identical index ({x}, {y}) and 
   either |succ(x)| = k or |pred(y)| = k 
5.  if no such L exists then stop with failure 
6.  if k > 1 & outLab(x) ≠ inLab(y)  then stop with failure 
7.  remove nodes z∈L from the graph 
8.  remove nodes x, y from Q (if they are there) 
9.  add arc (x,y) to the graph (an update succ(x) and pred(y)) 
10. if |pred(x)| =  |succ(x)| = 1 then insert x to Q 
11. if |pred(y)| =  |succ(y)| = 1 then insert y to Q 
12.end while 
13.if the graph consists of two nodes connected by an arc then 
14. stop with success 
15.else stop with failure 

Proposition 3: Algorithm DetectNested always terminates 
and it stops with success if and only if the input P/A graph 
is nested. 
Proof: Each line of the algorithm terminates. The body of 
the while loop either terminates with a failure or at least 
one node is removed from the graph. Because the queue Q 
consists of nodes that are part of the current graph, it must 
become empty sometime so the while loop terminates and 
hence the whole algorithm terminates. 
 We will show that the algorithm recognizes labeled 
nested graphs by induction on the number of 
decomposition steps necessary to generate a graph. The 
base nested graph is trivially recognized in line 13. Assume 
now that the algorithm can recognize all nested graphs 
built using m steps. We shall show that: 
(i) if DetectNested fails to find a set L of nodes to be 

contracted then the input graph is not a labeled nested 
graph, and 

(ii) if DetectNested finds a set L of nodes and contracts 
them and the input graph is a labeled nested graph build 

using (m+1) steps, then the resulting graph is a labeled 
nested graph which can be built using m steps. 

It is easy to see that these two claims are sufficient for the 
proof of the equivalence part of the proposition. 
 To prove (i) it is enough to realize that in any labeled 
nested graph constructed in accordance with Definition 4, 
the nodes added in the last decomposition step always 
fulfill the requirements on the set L in DetectNested. Thus 
if DetectNested fails to find a suitable set L then the input 
graph is not a labeled nested graph. 
 The proof of (ii) is more difficult because of the fact that 
there may be many suitable sets L = { z1, …, zk } which 
DetectNested may find and contract. We have to show that 
any such choice produces a graph, which is labeled nested 
and can be built using m steps. Let us consider two cases: 
a) k > 1. In this case a parallel or alternative sub-graph 

with nodes x, y, z1, …, zk and arcs (x, zi), (zi, y) is 
contracted into arc (x, y). Notice, that (using the 
assumption that the input graph is nested) this sub-
graph must be a result of an arc decomposition of (x, y) 
during the recursive construction and moreover no arc 
inside this sub-graph is further decomposed. Therefore 
the graph which is obtained from the input graph by 
contraction of L is a labeled nested graph obtainable in 
m steps. The sequence of decomposition steps is the 
same as for the input graph except that the 
decomposition of (x, y) is skipped. 

b) k = 1. In this case a chain of length ≥ 2 is shortened (by 
one vertex and one arc) by the contraction of L. In this 
case there is no guarantee that the contraction can be 
matched to a decomposition step which built the input 
graph (see example below). 

 
 
 

 
However, the chain of length l can be produced from a 
single arc by (l-1) decompositions and can be 
contracted back into a single arc by (l-1) contractions in 
DetectNested (all with |L| = 1). Thus, similarly as in 
case a) the graph which is obtained from the input 
graph by contraction of L is a labeled nested graph 
obtainable in m steps. The sequence of decomposition 
steps is the same as for the input graph except that the 
sub-sequence (not necessarily a sub-interval) of (l-1) 
decompositions which built the chain is replaced by 
(l-2) decompositions which build the shorter chain.   

Proposition 4: The worst-case time complexity of 
algorithm DetectNested is O(n2), where n is a number of 
nodes in the graph. 
Proof: The initial selection of nodes for the queue can be 
done in time O(n). Time O(n.log n) is necessary to sort the 
queue. The sub-list for contraction can be selected in time 
O(n) and insertion of nodes into the list can be done in 
O(n). All other operations can be implemented in constant 
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4 1 10 - - 
5 2 9 - - 
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time. The while loop is repeated at most n times because 
each time at least one node is removed from the graph. 
Together, the while loop takes time O(n2) so the whole 
algorithm takes time O(n2).   

Tractability of Nested P/A Graphs 
The main motivation for introducing nested P/A graphs 
was to make the P/A graph assignment problem tractable 
for this special group of graphs. Recall that the assignment 
problem consists of deciding whether it is possible to 
complete a partial assignment of validity variables for 
nodes to obtain a complete feasible assignment. We can 
reformulate the P/A graph assignment problem as a 
constraint satisfaction problem in the following way. Each 
node x is represented using a Boolean validity variable vx, 
that is a variable with domain {0,1}. If the arc between 
nodes x and y is a part of some parallel sub-graph then we 
define the following constraint: 

vx = vy. 
If x is a principal node and y1,…, yk for some k are all 
branching nodes in some alternative sub-graph then the 
logical relation defining the alternative branching can be 
described using the following arithmetic constraint: 

vx = Σj=1,…,k vyj
. 

Notice that if k = 1 then the constraints for parallel and 
alternative branching are identical (hence, it is not 
necessary to distinguish between them). Notice also that 
the arithmetic constraint for alternative branching together 
with using the {0,1} domains defines exactly the logical 
relation between the nodes – vx is assigned to 1 if and only 
if exactly one of vyj

 is assigned to 1. Using the arithmetic 
constraint simplifies a formal description of the relation 
and also simplifies the proof of the following proposition. 
The task whether a completion of the partial assignment of 
validity variables exists is clearly equivalent to the 
assignment problem for the original P/A graph. We will 
show now that the contraction operations of the 
DetectNested algorithm can be described as simple 
arithmetic operations over the above constraint model 
describing the nested P/A graph which leads to solving the 
P/A graph assignment problem. 

Proposition 5: The assignment problem for a nested P/A 
graph is tractable (can be solved in polynomial time). 
Proof: We will show how to find a feasible assignment for 
a nested P/A graph, if it exists, or to prove that no 
assignment exists. The main idea is to use the DetectNested 
algorithm from the previous section. 
 The contraction operation of the DetectNested algorithm 
is a reverse operation to the decomposition operation used 
when building the nested graph (Figure 3). Let us assume 
that a sub-graph with nodes x, y, z1, …, zk and arcs (x, zi), 
(zi, y) is being contracted into arc (x, y). The contraction 
operation is allowed if and only if z1, …, zk are either all 
successors of x or all predecessors of y (line 4 of the 
algorithm) and the type of fan-out graph with the principal 
node x is identical to the type of fan-in graph for y (line 6) 

(if k = 1 then the equality of types does not matter as we 
mentioned above hence it is not requested in the 
contraction algorithm). We also know that no node zi 
appears elsewhere in the graph. Without lost of generality, 
let us assume that zi are all predecessors of y and zj’, 
j = 1,…, m (m ≥ 0) are the remaining successors of x. We 
distinguish two cases: parallel and alternative branching. In 
the case of parallel branching, the P/A graph assignment 
problem before contraction is described using constraints 
C, x = zi, x = zj’, zi = y, where C is the set of constraints for 
the rest of the graph (note that C does not contain zi). The 
problem after contraction is described by constraints C, 
x = y, x = zj’. These two sets of constraints are visibly 
equivalent, meaning that a solution for constraints before 
contraction exists if and only if a solution for constraints 
after contraction exists. In the case of alternative 
branching, we have the constraints C, x = Σi=1,…,k zi + 
Σj=1,…,m zj’, Σi=1,…,k zi = y before contraction and constraints 
C, x = y + Σj=1,…,m zj’ after contraction. Again, these sets of 
constraints are equivalent. Assume now that a partial 
assignment of variables is given. If neither zi is part of the 
assignment then we can contract the graph, find a feasible 
assignment for the contracted graph (if it exists) and then 
extend this assignment to variables zi. If any zi is part of the 
partial assignment then we check whether the removed 
constraint(s), either zi = y or Σi=1,…,k zi = y, can be satisfied. 
If the answer is yes then we compute the (unique) value for 
y (and values for not-yet instantiated zi), add it to the partial 
assignment, and continue as before. Otherwise no feasible 
assignment exists and the algorithm can stop. To finish the 
proof, one needs to realize that for a nested P/A graph the 
algorithm stops with a single arc (s, e) and the assignment 
problem can be trivially solved for this graph.   

Temporal Constraints 

So far, we ignored the temporal part of Simple Temporal 
Networks with Alternatives and we focused merely on 
logical relations imposed by the branching constraints. The 
reason was to show that logical reasoning is easy for nested 
P/A graphs (while it is hard for general P/A graphs even 
without temporal relations). Now we can return back the 
simple temporal constraints. Notice that the selected 
feasible set of nodes together with arcs between them 
forms a sub-graph of the original P/A graph. We require 
this sub-graph to be also temporally feasible, which means 
that all the simple temporal constraints between the valid 
nodes are satisfied in the sense of simple temporal 
networks (Dechter, Meiri, Pearl 1991). Naturally, the 
logical and temporal reasoning is interconnected – if a 
temporal constraint between nodes x and y cannot be 
satisfied then (at least) one of the nodes must be invalid (it 
is assigned to 0). Formally, we can extend the constraint 
model introduced in the previous section by annotating 
each node i by a temporal variable ti indicating the position 
of the node in time. For simplicity reasons we assume that 
the domain of such variables is an interval 〈0, MaxTime〉 of 
integers, where MaxTime is a constant given by the user. 



Recall that the temporal relation between nodes i and j is 
described by a pair [ai,j, bi,j]. This relation can now be 
naturally represented using the following constraint: 

vi * vj * (ti + ai,j) ≤ tj  ∧ vi * vj * (tj – bi,j) ≤ ti. 
If bi,j = ∞ then the second part of conjunction is omitted 
and similarly if  ai,j = -∞  then the first part of conjunction 
is omitted. Notice that if any vi or vj equals zero, that is, 
some involved node is invalid, then the constraint is 
trivially satisfied (we get 0 ≤ tj  ∧ 0 ≤ ti). If both vi and vj 
equal 1 then we get (ti + ai,j ≤ tj  ∧  tj – bi,j ≤ ti), which is 
exactly the simple temporal relation between nodes i and j. 
Figure 6 shows how the domains from the previous 
example (Figure 1) will look after filtering out the 
infeasible values by making the above constraint model arc 
consistent. We assume that shipPiston (the bottom node) is 
a valid node and MaxTime = 70. Black nodes are valid; 
validity of white nodes is not decided yet. Notice weak 
domain pruning of time variables in the white nodes 
caused by a disjunctive character of the problem. Actually, 
the left most path (with buyTube) cannot be selected due to 
time constraints but this is not discovered by making the 
constraints arc consistent. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Domain filtering using the proposed constraint model. 

The above described temporal constraints with validity 
variables do not take in account information about the type 
of branching. In (Barták and Čepek 2006) we showed that 
integrating logical and temporal reasoning can significantly 
improve domain pruning. In particular, we can take in 
account information about relations between the validity 
variables when propagating the temporal constraint.  We 
propose to always propagate the temporal constraint, that 
is, to prune domains of temporal variables. If the temporal 
constraint is violated then, instead of generating a failure, 

we set some validity variable to 0. We shall describe the 
proposed filtering rules in more detail now. Note that the 
filtering rule propagates changes of domains between the 
constrained variables, namely, the values that violate the 
constraint are removed from the domains. Let d(x) by a 
domain of variable x. In our model, the domain of a 
temporal variable is an interval so we can use interval 
arithmetic to propagate the temporal constraints. Namely, 
〈l, u〉 + 〈a, b〉 = 〈l+a, u+b〉 and 〈l, u〉 – 〈a, b〉 = 〈l–b, u–a〉.  
Assume that arc (i, j) is a part of parallel branching, so in 
the solution either both nodes are valid and the temporal 
relation must hold, or both nodes are invalid and the 
temporal relation does not play any role (the domains of 
temporal variables are irrelevant provided that they are 
non-empty). Hence, we can always propagate the temporal 
relation provided that we properly handle its violation. Let 
UP = d(tj) ∩  (d(ti) + 〈ai,j, bi,j〉). The following filtering rule 
is applied whenever d(ti) changes: 
 d(tj) ← UP if UP ≠ ∅ 
 d(vj) ← d(vj) ∩ {0} if UP = ∅. 
Note that UP = ∅ means violation of the temporal relation 
which is accepted only if the nodes are invalid. If the nodes 
are valid then a failure is generated because the above rule 
makes the domain of the validity variable empty. 
Symmetrically, let DOWN = d(ti) ∩  (d(tj) – 〈ai,j, bi,j〉). The 
following filtering rule is applied whenever d(tj) changes: 
 d(ti) ← DOWN if DOWN ≠ ∅ 
 d(vi) ← d(vi) ∩ {0} if DOWN = ∅. 
The following example demonstrates the effect of above 
filtering rules. Assume that the initial domain of temporal 
variables is 〈0, 70〉, the validity of nodes is not yet decided, 
and there are arcs (i, j) and (j, k) with temporal constraints 
[10, 30] and [20, 20] respectively. The original constraints 
do not prune any domain, while our extended filtering rules 
set the domains of temporal variables ti, tj, and tk to 〈0, 40〉, 
〈10, 50〉, and 〈30, 70〉 respectively. If the initial domain is 
〈0, 20〉 then the original constraints again prune nothing, 
while our extended filtering rules deduce that the 
participating nodes are invalid (we assume that logical 
constraints in the form vx = vy are also present). 
 The propagation of temporal constraints in the 
alternative branching is more complicated because we need 
to propagate them together. Let x be the principal node of a 
fan-in alternative sub-graph and y1,…, yk be all branching 
nodes. We first show how the information from the 
branching nodes is propagated to the principal node. Let 
UP = d(tx) ∩  ∪j = 1,…,k { (d(tyj) + 〈ayj,x, byj,x〉) | d(vyj) ≠ {0}}. 
The following filtering rule is applied whenever any d(tyj) 
or d(vyj) changes: 
 d(tx) ← UP if UP ≠ ∅ 
 d(vx) ← d(vx) ∩ {0} if UP = ∅. 
In the alternative branching we do not know which arc is 
used in the solution so we need to assume them all. 
Therefore, the above rule uses a union of pruned domains 
proposed by individual arcs (from non-invalid nodes). 
Symmetrically, let DOWNj = d(tyj) ∩  (d(tx) – 〈ayj,x, byj,x〉). 
The following filtering rule is applied to all tyj whenever 
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d(tx) changes and the change is propagated to branching 
nodes. 
 d(tyj) ← DOWNj if DOWNj ≠ ∅ 
 d(vyj) ← d(vyj) ∩ {0} if DOWNj = ∅. 
Similar filtering rules can be designed for fan-out 
alternative sub-graphs. Again, the main advantage of these 
rules is stronger pruning in comparison with the original 
constraints as we shall show using the example from 
Figure 6. In particular, if we propagate from weldTube to 
buyTube and clearTube, we obtain 〈0, 0〉 and 〈0, 48〉 as 
new domains of corresponding temporal variables. Now, if 
we propagate through the alternative branching going to 
buyTube, we deduce that this node is invalid because the 
corresponding temporal constraint is violated. 
Consequently, all remaining nodes are valid. 

Conclusions 
The paper proposes a recursive definition of temporal 
networks with alternative processes, so called nested 
temporal networks with alternatives. The definition is 
motivated by a structure of typical manufacturing 
processes that consists either of a sequence of serial sub-
processes or of a set of concurrent sub-processes which are 
either parallel or alternative. This model is general enough 
to cover many real-life processes, though we are aware that 
there exist reasonable processes that are not covered such 
as the following process. 
 
 
 
 

 
We used the framework of Temporal Networks with 
Alternatives (TNA) to formally describe our idea and we 
also proved that the problem of selecting nodes to form a 
valid process, that is, selecting nodes satisfying the 
inherent logical dependencies, is tractable for the nested 
subclass (while this problem is NP-complete for general 
TNA). We also proposed an efficient algorithm for 
recognizing nested temporal networks. Finally, we 
presented preliminary filtering rules for temporal 
constraints with validity variables. Though we have no 
formal proof yet, we believe that the proposed extension 
does not harm tractability of simple temporal constraints 
provided that the network is nested.  The background of 
this paper is in the area of temporal networks that are 
frequently used to model instances of processes. There also 
exists a large research area of modeling abstract processes 
using Petri Nets (van der Aalst 1998) which may serve as a 
source of other generalizations of temporal networks. 
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