
Towards Mixed Planning and Scheduling

Roman Barták1

Charles University, Department of Theoretical Computer Science
0DORVWUDQVNp�QiP�VWt���������������3UDKD��&]HFK�5HSXEOLF

email: bartak@kti.mff.cuni.cz

Abstract.1 The conventional wisdom and practice is that
planning and scheduling tasks are solved separately using
different methods and approaches. However, recent
development in industrial planning and scheduling demands
for mixing both tasks to allow modelling of wider class of
problems.

The purpose of this paper is to present a framework for
mixing planning and scheduling tasks within single system.
We analyse traditional views of planning and scheduling
and we highlight the drawbacks of separating both tasks
when applied to modelling complex process environments.
We give some real-life examples where the mixed approach
helps to model the problems and we propose a generic
framework for such mixture. We also argue for using
constraint programming as the underlying solving
technology and, finally, we describe some constraint models
based on the proposed framework.

Although, we concentrate on planning and scheduling in
complex process environments we believe that the results
contribute to both planning and scheduling communities in
general.

1 INTRODUCTION

It is a common practice that planning and scheduling
tasks are solved separately using different methods.
The planning task deals with finding plans to achieve
some goal, i.e., finding a sequence of activities that
will transfer the initial world into one in which the
goal description is true. Moreover, the possible
sequences of actions must respect the limitations of
the world. Planning has been studied in Artificial
Intelligence (AI) for years and the methods developed
there, like the STRIPS representation [8] and the
Graphplan planning algorithm [5], are the core of
many planning systems.

Opposite to planning, the scheduling task deals
with the exact allocation of activities to available
resources over time respecting precedence, duration,
capacity, and incompatibility constraints [6,7].
Traditional scheduling methods developed in
Operations Research (OR) are now being absorbed by
Constraint Programming (CP) technology (and vice
versa) that provides better declarative modelling
capabilities [17].

1 Supported by the Grant Agency of the Czech Republic under the

contract no. 201/99/D057.

Recent development shows that such strict
decomposition between planing and scheduling is not
desirable in some problems and that using planning
techniques in scheduling and vice versa may
contribute both to richer modelling capabilities and to
higher efficiency of the systems. Convergence may be
observed on both sides of the border. The planning
community tackles problems typical for scheduling
like planning under resource constraints [10] and new
algorithms were developed here using the constraint
programming technology [9] that is more tributary to
scheduling. Nevertheless, to be fair we should also
mention that there exists reverse movement [14]
asking for removing resource scheduling from
planning algorithms. Scheduling community is a bit
self-contained too but there also exist feelings about
the necessity to include some planning capabilities to
scheduling algorithms [2]. Last but not least, the
developers of constraint satisfaction algorithms listen
more to the requirements of dynamic planning tasks
by introducing concepts like Dynamic Constraint
Satisfaction [16] and Structural Constraint
Satisfaction [11].

In industrial applications the border between
planning and scheduling is fuzzier than in academics
and the discrimination criterion is shifted to a
different level. Both industrial planning and
scheduling deal with generation and allocation of
activities; the difference between planning and
scheduling task is shifted here to the resolution level
of the resulting plan or schedule. While industrial
planning deals with the task of finding “rough” plans
for longer period of time and uses department etc. as
the basic resource, the scheduling task is to prepare a
detail schedule for individual resources, like machines
and workers, with higher time resolution

The similar character of industrial planning and
scheduling brings the idea of using single approach
that can be applied to both areas. In the paper we
propose such a framework for close co-operation
between planning and scheduling modules. The basic
idea is not very complicated: the planner introduces
new activities to the system and these activities are
immediately allocated to resources by the scheduler.
The new contribution here is the instant allocation of

activities after their introduction. Note that we do not
require allocating the activity completely but
restricting the possible “positions” of the activity by
means of constraint propagation. This prunes the
search space of the planner as well and allows us to
detect the clashes soon. Moreover, the scheduler may
ask the planner to introduce new activities if the
situation (the current partial schedule) requires them.
Such behaviour of the scheduling engine was
motivated by existence of real-life problems going
beyond the horizon of conventional static scheduling
and requiring the dynamics of planning.

The rest of the paper describes the proposed
framework in detail. In Section 2 we specify the
problem area and we outline the main difficulties. In
Section 3 we overview the conventional definition of
planning and scheduling tasks and we give examples
where the strict separation of both tasks is too
restrictive. Section 4 is dedicated to description of the
basic structure of mixed planning and scheduling
system. In Section 5, we look at the engine behind our
framework and we describe how to express our ideas
in terms of constraint programming technology. We
conclude with summary of the paper and with
description of early experience with the
implementation.

2 PROBLEM AREA

The problem area that we deal with can be
characterised as a complex process environment
where a lot of complicated real-life constraints bind
the problem variables. Typical examples of such
environments can be found in plastic, petrochemical,
chemical, pharmaceutical, or food industries. The task
is to schedule most profitable production for fixed
period of time.

The problem domain is described as a
heterogeneous environment with several resources
interfering with each other. Currently we are working
with producers and movers, later other resources like
stores, workers, and tools will be added. The task is to
generate (to plan) activities necessary to satisfy
custom orders (and other marketing requirements) and
to allocate (to schedule) the activities to resources
over time.

There exist alternative resources for processing the
activity and some resources can handle several
activities at a time (this is called batch processing). In
case of batch processing, compatibility and capacity
constraints restricting which products and in what
quantities can be processed, i.e., produced, moved, or
stored together, must be considered. Also the order of
activities processed by the resource is not arbitrary
but the currently processed activity influences what
activities may follow. Consequently, we must follow
the transition patterns and assume the set-up times
between the activities as well. The processing time is
usually variable and there is defined a working time
when the activities can be processed in resources.

Figure 1. An example of complex-process environment

Alternative processing routes, alternative
production formulas, and alternative raw materials
are other typical features of above mentioned industry
areas. In addition to the core products it is possible to
produce the by-products, typically during set-ups. The
by-products should be used as a raw material in
further production and there is a push to use them this
way because they will fill-up the available storing
capacity otherwise. Consequently we must schedule
processing of by-products. During production of the
core product some co-products may appear. The co-
products can be used to satisfy other orders, they can
be sold as an alternative to the ordered item or they
can be processed further as a raw material. Again,
processing of co-products must be scheduled as well
because of limited capacity of warehouses where all
the products are stored. Last but not least there is a
possibility of cycling, i.e., processing the item for
several times for example to change features of the
item or just to clean up the store, and re-cycling, i.e.,
using of by-products and co-products as a raw
material.

Typically, the production in complex process
environments is not driven by the custom orders only
but it is necessary to schedule the production for store
according to the factory patterns and the forecast. It
means that the scheduler should be able to introduce
new activities during scheduling to “fill the gaps”.

3 TRADITIONAL VIEW OF PLANNING
AND SCHEDULING

Let’s look at the traditional definition of planning and
scheduling tasks first.

Planning. The traditional AI planning tackles the
problem of finding plans to achieve some goal, i.e.,
finding a sequence of activities that will transfer the
initial world into one in which the goal description is
true. It means that a description of the initial world,
the (partial) specification of the desired world and the
list of available activities make the input of the
planner. A solution is a sequence of activities that
leads from the initial world description to the goal
world description and it is called a plan.

Conventional AI planning techniques use highly
specific representation and algorithms but there is a
pressure to use more general search frameworks like
CP [12]. The advantage of such general framework is
wider applicability and availability of ready-to-use
methods. The specific features of a particular problem

Raw material
purchase Re-cycling

User demand
main
processor secondary processors

(alternatives)
temporal
silo group warehouse

silo group

are then reflected at the modelling level only and not
in the underlying search algorithms.

Scheduling. The traditional scheduling task deals
with the exact allocation of activities to resources (or
resources to activities) over time respecting
precedence, duration, capacity, and incompatibility
constraints [6,7]. The set of activities, the list of
resources, and the specification of the constraints
make the input to the scheduler. The output of the
scheduler consists of the exact allocation of the
activities to the resources over time.

Scheduling tasks are usually solved using
techniques from OR and CP. Both frameworks expect
the task to be specified fully in advance, i.e. all the
problem variables and constraints must be known
beforehand. Recently, new problem areas like
complex-process environments use a partial
specification of the problem that requires adding new
variables and constraints during scheduling.

As mentioned above, the border between planning
and scheduling is fuzzier in industrial life so it is not
surprising that there exist systems providing both
planning and scheduling functionally. Nevertheless, in
such Advanced Planning and Scheduling (APS)
systems, the modules implementing the tasks are still
strictly separated following the above described
conventional view of planning and scheduling. This
decomposition seems natural because both tasks deal
with a bit different problems (generation vs.
allocation of activities) and different methods from
different areas are used to solve the tasks. Also, the
interface between modules implementing planning
and scheduling is well defined; the planner generates
a list of activities first and, then, push these activities
to the scheduler that allocates them to available
resources. Figure 2 describes the flowchart of such
system with strictly separated planning and
scheduling modules.

Figure 2. Separate planning and scheduling

3.1 Difficulties of separate planning and
scheduling

The structure of APS system with separate planning
and scheduling modules is satisfactory when the
control and data flow through the system is linear, i.e.
when we do not backtrack from the scheduler to the
planner. In general such backtracking is not forbidden
but, of course, it is not desirable because it decreases
efficiency and complicates the interface between the
planner and the scheduler.

We see two different reasons for backtracking
from the scheduler to the planner. First, there is a
possibility of clash in the plan, which prevents the
scheduler to allocate the activities to available
resources. The clash may be caused by choosing a bad
alternative during planning. The second reason for
backtracking could be a low-profitable schedule that
may occur when the plan does not utilise the
resources fully. Because the scheduler is not able to
repair the plan alone (there is no activity “re-
generator” in the scheduler) it must asks the planner
for help. Moreover, the scheduler should inform the
planner about the reason of backtracking and the
planner must be able to repair the plan accordingly.

To reduce the number of backtracks or to
eliminate them at all we may use a more informed
planner that generates conflict-free enough-profitable
plans. However, this requires usage of higher-
resolution data and taking into account the typical
scheduling constraints [10]. Actually, such informed
planner absorbs the scheduler or, at least, it solves
part of the scheduling task.

Another possibility to avoid backtracking is to
postpone planning decisions until enough information
is available. Decision postponement is a popular
approach in the planning community; its active
version using constraint programming was
implemented in the Descartes planning system [9].
However, in current systems such decision
postponement keeps within the planning context.
What we propose is to extend the decision
postponement as long as to the scheduling stage.

Before we describe the proposed mixed planning
and scheduling framework let’s look at other
problems from complex-process environments that
motivate mixing planning and scheduling. All these
real-life problems have one common feature: the
appearance of some activity depends on allocation of
other activities to resources. Naturally, such problems
cannot be solved by more informed planner and they
require closer co-operation between planning
(introduction of activities) and scheduling (allocation
of activities).

Set-ups and transitions. Scheduling set-ups and
transitions is a crucial problem in complex-process
environments because of their considerable cost and
duration. It is impossible to predict appearance of set-
ups/transitions before the activities are allocated to the
resource so we need to introduce special set-
up/transition activities during scheduling like in [13].

PLANNER

SCHEDULER

activities

demands

schedule
(allocated activities)

factory description

Clash?

NO

YES

low-resolution

high-resolution

data flow

control flow

This is necessary especially if by-products result from
such activities.

Consumption of by-products. Many current
scheduling systems do not care about by-products
resulting from set-ups and transitions but in complex-
process environments this is not desirable. First, we
can use the by-products in further production as a raw
material; second, the by-products may fill up the
stores for final products. Unfortunately, until we
know that the by-product appears (and this is during
set-ups or transitions typically) we cannot introduce
activities for processing the by-product.

Production for store. In some plant configurations, it
is cheaper to continue in production rather than
stopping the machine when all the ordered products
were finished. Decision about such non-ordered
production could be done at the planning level; i.e. the
planner generates activities for non-ordered
production. However, if the resulting plan is too
ambitious then it may cause more clashes in the
schedule and, consequently, more backtracking to the
planner. Therefore, it seems more appropriate to
delegate the decision to the scheduler which may “fill
the gaps” in the schedule by activities producing for
store.

4 MIXED PLANNING AND
SCHEDULING

In previous paragraphs and sections we argued for
mixing planning and scheduling components to solve
some problems that conventional separate planning
and scheduling systems cannot tackle. We also
sketched the basic ideas behind such mixed
framework, in particular introduction of activities
during scheduling and postponing planning decisions
till scheduling. Actually, both these methods describe
the same thing from two different views:
postponement of planning decisions is realised
(partially) by introduction of activities during
scheduling.

We shall describe the structure of the mixed
planning and scheduling system using the notions of
production scheduling that is our problem area.
However, we believe that the same structure is
applicable to other planning and scheduling areas like
transportation problems as well.

The system consists of two components: activity
generator (former planner) and activity allocator
(former scheduler). You may see the relation between
them in Figure 3.

The activity generator is responsible for
introduction of new activities to the system. It may
use the information about allocation of already posted
activities when deciding about new activity. Also, if
the activity generator “is not sure” about the next
activity it may introduce a slot for activity and the real
activity will be filled in this slot later by the activity
allocator. Finally, the activity generator is responsible
for posting constraints among activities, e.g., it

ensures that production activity is connected to
supplying and consuming activities etc. The
mechanism of activity slots and the possibility to
introduce constraints describing relations among (not-
yet known) activities realises the decision
postponement.

The activity allocator deals with the allocation of
the activities to available resources over time. In
general, the activity allocator decides about the values
of activity attributes like start and completion time,
the resource processing the activity etc. In fact, it can
even decide about the activity itself if activity slot is
used during scheduling. The activity allocator can
also ask the activity generator to introduce new
activity if it is missing and it may inform the
generator about conflicts. Finally, it should be said
that we might use the decision postponement strategy
during activity allocation as well. Now, we do not
choose the unique value for activity parameter
immediately but we successively remove values from
the variable domain that are inconsistent with values
of other variables. By introduction of new activities
and constraints we may restrict the domains further
until they become singletons or conflict is detected.
This technique is called constraint propagation and it
is explained in detail in the following section.

Figure 3. The structure of mixed planning and scheduling system

The scheduling (or is it planning?) is initiated by the
list of demands, in production scheduling these
demands corresponds to custom orders, and by some
initial activities that may describe the initial state of
the resources or requested future activities like
maintenance. This generality of input data structure
allows us to use the system in conjunction with
traditional planners that generate activities in advance.
The activities are posted to the activity allocator
immediately while the demands are placed in the
activity generator. Then, the activity generator uses
the information about demands, about available
resources, and about allocation of already posted
activities (about the attributes’ values of activities
being allocated) when deciding about the introduction
of new activity.

GENERATOR

ALLOCATOR

demands

schedule

factory
description

activity (slot)
values of
attributes

initial
activities

data flow

control flow

4.1 Benefits of proposed architecture

We proposed the mixed planning and scheduling
framework to solve the problems in complex-process
environments primarily. By allowing the dynamic
introduction of activities during scheduling we are
able to model problems like set-ups and transitions,
processing of by-products and re-cycling, scheduling
non-ordered production, or choosing alternative
processing routes using the information about the
current (partial) schedule. Naturally, the capabilities
of the system depends on implementation of
individual modules and on choosing the model of
given problem [1]. We can identify some general
advantages of the proposed framework.

Generality. The proposed architecture is very general
and depending on the implementation of activity
generator and allocator we get various planning and
scheduling systems. We can use it to design generic
planners where the role of the activity allocator is
suppressed to solving planning constraints only. Or
we can design the traditional scheduler where
(almost) all the activities are inputted and only few
activities are introduced during scheduling (for
example to model set-ups).

Modularity. Note that the generator and the allocator
are still separate modules so we may combine various
planning and scheduling techniques. We could even
use the same architecture to implement system with
separate planner and scheduler (if the planner does not
care about the attributes’ values computed by the
scheduler).

Formal interface. The important thing about the
architecture is that it formalises the interface between
the planner and the scheduler. The planner post the
activities and (some) constraints among the activity
attributes to the scheduler while the scheduler returns
(partial) valuation of activity attributes.

Early detection of clashes. In general we cannot
avoid backtracking during scheduling due to search
nature of most solvers. Because we allow successive
introduction of activities, we may detect the conflicts
earlier so we backtrack sooner and it is not necessary
to completely re-plan after the clash. Moreover, the
activity generator may use the information about the
reason of the clash directly; in particular it can find
which constraints are violated.

Active decision postponement. The proposed
architecture allows active decision postponement both
in planning (via using the activity slots and
constraints among not-yet known activities) and
scheduling (via partial labelling of attributes).

Single factory description. From the modelling point
of view, it is nice that we use single factory
description for both planner and scheduler. We may
still use parts of the description dedicated to planner
or to the scheduler but now the information is

available to the other module as well via closer co-
operation between the modules.

5 APPLYING CONSTRAINTS FOR
PLANNING AND SCHEDULING

When proposing the mixed planning and scheduling
framework we assumed constraint programming to
serve as the underlying engine behind the solvers.
Constraint programming [15] is based on idea of
describing the problem declaratively by means of
constraints, logical relations among several unknowns
(or variables), and, consequently, finding a solution
satisfying all the constraints, i.e., assigning a value to
each unknown from respective domain. It is possible
to state constraints over various domains, however,
currently probably more than 95% of all constraint
applications deal with finite domains.

At the present time, scheduling is probably the
most successful application area of CP [17] while
application of CP to planning is not so spread [12].
The reason for this disproportion can be found in the
conventional static formulation of the constraint
satisfaction problem that expects all the elements, i.e.,
all the variables and all the constraints, to be specified
in advance. This is not an obstacle in the scheduling
tasks where all the activities are known beforehand,
however, the plans are highly variable and it is
impossible to predict which activities will be used in
which combinations.

In the proposed framework, we are using
constraint satisfaction technology in the scheduling
module to evaluate attributes of activities primarily.
The planning module uses the constraint engine via
posting activities to the scheduler and via accessing
the attributes’ values. Naturally, the dynamic nature
of the system, where activities (and thus the variables)
and constraints are introduced during scheduling,
must be considered when choosing the constraint
solving package.

There exist two main approaches to solving CSPs
(Constraint Satisfaction Problems); one based on
constraint propagation, i.e., removing inconsistent
values from variables’ domains, second based on
local search, i.e., altering complete but inconsistent
labelling of variables towards (more) consistent
labelling. Because of dynamic nature of mixed
planning and scheduling, it is more complicated to use
local search (we do not have a complete set of
variables and constraints beforehand) but as already
mentioned the constraint propagation is a valuable
technique especially for the implementation of active
decision postponement. We propose using CLP
(Constraint Logic Programming) as the underlying
programming environment as it allows adding new
constraints during search as well as removing the
constraints upon backtracking. Almost all CLP
systems use constraint propagation techniques to
solve the constraints.

5.1 Constraint classification

Before we describe how to model mixed planning and
scheduling problems let’s survey the classification of
constraints in scheduling and resource-constrained
planning problems. We proposed this classification in
[3] where examples of particular constraints are given.

According to the role of the constraint in the
problem we may classify the constraints into the
following groups:

� resource constraints, that capture limitations
of the resource in given time (like capacity),

� transition constraints, specifying available
transitions between the activities in single
resource (like set-ups), and

� dependencies, capturing relations between the
activities of different resources (like supplier-
consumer relations).

The Figure 4 shows where constraints of particular
type can be found in the Gantt chart displaying the
schedule.

Figure 4. Constraint classification in the Gantt chart

Naturally, this classification depends on what objects
are chosen as resources. Note also, that constraints of
particular type may not appear in some scheduling
problems or the complexity of constraints of different
type may be different. For example, in many
scheduling problems there are no transition
constraints and the resource constraints are very
simple (single-capacity resources). We propose to use
the information about constraints of particular type
when deciding which constraint model is appropriate
for a particular problem.

5.2 Constraint models

The proposed architecture of the mixed planning and
scheduling provides enough flexibility to solve
various problems but the quality (efficiency) of the
resulting system is highly dependent on how the
problem is modelled.

In [1] we studied three models used in scheduling
applications, namely time-line, task-centric, and
resource-centric model. In [3] we give guidelines how
to choose among these models and how these models
can be applied to mixed planning and scheduling
problems.

Timetabling or time-line model uses discrete time
divided into time slices (usually equally distributed)
and, then, it describes the situation at each time slice.
This model is less appropriate for pure planning as it
enforces the resource allocation. However, it can be
used in a mixed planning and scheduling environment

without troubles. In fact, we do not need a separate
activity generator here because all the time slots are
known beforehand (a time slot is a time slice in
particular resource). Consequently, the main role of
the system is to fill these slots be activities respecting
all the constraints. Note that because of equal
distribution of time slices, it is possible that some
(most) activities will occupy several consecutive slots
as Figure 5 shows. Consequently, the number of time
slots could be much larger than the number of
activities and a huge number of variables and
constraints must be introduced to model the problem.
Thus, this model is less appropriate for large-scale
problems, explanations can be found in [3]. On the
other side, because all the variables and constraints
are posted beforehand we may use popular and very
efficient local search algorithms here.

Figure 5. A time-line model with activities going through several
time slices.

The second group of constraint models for
scheduling problems is based on activities rather than
on time slices. Activity-centric models use event
based time and they seem to be better suited for
modelling large-scale problems because of smaller
memory consumption (the number of activities is
usually much smaller than the number of time slots in
production scheduling). Depending on the activity
grouping we distinguish between two types of
activity-based models, namely task-centric and
resource-centric models.

If the activities are grouped per task or per order
(in production environment) we are speaking about
task-centric or order-centric model. This model is
currently the most widely used constraint model in the
production scheduling but in [1,3] we showed that it
is less appropriate to model complex-process
environments due to limited modelling capabilities. In
the task-centric model it is natural to express supplier-
consumer dependency constraints that bind activities
of single task. Typically, these constraints are
expressed in the form of a precedence relation
between activities. However, it is more complicated to
express complex resource and transition constraints
because until we know the allocation of the activities
to the resource, it is not clear which activities should
be connected using such constraint. Moreover, the
task-centric model has restricted capabilities when
modelling processing by-products and non-ordered
production.

Because of the above mentioned difficulties of the
task-centric models we turned our attention to activity
grouping per resource. We call such models resource-
centric models. In the resource-centric model the

Production (item1) Set-up Production (item 2)

Storing (item 1)empty Storing (items 1&2)

No production Production (item4)

resources

Start-up

Activity

time

dependency

transition

capacity

Production (item1) Set-up Production (item 2)

Storing (item 1)empty Storing (items 1&2)

No production Production (item4)

resources

Time sliceStart-up

Activity

time

capabilities of individual resources are captured rather
than the production chains corresponding to given
orders. Thus, it is natural to express the resource and
transition constraints here because it is known which
activities belong to a given resource. However,
expressing the dependencies is more complicated here
because it is not clear which activities from different
resources are related.

We prefer to use the resource-centric model in the
complex-process environments because it can
describe all the typical problems of the area
(capabilities of the task-centric model are limited) and
it is less memory consuming than the time-line model.
The comparison and arguments for choosing a
particular model can be found in [1,3].

5.3 Model representation

When a particular constraint model is chosen, the
question is how to implement it. It is possible to
follow directly the architecture of mixed planning and
scheduling systems proposed in Section 4 which
suggests to generate activities dynamically during
scheduling. Such fully dynamic representation has
two main advantages. First, there is no restriction
about the number of activities to be generated
(typically, in pure planning the number of activities in
the plan is not known). Second, the constraints are
kept in a readable form because they are introduced
together with the activities so no complicated triggers
are necessary. However, the experimental
implementation showed the drawbacks of the
dynamic representation. It is possible that the activity
appears twice or more times in the system and it is not
easy to identify such duplicates and to merge them.
The duplicates are generated because there are several
reasons to introduce new activity. The activity is
introduced as:
- a follower of known activity in single resource,
- a supplier of known activity, and
- a consumer of known activity etc.
The second problem is limited constraint propagation
caused by dynamic introduction of new activities.

Because the scheduled duration is given in our
problem area it is possible to estimate the number of
activities in the schedule. Therefore we also studied
the conventional static representation of the models,
which has the advantage of exploiting fully the
constraint propagation. In particular the method of
scheduling alternative activities proposed in [4] looks
promising to model complex problem environments.
This method requires all the alternative activities to be
generated in the form of a process plan.

Figure 6. A process plan with alternatives. Each rectangle
corresponds to an activity and the plan corresponds to the path from
the leftmost to the rightmost activity.

Unfortunately, when the number of alternatives is
very high, like in complex-process environments, then
the process plan is huge. Another disadvantage of the
static representation is necessity to use conditional
constraints with complicated triggers. The trigger fires
the constraint when it is known that the activity is
present in the schedule. This has another drawback –
the propagation through conditional constraints is not
so powerful due to disjunctive character of such
constraints.

Because both fully dynamic and static
representations have significant drawbacks when
applied to large-scale real-life scheduling problems in
complex process environments we turned our
attention to semi-dynamic representation based on
slots. We generalised the notion of slot used in time-
line model by unsticking the slot from a fixed time
period. Then the slot can be described as an empty
shell that is being filled by an activity during
scheduling. Because we can estimate the number of
slots in the schedule (remind that the schedule
duration is fixed) we can generate the slots in
advance. Naturally, it is possible that some slots
remain empty after the scheduling or, alternatively,
they are filled by some void activity.

Figure 7. A slot chain. Its length is equal to the longest chain of
alternative activities that fill the slots.

Common activity attributes like start time and
duration can be moved to the slot so it is possible to
post the constraints among them immediately and,
thus, to exploit the constraint propagation. Activity
specific attributes like quantities of processed items
are introduced as soon as the activity in the slot is
known. Another nice feature is that we can use
constraint propagation to decide about the activity in
the slot if special activity attribute is assigned to each
slot. Consequently, we need no special mechanism for
activity generation.

The proposed slot representation consists of a
static part (common attributes of activities, attribute
specifying the activity in the slot, and constraints
among them) that is introduced before the scheduling
starts and a dynamic part (activity specific attributes
and dynamic constraints) that is posted during the
scheduling. This helps to exploit the constraint
propagation while keeping the dynamic constraints in
a simple form. Note that there are two reasons for the
constraint to be dynamic: first, the constrained
variables are not posted yet (this is the case of
constraints involving the activity specific attributes),

slots

alternative activities to
fill the slots

second, the set of constrained variables is not known
even if the variables are already posted. In the first
case, the dynamic constraint can be introduced as
soon as all the attributes are generated, i.e., when the
activity in the slot is known. In the second case, it is
necessary to look for variables involved in the
constraint during scheduling which is the main
difficulty of the slot representation. Efficient handling
of such dynamic constraints is the main part of our
current research.

6 CONCLUSIONS

In the paper we describe a framework for mixing
planning and scheduling. We concentrate more on
description of motivation for such framework, on
highlighting general features and benefits and on
explaining the technology behind rather than on
specification and experiments with particular
implementation.

Nevertheless, the proposed framework is currently
being implemented as part of the generic scheduling
engine within the VisOpt project [18]. First
experience confirms our expectation about general
capabilities of the framework; there is no difficulty to
model all the typical problems in complex-process
environments. This is a big advantage over other
scheduling systems that are not able to tackle such
complex industries. The experiments with the
implementation also show some interesting results
concerning efficiency of the system. It is necessary to
find balance between active decision postponement
and memory consumption especially when applied to
large-scale problems. Also, the implementation
indicates that the fully dynamic model, where all the
variables and constraints are introduced dynamically,
does not exploit the power of constraint propagation
and thus the active decision postponement becomes
more passive. Consequently, it is better to use semi-
dynamic representation where as much as possible
activities (activity slots) are posted beforehand (the
role of activity generator is suppressed). This
observation illustrates why most current scheduling
systems deal with the static problems only.

ACKNOWLEDGEMENTS

Author’s work is supported by the Grant Agency of
the Czech Republic under the contract number
201/99/D057 and by InSol Ltd. I would like to thank
Yossi Rissin and the team of InSol for introducing me
to the problem and for interesting and encouraging
discussions concerning real-life problems of industrial
planning and scheduling. I am also grateful to Helmut
Simonis from Cosytec for discussions concerning the
scheduling applications and for drawing my attention
to some existing applications in the area.

REFERENCES
[1] Barták, R.: Conceptual Models for Combined Planning and

Scheduling. Proceedings of the CP99 Post-conference
Workshop on Large Scale Combinatorial Optimisation and
Constraints, Alexandria, USA (1999) 2-14

[2] Barták, R.: On the Boundary of Planning and Scheduling: a
Study. Proceedings of the Eighteenth Workshop of the UK
Planning and Scheduling Special Interest Group, Manchester,
UK (1999) 28-39

[3] Barták, R.: Dynamic Constraint Models for Planning and
Scheduling Problems. Proceedings of ERCIM/CompulogNet
Workshop on Constraints. LNAI Series, Springer Verlag
(2000), to appear

[4] Beck, J.Ch. and Fox, M.S.: Scheduling Alternative Activities.
Proceedings of AAAI’99, USA (1999) 680-687

[5] Blum, A. L. and Furst, M. L.: Fast Planning through Planning
Graph Analysis. Artificial Intelligence 90 (1997) 281-300

[6] Brusoni, V., Console, L., Lamma. E., Mello, P., Milano, M.,
Terenziani, P.: Resource-based vs. Task-based Approaches for
Scheduling Problems. Proceedings of the 9th ISMIS96, LNCS
Series, Springer Verlag (1996)

[7] Caseau, Y., Laburthe, F.: A Constraint based approach to the
RCPSP. Proceedings of the CP97 Workshop on Industrial
Constraint-Directed Scheduling, Schloss Hagenberg, Austria
(1997)

[8] Fikes, R. E. and Nilsson, N. J.: STRIPS: A New Approach to
the Application of Theorem Proving to Problem Solving.
Artificial Intelligence 3-4 (1971) 189-208

[9] Joslin, D. and Pollack M.E.: Passive and Active Decision
Postponement in Plan Generation. Proceedings of the Third
European Conference on Planning (1995)

[10] Koehler, J.: Planning under Resource Constraints.
Proceedings of 13th European Conference on Artificial
Intelligence, Brighton, UK (1998) 489-493

[11] Nareyek, A.: Structural Constraint Satisfaction. Proceedings
of AAAI-99 Workshop on Configuration, 1999

[12] Nareyek, A.: AI Planning in a Constraint Programming
Framework. Proceedings of the Third International Workshop
on Communication-Based Systems (2000), to appear

[13] Pegman, M.: Short Term Liquid Metal Scheduling.
Proceedings of PAPPACT98 Conference, London (1998) 91-
99

[14] Srivastava, B. and Kambhampati, S.: Scaling up Planning by
teasing out Resource Scheduling. Technical Report ASU CSE
TR 99-005, Arizona State University (1999)

[15] Tsang, E.: Foundations of Constraint Satisfaction. Academic
Press, London (1995)

[16] Verfaillie, G. And Schiex, T.: Solution Reuse in Dynamic
Constraint Satisfaction Problems. Proceedings of the Twelve
National Conference on Artificial Intelligence AAAI (1994)
307-312

[17] Wallace, M.: Applying Constraints for Scheduling. Constraint
Programming, Mayoh B. and Penjaak J. (Eds.), NATO ASI
Series, Springer Verlag (1994)

[18] VisOpt web pages, http://www.visopt.com/

