
CPDC’2003

7

PRACTICAL CONSTRAINTS: A TUTORIAL ON
MODELLING WITH CONSTRAINTS

ROMAN BARTÁK*

Charles University, Faculty of Mathematics and Physics
Malostranské námestí 2/25, 118 00 Praha 1, Czech Republic
e-mail: bartak@kti.mff.cuni.cz

Abstract: Constraint programming provides a declarative approach to problem solving.
The users just state the combinatorial (optimization) problems as constraint satisfaction
problems and the underlying solver finds a solution for them. However, in practice, the
situation is more complicated as there usually exist various ways how to describe the
problem using variables, domains, and constraints. Moreover, the different models may
lead to significantly different running times of the solvers. In fact, even a small change in
the model may change the efficiency dramatically. This paper describes some known
approaches to efficient modelling with constraints in a tutorial-like form.

Keywords: constraint satisfaction, problem modelling, applications

* Supported by the Grant Agency of the Czech Republic under the contract no. 201/01/0942 and by the project LN00A056 of the Ministry of

Education of the Czech Republic.

1 INTRODUCTION

“Constraint programming represents one of the
closest approaches computer science has yet made
to the Holy Grail of programming: the user states
the problem, the computer solves it.” [4] This nice
quotation might convince users that designing a
constraint model is an easy and straightforward task
and that everything stated as a constraint
satisfaction problem can be solved by the
underlying constraint solver. This holds for simple
or small problems but as soon as the problems are
more complex, the role of constraint modelling is
becoming more and more important. Basically, it
means that various models of the same problem
may lead to different solving times, quite often to
significantly different times. Unfortunately, there
does not exist (yet) any guide that can steer the user
how to design a solvable model. This “feature” of
constraint technology might be a bit depressing for
novices. Nevertheless, there are many rules of
thumb about designing models that would be
probably good in the solving times. Moreover, we
also believe that it is important to be aware of the
insides of constraint satisfaction to understand

better behaviour of the solvers and, as a
consequence, to design models that exploits the
power of the solvers.

The goal of this paper is to provide an overview
of modelling techniques used to state problems as
constraint satisfaction problems. Respecting what
has been said in the previous paragraph, we first
survey the mainstream constraint satisfaction
technology. Then we make a short view to insides
of some interesting constraints to explain their
behaviour. In the rest of the paper we demonstrate
some modelling techniques using several funny
(seesaw), real-life (assignment problem), and hard
(Golomb ruler) problems.

2 CONSTRAINT SATISFACTION AT
GLANCE

Constraint programming (CP) is a framework for
solving combinatorial (optimization) problems. The
basic idea is to model the problem as a set of
variables with domains (the values for the
variables) and a set of constraints restricting the
possible combinations of the variables’ values

CPDC’2003

8

(Figure 1). Usually, the domains are finite and we
are speaking about constraint satisfaction problems
(CSP). The task is to find a valuation of the
variables satisfying all the constraints, i.e., a
feasible valuation. Sometimes, there is also an
objective function defined over the problem
variables. Then the task is to find a feasible
valuation minimizing or maximizing the objective
function. Such problems are called constraint
satisfaction optimization problems (CSOP).

Note that modelling problems using CS(O)P is
natural because the constraints can capture arbitrary
relations and various constraints can be easily
combined within a single system. Opposite to
frameworks like linear and integer programming,
the constraints are not restricted to linear equalities
and inequalities. The constraint can express
arbitrary mathematical or logical formula, like
(x2<y ∨ x=y). The constraint could even be an
arbitrary relation that can be hardly expressed in an
intentional form. Then, a table is used to describe
the feasible tuples. Moreover the constraints can
bind variables with different even non-numerical
domains, e.g. to restrict the length of a string by a
natural number.

Fig. 1. CSP consists of variables (X,Y,Z), their domains
[1,2,3,4,5], and constraints (X<Y, Y<X-2). It can be
represented as a constraint (hyper) graph.

Constraint satisfaction technology must take in
account the above described generality of the
problem specification. Usually, a combination of
search (enumeration) with constraint propagation is
used; some other techniques, e.g., local search, can
also be applied to solve problems with constraints.
Despite the fact that many researchers outside CP
put equality between constraint satisfaction and
simple enumeration, the reality is that the core
technology of CP is hidden in constraint
propagation combined with sophisticated search
techniques.

Constraint propagation is based on the idea of
using constraints actively to prune the search space.
Each constraint has assigned a filtering algorithm
that can reduce domains of variables involved in
the constraint by removing the values that cannot
take part in any feasible solution. This algorithm is
evoked every time a domain of some variable in the
constraint is changed and this change is propagated
to domains of the other variables and so on (Figure
2). Hence the technique is called constraint
propagation.

Fig. 2. Constraint propagation does domain reduction by
repeated evoking of the filtering algorithms until a fix-
point is reached.

Notice that each constraint may have its own
filtering algorithm so there is no difficulty to solve
the problems with very different constraints. The
generic constraint propagation algorithm known
under the notion of arc consistency takes care about
the correct combination of the local filtering
algorithms. On the other hand, this local view of the
problem has the disadvantage of incomplete
domain reduction. It means that some infeasible
values may still sit in the domains of the variables
and thus search (with backtracking) is necessary to
find a complete feasible valuation of the variables.
To reduce the deficiency of local propagation, it is
possible to group several constraints and to see this
group as a special constraint called a global
constraint. Instead of using local propagation over
the set of constraints, it is possible to design a
special filtering algorithm for the global constraint
to achieve more efficient domain filtering (see next
section).

As we mentioned above, some search algorithm
is usually necessary to find values of the variables.
This stage is called labelling as the variables are
being labelled there, i.e. the values from respective
domains are assigned to variables. After each
assignment, the value is propagated via constraints
to other variables. If failure is detected then another
value is tried. If no value remains in the domain
then the algorithm backtracks to the last but one
variable and so on. In general labelling adds new
constraints to the system to resolve the remaining
disjunctions (e.g. X=5 ∨ X≠5).

The standard constraint satisfaction technique
looking for feasible solutions can be extended to
find out an optimal solution. Usually a technique of
branch-and-bound is used there. First, some
feasible solution is found and then, a next solution
that is better than the previous solution is looked for
etc. This could be done by posting a new constraint
restricting the value of the objective function by the
value of the objective function for the so-far best
solution.

A deep and general view of constraint
programming can be found in [2,6,7,11].

X in [1,2,3,4,5]

X<Y

Y in [1,2,3,4,5]

Z in [1,2,3,4,5]

Z<X-2

X
<Y

X in [1,2,3,4,5]
Y in [1,2,3,4,5]
Z in [1,2,3,4,5]

X in [1,2,3,4]
Y in [2,3,4,5]
Z in [1,2,3,4,5]

X in [4]
Y in [2,3,4,5]
Z in [1]

X in [4]
Y in [5]
Z in [1]

Z<X-2

X
<Y

CPDC’2003

9

3 INSIDE THE CONSTRAINTS

As mentioned in the introduction, we believe that
understanding insides of constraint satisfaction
technology improves the modelling skills. In
particular, knowledge about how constraint
propagation works prevents some surprise effects
and as a consequence it leads to better models.

3.1 Disjunction

Assume modelling a simple disjunction X<5 ∨
X>7. There are several ways how to describe such
constraint in constraint logic programming
languages. The standard method in Prolog is to use
two clauses to describe disjunction, in particular1:

a(X):-X#<5.
a(X):-X#>7.

However, this is not a good way of modelling in
terms of constraint satisfaction because it leads to
alternative constraint models. In particular, the first
model contains the constraint X<5 and if we find
later that this model has no solution, then the
second model with X>7 is tried. The main difficulty
of this approach is losing work done when solving
the first model because the system must backtrack
to introduce the alternative constraint X>7.

An alternative approach is using a disjunctive
constraint in the form:

a(X):-X#<5 #\/ X#>7.

Then the constraint model is deterministic and
search is realised within the labelling procedure
only. Still, constraint propagation is very week
there – the constraint does nothing until all but one
components of the disjunction are proved to fail
and then the remaining component is activated. In
particular, after posting the above disjunctive
constraint, the domain of the variable X does not
change - we call it a surprise effect because what
we expect from the constraint is to change the
domain to (inf..4) \/ (8..sup). As soon as the system
finds out (for some reason) that X>4 then X<5 is
proved to fail and the constraint X>7 is posted
which leads to change of the domain for X.

There exist constructive approaches to
disjunction which propagate each component in the
disjunction separately and then the resulting
domain pruning is a union of the pruned domains in
each component. We can model this approach using
the following constraint instead of the disjunction:

a(X):-X in (inf..4)\/(8..sup).

Constructive disjunction is expensive in general but
if we are aware about its principles, we can
implement them within our constraint models.

1 We use the notation of clpfd library of SICStus
Prolog to describe arithmetic constraints [3].

3.2 All-different

Constraint propagation can remove many
inconsistent values from variables’ domains.
However, due to its local character it can hardly
detect global inconsistencies. Assume the constraint
satisfaction problem from Figure 3. Local
propagation via arc consistency deduces not change
of the domains because all pairs of values are
locally consistent. However, a more global view
can discover that values b and c cannot be assigned
to X3 because they will be used both for X1 and X2.

Fig. 3. Locally consistent constraint satisfaction problem
that is not globally consistent (b and c can be removed
from the domain of X3).

Constraint programming provides a mechanism
called global constraints to improve propagation in
the group of constraints via encapsulating them into
a single global constraint with some special
filtering algorithm for it. Typically, the constraints
in the group are in some sense homogeneous, e.g. it
is a set of inequality constraints between every pair
of variables. Règin proposed an efficient filtering
algorithm for the global constraint called all-
different modelling the set of inequalities [8].

The basic idea of Règin’s filtering algorithm is
to represent the constraint as a bipartite graph with
variables on one side and values on the other side -
so called value graph (Figure 4). The edges connect
the variables with the values in their domains.

Fig. 4. A value graph for the all-different constraint with
three variables.

The filtering algorithm for the all-different
constraint is then realised via computing maximal
matching in this graph. If an edge is not part of any
maximal matching then this edge is removed from
the graph. This corresponds to removing the value
from the variable’s domain.

The advantage of Règin’s algorithm is
maintaining global consistency over the set of
variables while keeping the time efficiency close to
local propagation. Therefore it is almost always
better to use such global constraints instead of a set
of constraints. The details on the Règin’s algorithm
can be found in [8].

X1

X2

X3

a

b

c

X1 in [a,b]

X1≠X2

X2 in [a,b]
X3 in [a,b,c]

X1≠X3

X2≠X3

CPDC’2003

10

3.3 Scheduling constraints

While some global constraints are more or less
generally applicable (like the all-different), many
other global constraints were proposed for
particular application areas. For example, one of
the most popular global constraints in scheduling is
edge finding. We describe the version for unary
resources but there exist variants for discrete
resources as well [1]. As we show later, even if
edge finding origins in the scheduling applications
it can be applied to other non-scheduling areas.

The scheduling task is to allocate know
activities to limited resources. Typically, each
activity is described using its start time S and its
processing time P. If the resource can process only
one activity per time (so called unary resource) then
the activities cannot overlap. It means that either
one activity precedes the other activity or vice
versa. Such constraint can be described as a
disjunction:

S1+P1≤S2 ∨ S2+P2≤S1

For the set of n activities allocated to a single
resource we get n2 binary disjunctive constraints of
the above type. We already know that propagating
through a disjunctive constraint is rather weak and
that a group of similar constraints could be
encapsulated in a global constraint. Edge finding is
one of the most widely used techniques behind such
scheduling global constraint.

The basic idea of edge finding is to identify an
“edge” between the activity and the group of
activities, in particular to find out if the activity
must be processed before the set of activities (or
after it). Assume that A is an activity and Ω is a set
of activities that does not contain A. In a unary
resource the processing time for the set of activities
equals to the sum of processing times of these
activities:

∑
Ω∈

=Ω
X

Xpp)()(

Assume that processing of the activities from
Ω∪{A} does not start with A. Then processing must
start with some activity from Ω so the minimal start
time is:

)}({min))(min(Xstartstart
X Ω∈

=Ω

If we add the processing time of Ω∪{A} to the
minimal start time of Ω and we get the time after
the maximal end time of Ω∪{A} then we know that
the activity A can be processed neither inside nor
after Ω (Figure 5). Thus, the activity A must start
before Ω.

Formally:

min(start(Ω)) + p(Ω) + p(A) > max(end(Ω ∪ {A}))
⇒ A<<Ω.

A<<Ω means that A must be processed before every
activity from Ω so it must be processed before any
Ω'⊆Ω. We can use this information to decrease the
upper bound for the end time of the activity A using
the formula:

end(A) ≤ min{ max(end(Ω')) - p(Ω') | Ω'⊆Ω}.

A similar rule can be constructed to deduce that A
must be processed after Ω:

min(start(Ω ∪ {A})) + p(Ω) + p(A) > max(end(Ω))

⇒ Ω<<A.

The above edge finding rules form the core of the
filtering algorithm reducing the bounds of the time
variables. It may seem that this algorithm must
explore all subsets Ω of the set of activities
allocated to a given resource. Fortunately we can
explore only the sets defined by pairs of activities
called tasks intervals [1] so the time complexity of
the edge finding filtering algorithm is O(n3) where
n is the number of activities allocated to the
resource.

Fig. 5. Edge finding can deduce that the activity A must
be processed before the activities B and C (processing
time is in parentheses). Notice that binary disjunctive
constraints deduce nothing there.

4 MODELLING WITH CONSTRAINTS

In this section, we present several example
problems and their constraint models. The main
issue behind the presented models is efficiency. We
present several techniques how to improve
efficiency of the models by adding redundant
constraints. To allow immediate testing of the
presented ideas, the models are programmed using
the clpfd library of SICStus Prolog [3,8].

A (2) 4 16

7 15
C (5)

6 16
B (4)

4 7

7 15
C (5)

6 16
B (4)

A (2)

CPDC’2003

11

4.1 Seesaw

Let us start our journey with a simple combinatorial
problem of placing children to a seesaw [7].
Assume that Adam, Boris, and Cecil want to sit in a
seesaw in such a way that the seesaw balances.
There are five seats placed uniformly on both arms
of the seesaw and one seat is placed in the middle
(see Figure 6). Moreover, the boys want to have
some space around them. In particular, they require
that they are at least three seats apart. The weights
of Adam, Boris, and Cecil are respectively 36, 32,
and 16 kg. To solve the problem, we need to assign
seats to all children. Figure 6 shows one of the
acceptable solutions to this problem.

Fig. 6. A seesaw problem and one of its solutions

To model the problem as a constraint satisfaction
problem, one needs to decide about the variables,
their domains, and the constraints. The natural
model for the seesaw problem is using a variable
for each boy describing his position on the seesaw,
i.e., A for Adam, B for Boris, C for Cecil. If we
choose carefully the domain for these variables, i.e.
-5,-4,…,+4,+5, then the constraint that the seesaw
balances is simply that the moments of inertia sums
to 0:

36*A + 32*B + 16*C = 0.

To restrict the minimal distances between the boys
we can use a standard formula for computing
distances, i.e. an absolute value of the difference of
the positions. Thus we get the constraints:

|A-B| > 2, |A-C| > 2, |B-C| > 2.

Note that |A-B| > 2 is a compact representation of
the disjunctive constraint (A-B > 2 ∨ B-A > 2).

The above constraints describe completely the
seesaw problem. To get the solution we need to
post all these constraints and to do labelling that is
a procedure deciding about the variables’ values via
a depth first search. Figure 7 shows a coding in
SICStus Prolog.

seesaw(Sol):-
 Sol = [A,B,C],

 domain([A,B,C],-5,5),
 36*A+32*B+16*C #= 0,
 abs(A-B) #> 2,
 abs(A-C) #> 2,
 abs(B-C) #> 2.

 labeling([ff],Sol).

Fig. 7. A constraint model for the seesaw problem

Notice that the constraint model for the seesaw
problem is fully declarative. So far, we said no
single word about how to solve the problem. We
merely concentrate on describing the problem in
terms of variables, domains, and constraints. The
underlying constraint solver that encodes constraint
propagation as well as the labelling procedure does
the rest of the job.

If we now run the program from Figure 7 we get
six different solutions (Figure 8).

?- seesaw(X).

X = [-4,2,5] ? ;
X = [-4,4,1] ? ;
X = [-4,5,-1] ? ;
X = [4,-5,1] ? ;
X = [4,-4,-1] ? ;
X = [4,-2,-5] ? ;
no

Fig. 8. All solutions of the seesaw problem

As the open-eyed reader might notice, only three of
these solutions are really different. The remaining
three solutions are merely the symmetrical copies
of the first three solutions. Thus we can get these
solutions easily without wasting time in the general
solving mechanism. To remove the symmetrical
solutions from the search space one can add so
called symmetry breaking constraint. In case of the
seesaw problem, it could be a constraint restricting
Adam to sit on the seats with non-positive numbers:

A≤0.

It may seem that the goal of the symmetry breaking
constraints is to remove the symmetrical solutions
only. However, this is useless if we are looking just
for one solution satisfying the constraints. In fact,
the real role of the symmetry breaking constraints is
somewhere else. They remove parts of the search
space where no solution exists because the search
procedure already explored the symmetrical part of
the search space and it found no solution there. For
example, if we find that Adam cannot sit on the seat
number -5, then we know immediately that he
cannot sit on the seat number 5 too. Therefore, the
symmetry breaking constraints reduce the search
space and thus they increase efficiency of the
models (see Section 4.3 for more convincing
example). There exist other techniques of symmetry
breaking, for details see [10].

If we look at the constraint model for the
seesaw problem (Figure 7), we can see there a set
of quite similar constraints, namely the distance
constraints. Recall, that domain filtering is done
independently in these constraints and domain
changes are propagated between the constraints
using the standard arc consistency technique. As we
showed in section 3.2 this may lead to weaker
pruning in comparison with some global
consistency technique. Figure 9 shows the result of

CPDC’2003

12

the initial domain pruning before the start of
labelling (the symmetry breaking constraint is
included).

A in -4..0
B in -1..5
C in -5..5

Fig. 9. Initial domain pruning for the seesaw problem
(including symmetry breaking)

As showed in Section 3.2, encapsulating a set of
constraints into a global constraint can improve
domain pruning while keeping the reasonable
efficiency. For some problem areas there are
special global constraints designed but after some
abstraction they can be used in other problems as
well. For example, if we see the boy as a box of
width three, then, if the boxes do not overlap, all
boys are at least three seats apart (Figure 10).

Fig. 10. Allocating boys to seats is similar to scheduling
activities to a unary resource.

Thus, we can see the seesaw problem via glasses of
scheduling and we can use the edge-finding like
technique to model the set of distance constraints.
In particular, the following constraint may
substitute the set of distance constraints:

serialized([A,B,C],[3,3,3],[]).

The first argument of the serialized constraint
describes the start times of the “activities” while the
second argument describes their duration (the last
argument is used for options like precedences
which are not applied there). The constraint ensures
that the activities do not overlap.

Figure 11 shows the initial domain pruning
when the serialized constraint is used. We can see
that more infeasible values are removed from the
variables’ domains and thus the search space to be
explored by labelling is smaller.

A in -4..0
B in -1..5
C in (-5.. -3)\/(-1..5)

Fig. 11. Initial domain pruning for the seesaw problem
with the serialized constraint

4.2 Assignment problems

The second studied problem is more real-life
oriented than the seesaw problem. It belongs to the
category of assignment problem like allocating
ships to berths, planes to stands, crew to planes etc.
In particular, we will describe a problem of
assigning workers to products.

Consider the following simple assignment
problem [7]. A factory has four workers W1, W2,
W3, and W4, and four products P1, P2, P3, and P4.
The problem is to assign workers to products so
that each worker is assigned to one product and
each product is assigned to one worker (Figure 12).

Fig. 12. A simple assignment problem.

The profit made by worker Wi working on product
Pj is given by the table in Figure 13.

 P1 P2 P3 P4

W1 7 1 3 4

W2 8 2 5 1

W3 4 3 7 2

W4 3 1 6 3

Fig. 13. Table describing profit made by workers on
particular products

The task is to find a solution to the above problem
such that the total profit is at least 19.

A straightforward constraint model can use a
variable for each worker indicating the product on
which the worker is working. The fact that each
worker is working on a different product can be
described via a set of binary inequalities or better
using the all-different constraint. To describe the
profit of the worker, we can use a tabular constraint
element. Then the sum of the individual profits
must be at least 19. Figure 14 shows the constraint
model for the assignment problem.

assignment(Sol):-
 Sol = [W1,W2,W3,W4],

 domain(Sol,1,4),
 all_different(Sol),
 element(W1,[7,1,3,4],EW1),
 element(W2,[8,2,5,1],EW2),
 element(W3,[4,3,7,2],EW3),
 element(W4,[3,1,6,3],EW4),
 EW1+EW2+EW3+EW4 #>= 19,

 labeling([ff],Sol).

Fig. 14. A constraint model for the assignment problem

By running the above program we get four different
assignments that satisfy the minimal profit

A

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

B C

CPDC’2003

13

constraint (Figure 15). The first two assignments
have profit 19, the third assignment has profit 21
and the last assignment has profit 20.

?- assignment(X).

X = [1,2,3,4] ? ;
X = [2,1,3,4] ? ;
X = [4,1,2,3] ? ;
X = [4,1,3,2] ? ;
no

Fig. 15. All solutions of the assignment problem

Quite often the task is not to find a feasible solution
but to find an optimal solution. Typically, the
constraint solvers use branch and bound technique
to find optimal solutions. The nice feature is that
one does not need to change the constraint model to
solve an optimisation problem. Only the standard
labelling procedure is substituted by a procedure
looking for optimal solutions. In practice, the value
of the objective function is encoded into a variable
and the system minimises or maximises the value
of this variable. Figure 16 shows a change in the
code necessary to solve the optimisation problem
where the task is to find an assignment with
maximal profit.

…
EW1+EW2+EW3+EW4 #= E,

maximize(labeling([ff],Sol),E).

Fig. 16. A change of the constraint model to solve the
optimisation problem

The branch and bound technique behind the
maximize procedure will now find the optimal
solution which is X=[4,1,2,3].

Let us now turn our attention back from
optimisation to the original constraint model. We
decided to use variables for workers and values for
products. However, it is possible to swap the role of
variables and values and to describe products by
variables and workers assigned to the products as
values for these variables. Figure 17 shows such a
dual constraint model.

assignment(Sol):-
 Sol = [P1,P2,P3,P4],

 domain(Sol,1,4),
 all_different(Sol),
 element(P1,[7,8,4,3],EP1),
 element(P2,[1,2,3,1],EP2),
 element(P3,[3,5,7,6],EP3),
 element(P4,[4,1,2,3],EP4),
 EP1+EP2+EP3+EP4 #>= 19,

 labeling([ff],Sol).

Fig. 17. A dual model for the assignment problem

In many problems the role of variables and values
can be swapped and it is the model designer who
decides which model is more appropriate. In our
assignment problem it may seem that both models
are fully equivalent. However, somehow
surprisingly the dual model requires a smaller
number of choices to be explored to find all the
solutions of the problem (11 vs. 15). The reason is
that profit depends more on the product than on the
worker. Thus, the profitability constraint propagates
more for products than for workers. Figure 18
compares the initial pruning before the start of
labelling for both primal and dual models.

W1 in 1..4
W2 in 1..4
W3 in 1..4
W4 in 1..4

P1 in 1..2
P2 in 1..4
P3 in 2..4
P4 in 1..4

Fig. 18. Initial domain pruning for the assignment
problem (left-primal model, right-dual model).

Determining the efficiency of different models is a
difficult problem. Usually, the best model will be
the one in which information is propagated first. To
improve propagation, the primal and dual models
can be combined into one model. In practice, it
means that variables and constraints from both
models are used together and special “channelling”
constraints interconnect the models (SICStus
Prolog provides the assignment constraint to
interconnect the models). Figure 19 shows a
constraint model where both primal and dual
models are combined. Thanks to stronger domain
pruning this model requires only 9 choices to be
explored to find all the solutions of the problem

assignment(Workers):-

Workers= [W1,W2,W3,W4],

domain(Workers,1,4),
all_different(Workers),
element(W1,[7,1,3,4],EW1),
element(W2,[8,2,5,1],EW2),
element(W3,[4,3,7,2],EW3),
element(W4,[3,1,6,3],EW4),
EW1+EW2+EW3+EW4 #>= 19,

Products = [P1,P2,P3,P4],

domain(Products,1,4),
all_different(Products),
element(P1,[7,8,4,3],EP1),
element(P2,[1,2,3,1],EP2),
element(P3,[3,5,7,6],EP3),
element(P4,[4,1,2,3],EP4),
EP1+EP2+EP3+EP4 #>= 19,

assignment(Workers,Products),

labeling([ff],Workers).

Fig. 19. A combined model for the assignment problem

CPDC’2003

14

Combining primal and dual models is an easy way
how to improve domain pruning. As Figure 20
shows, this combination really helped to prune
domains of the variables describing workers.

W1 in (1..2)\/{4}
W2 in 1..4
W3 in 2..4
W4 in 2..4

P1 in 1..2
P2 in 1..4
P3 in 2..4
P4 in 1..4

Fig. 20. Initial domain pruning for the assignment
problem with combined primal and dual models

On the other hand, the combined model requires
overhead to propagate more constraints so one must
be very careful when combining models with many
constraints.

4.3 Golomb ruler

Lessons learnt in the previous sections will now be
applied to solving a really hard problem of finding
an optimal Golomb ruler of given size. In
particular, we will show how “small” changes in
the constraint model may influence dramatically the
efficiency of the solver.

Golomb ruler of size M is a ruler with M marks
placed in such a way that the distances between the
marks are different. The shortest ruler is the optimal
ruler. Figure 21 shows an optimal Golomb ruler of
size 5.

Fig. 21. An optimal Golomb ruler of size 5.

Finding an optimal Golomb ruler is a hard problem.
In fact, there is not known an exact algorithm to
find an optimal ruler of size M ≥ 24 even if there
exist some best so far rulers of size up to 150 [5].
Still, these results are not proved yet to be (or not to
be) optimal. Golomb ruler is not only a hard
theoretical problem but it also has a practical usage
in radio-astronomy. Let us now design a constraint
model to describe the problem of the Golomb ruler.

A natural way how to model the problem is to
describe a position of each mark using a variable.
Thus for M marks we have M variables X1,…, XM.
The first mark will be in the position 0 and the
position of the remaining marks will be described
by a positive integer. Moreover, to prevent
exploring all permutations of the marks, we can sort
the marks (and hence the variables) from left to
right by using constraints in the form Xi<Xi+1.
Finally, we need to describe the difference of
distances between the marks. Thus for each pair of
marks i and j (i<j) we introduce a new distance
variable Di,j = Xj – Xi. The difference of distances is
then described using the all-different constraint
applied to all distance variables. Figure 22 shows
the above basic constraint model.

X1 = 0
X1<X2<…<XM
∀i<j Di,j = Xj – Xi
all_different({D1,2,D1,3,…,DM,M-1})

Fig. 22. A basic constraint model for the Golomb ruler

The basic constraint model already includes several
features discussed above. In particular, we use a
global constraint all-different instead of the set of
binary inequalities. Surprisingly, this decreases
slightly efficiency of solving (see Figure 24)
probably because domain filtering in other
constraints is so weak that the overhead of all-
different exceeds its pruning power.

We already removed many symmetric solutions
by using the ordering constraints (permutation can
be seen as a special case of symmetry). There is no
doubt about a positive effect of this feature. Still,
there is one more symmetry to be removed and this
is mirroring of the ruler. Assume the optimal ruler
[0,1,4,9,11] then the ruler [0,2,7,10,11] is a mirror
of this ruler so it can be removed from the solution
set. To remove such symmetry we can use a
constraint in the following form:

D1,2<DM-1,M

As we can see from the table in Figure 24, adding
this single constraint decreases significantly the
running time. In fact, solving is almost two times
faster because the symmetric sub-trees are not
explored during search.

We can further improve efficiency of the model
by adding some redundant constraints. For
example, we can compute better bounds for the
difference variables. Di,j is a distance between the
marks i and j. Notice that this distance consists of
the distances (i,i+1), (i+1,i+2) …(j-1,j). Formally,

Di,j = Di,i+1 + Di+1,i+2 + … + Dj-1,j

Because all distances must be different, we can
estimate the minimal sum of distances (i,i+1),
(i+1,i+2) …(j-1,j). In particular:

Di,j ≥ Σj-i = (j-i)*(j-i+1)/2

Let us now try to estimate the upper bound for Di,j:

XM = XM – X1 = D1,M =
= D1,2 + D2,3 + … Di-1,i + Di,j + Dj,j+1 + … + DM-1,M

Di,j = XM – (D1,2 + … Di-1,i + Dj,j+1 + … + DM-1,M)

Again, all distances must be different so we can
estimate the minimal sum of distances (1,2),..,
(i-1,i), (j,j+1), …, (M-1,M). There are (M-1-j+i)
different numbers so:

Di,j ≤ XM – (M-1-j+i)*(M-j+i)/2

The above analysis of the problem deduced three
additional constraints that can be added to the basic
model to improve domain pruning. Figure 23
surveys these additional constraints.

0 1 4 9 11

CPDC’2003

15

D1,2 < DM-1,M
∀i<j Di,j ≥ (j-i)*(j-i+1)/2
∀i<j Di,j ≤ XM–(M-1-j+i)*(M-j+i)/2

Fig. 23. An extension of the model for the Golomb ruler

As we can see from the table in Figure 24, the
improved model pays off and the running times are
significantly smaller. We have also tried the models
without the Règin‘s filtering algorithm for the all-
different constraint. In case of the base model, the
running times are slightly better (for the reasons see
above) but for the extended model, all-different
contributes significantly to good efficiency.

 Base

model
- all_diff

Base
model

Base model
+ symmetry

Base model
+ symmetry
+ bounds

Base model
+ symmetry
+ bounds
- all_diff

7 0 1 0 0 0
8 2 2 1 0 1
9 18 17 8 2 7

10 159 149 76 15 61
11 3327 3455 1811 772 1766

Fig. 24. Running times (in seconds on Mobile Pentium 4-
M 1.70 GHz, 768 MB RAM) to find out optimal Golomb
rulers using different constraint models. „–all_diff“
means simple propagation only (see Appendix).

For comparison with other algorithms we include
some optimal Golomb rulers (Figure 25).

1 [0]
2 [0,1]
3 [0,1,3]
4 [0,1,4,6]
5 [0,1,4,9,11]
6 [0,1,4,10,12,17]
7 [0,1,4,10,18,23,25]
8 [0,1,4,9,15,22,32,34]
9 [0,1,5,12,25,27,35,41,44]
10 [0,1,6,10,23,26,34,41,53,55]
11 [0,1,4,13,28,33,47,54,64,70,72]
12 [0,2,6,24,29,40,43,55,68,75,76,85]

Fig. 25. Some optimal Golomb rulers

5 CONCLUSIONS

Determining the efficiency of different models is a
difficult problem and one which relies upon an
understanding of the underlying constraint solver.
The best model will be the one in which
information is propagated earliest [7]. In this paper,
we explained insides of some constraints to
understand better their behaviour. We have also
presented several techniques that usually improve
efficiency of the models by following the above
rule on propagating earliest.

Encapsulating a set of constraints into a global
constraint is always the recommended way of
modelling especially if the appropriate global
constraints are implemented in the system. As we
showed, sometimes a global constraint intended to
a different application area can be applied to the

problem so do not be restricted to the subset of the
global constraints for your problem area only.

We have also showed that some parts of the
solution (search) space can be removed because the
solutions from these parts can be easily
reconstructed from other solutions. In particular,
including so called symmetry breaking constraints
always speeds up the solver because they prevent
the solver to explore irrelevant (symmetrical) parts
of the search space.

Last but not least we presented the idea of
redundant constraints. Redundancy means that
these constraints are not necessary to define the
solution but they can significantly speed up the
solver by improving domain pruning (and thus
restricting the search space). One example of
adding redundancy to the model is combining the
primal model with the dual model where the role of
variables and values is swapped. However,
redundant constraints add overhead necessary to
propagate through them so the user must be careful
about using them. Empirical evaluation of the
models could be a good guide there.

In the presented models, we use a standard
labelling procedure based on the first-fail principle.
Another way how to improve efficiency is defining
dedicated search procedures but this is a different
story.

6 REFERENCES

1. Baptiste, P. and Le Pape, C.: Edge-finding constraint
propagation algorithms for disjunctive and
cumulative scheduling. Proceedings of the Fifteenth
Workshop of the U.K. Planning Special Interest
Group, 1996.

2. Barták, R.: On-line Guide to Constraint
Programming, Prague, 1998.
http://kti.mff.cuni.cz/~bartak/constraints/

3. Carlsson M., Ottosson G., Carlsson B.: An Open-
Ended Finite Domain Constraint Solver.
Proceedings Programming Languages:
Implementations, Logics, and Programs, Springer-
Verlag LNCS 1292, 1997.

4. Freuder, E.C.: In Pursuit of the Holy Grail.
Constraints: An International Journal, 2, 57-61,
Kluwer, 1997.

5. Golomb rulers: some results, 2003.
http://www.research.ibm.com/people/s/shearer/grtab.html

6. Kumar, V.: Algorithms for Constraint Satisfaction
Problems: A Survey, AI Magazine 13(1): 32-44,
1992.

7. Mariot K. and Stuckey P.J.: Programming with
Constraints: An Introduction. The MIT Press, 1998.

8. Règin J.-Ch.: A filtering algorithm for constraints of
difference in CSPs. Proceedings of 12th National
Conference on Artificial Intelligence, 1994.

9. SICStus Prolog 3.8.7 User's Manual.
10. Smith B.: Reducing Symmetry in a Combinatorial

Design Problem. Proceedings of CP-AI-OR2001,
pp. 351-359, Wye College, UK, 2001.

11. Tsang, E.: Foundations of Constraint Satisfaction.
Academic Press, London, 1995.

CPDC’2003

16

Appendix

The following code describes a complete constraint model to solve the Golomb ruler problem of any size M.
More precisely, the largest problem that we have solved was of size 13 and it took a couple of days on 1.8 GHz
Pentium 4; solving problems of larger size will definitely take much more time. The code was tested in SICStus
Prolog 3.8.7 [9] so it follows the syntax of constraints and built-in predicates of SICStus Prolog. For example,
SICStus Prolog uses all_distinct constraint that implements the Régin’s filtering algorithm while
all_different constraint implements a simple propagation where the value is removed from domains after
its assignment to some variable. The last comment is about the upper bound for the variables describing marks.
As the built-in labelling procedure requires the domains of the labelled variables to be finite we decided to use
M2 as the upper bound for these variables.

:-use_module(library(clpfd)).
:-use_module(library(lists)).

golomb(M,Sol):-
 Sol = [0|_],
 UpperBound is M*M,
 ruler(M,-1,UpperBound,Sol),
 last(Sol,XM),
 distances(Sol,1,M,XM,Dist),
 all_distinct(Dist),

 (Dist=[DF,_|_] ->
 last(Dist,DL), DF#<DL
 ;
 true
),

 minimize(labeling([ff],Sol),XM).

ruler(0,_,_,[]).
ruler(K,PrevX,UpperBound,[X|Rest]):-
 K>0,
 PrevX#<X, X#=<UpperBound,
 K1 is K-1,!,
 ruler(K1,X,UpperBound,Rest).

distances([],_,_,_,[]).
distances([X|Rest],I,M,XM,Dist):-
 J is I+1,
 distances_from_x(Rest,X,I,J,M,XM,Dist,RestDist),
 I1 is I+1,!,
 distances(Rest,I1,M,XM,RestDist).

distances_from_x([],_,_,_,_,_,RestDist,RestDist).
distances_from_x([Y|Rest],X,I,J,M,XM,[DXY|Dist],RestDist):-
 DXY #= Y-X,
 LowerBound is integer(((J-I)*(J-I+1))/2),
 LowerBound #=< DXY,
 UpperBoundP is integer(((M-1-J+I)*(M-J+I))/2),
 DXY #=< XM - UpperBoundP,
 J1 is J+1,!,
 distances_from_x(Rest,X,I,J1,M,XM,Dist,RestDist).

