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Abstract. We provide algorithms guaranteeing the highest levell [ntroduction
of privacy by computing uniformly random solutions to stabhar-
riages problems. We also provide efficient algorithms eting a
non-uniformly random solution and guaranteeing t-privémyany
threshold t. The most private solution is expensive and $ethan a
distributed/shared CSP model of the problem. The most efficier-
sion is based on running the Gale-Shapley algorithm aftefflsig
the men (or women) in the shared secret description of thiglgmo

We introduce an efficient arithmetic circuit for the Galeapley
algorithm that can employ a cryptographic primitive we pgyse for
vector access with an arbitrary number of participants.

The stable marriages problem consists of matching pairefoito
distinct sets of participants [13]. One member of the padirusth be-
long to the first set and the second member should belong to the
second set. The matching is stable if whenever one pantitipants
to change her partner for a third one, the third participaatgys her
current partner to the change. The participants have atseEter-
ence (or tie) between any pair of potential partners.

Versions of these problems, without privacy requiremehtsje
been long known and studied. Techniques for the stable agsi
problem are used in US to assign hospitals to medical inf@&Tis

We introduce and employ a CSP model using onlsariables for a ; : . ’ )
stable marriages problem withmen anch women. We compare the It is an example of const_ralnt satisfaction problem (_CSP§3$P is
);'nodeled as a set of variables and a set of constraints on g&-po

power of a few common DisCSP frameworks by analyzing the wa 5 > o
in which they can model and solve our case problem, namely Stable values of those variables. The CSP problem consists dinfin

ble marriages. Participants want to find a stable matchirdpéised assignments for those variables with values from their dosnsuch

by their secret preferences and without leaking any of tiseseets. that all const.ra.tints are satisfi.ed. The CSP techniques requery
The classic CSP formalism allows for naturally modeling phem eventual participant to reveal its preferences (e.g. tastéd server),

preferences (ties, etc.). This offers a good DisCSP bendhma _to compute the solution. Therefore, they apply only wherpiaugic-

We show that both classic DisCSP frameworks, with private do ipants accept to reveal their preferences to the trustagl. par
mains and with private constraints, can be used to modebtiois- There exist frameworks and techniques to model and solve dis
lem. We show obtained models having several variables pamtag tributed CSPs (DisCSPs) with privacy requirements, namétgn

However, we also show that the DisCSPs obtained with thesesfr the domains of th.e variables are private to agents [41], aruthe
works have a search space that is much higher than the oripaiiita constraints are private to agents_ [33, 26, 32, 22, 17]. )
with centralized CSPs models (foreboding poor behavior). We show that the stab_le marriages problems can be modelbd wit
This highlights a previously unknown advantage of DisCSPthe two known typgg of distributed CSP framewqus, blft tftambd
models are not efficient. A more efficient model is obtainddgithe
MPC-DisCSP framework introduced in [30].
We start introducing formally the CSP problem.

solvers based on secure simulations of arithmetic cirartshared
secrets. Such solvers do not need to keep track of the initalping
of secrets to agents. They can be directly composed withr otire-
putations on secrets which may be needed to process thésoddit
the CSP, or to prepare its inputs. For example, this enabéesge of ~ CSP. A constraint satisfaction probleffCSP) is defined by three

CSP models where we only have a variable specifying the Imasba Sets: &, D, C). X = {@1,..,zn} is a set of variables and
for each woman, while the spouse of each man can be obtainad by = {D1, .., D} is & set of finite domains such tha can take
subsequent computation processing the solution of the CSP. values only fromD; = {v1,...,vg,}. C = {¢1,..., ¢} is a set of

An additional advantage of the solvers based on secure aiong constraints. A constrairg; limits the legality of each combination of
of arithmetic circuits is that it returns a solution pickeshdomly ~ @ssignments to the variables of an ordered suiseif the variables
among existing solutions. Besides the fact that this ir@e@rivacy N X, Xi C X. An assignment is a paifz;, vi;) meaning that the
to a level ofrequested t-privagcyit also provides fairmess to partic- Variablez; is assigned the valuf..
ipants. A real implementation of a described secure salutisable A tuple is an ordered set. The projection of a tuplef assign-
by participants on distinct computers on the Internet islemented ~ Ments over a tuple of variable¥; is denotedk,, . A solution of a

(by students in a class assignment) and is available on dusite. ~ CSP (X,D,C) is a tuple of assignmentss, with one assignment for
each variable inX such that eack; cC is satisfied byex|, . The

search space of a CSP is the Cartesian product of the donfdtss o
variables.
We consider that a set of participants are the source of s&PsC
1 Fragments from this article were originally part of [27, 3%). and one has to find agreements for a solution, from the setssipo
2 tFlorida Institute of TechnologyCharles University PraguéUniversity ~ Dle alternatives, that satisfies a set of (secret) requinésre the par-
Klagenfurt ticipants. This view suggests a concept of a distributed. Sgferal




frameworks were proposed so far for Distributed Constraatisfac- an efficient version for 2-party computations. We proposd s

tion [45, 6, 42]. Some versions consider that each agent evaas- ficient algorithms for this operation with threshald

straint of the CSP [45, 38]. This constraint could model thegbe e a[T] = y. Writesy at indexz in the array of shared secrets
information of the agent [33]. Other versions consider #zath agent We propose next an algorithm for this operation with thrégtio
owns the domain of a variable while the constraints are shiig]. computations.

The secret domains can also model some private constraints.
None of the two approaches, namely private variables oraf#iv
domains, can modaedfficientlythe stable marriages problems. This

is because their private data does doectly constrain the alloca-  1hjs can be done in constant rounds wikhequality tests, but that is

tion of the natu.ral shared resourcgs. An indirect reIQtBte with asymptoticallylog(|F|) more expensive in communication than the
such a constraint. Redundant variables need to be intrdduacte techniques proposed next.

system. The advantage of a framework based on shared s&fst C
will be stressed in this article, as it allows to avoid theuredant

variables. Classic CSP models allow for naturally modetiomplex 3.1 Bit-based Access
preferences (e.qg. ties, etc.).

3 Accessing arrays at secret index

A fast method we propose is based on bit decomposition and ex-
ponentiation with secret index [8, 9]. It works for accegsarrays

2 Background with size N < ¢ wherel = log,(|F|). Given the shared secret
Related Work The stable marriages problem is an old and well index x for a vector of lengthN, first computedo, di,...,d¢ =
studied challenge [13]. Modeling this problem with CSPsbesn  bits(EX P(2,[x]”)) by first running theits algorithm [8] followed
discussed in [14]. Distributed approaches to solving tieblem also by the secret exponentiation of [9], and followed again ksptis al-
appeared in several works among which we mention [5]. Weintr gorithm of [8].

duced the problem of privacy in stable marriages problen3j ps Now one can read the array item wif*  (d; * ali]).

an application of MPC-DisCSP1 algorithm. Other secureritiyms One can writey in the arraya at indexz with

developed for the problem appear in [16] which also usedi®ail ali] = ali] + (y — a[i]) * d;, Vi € [0..N].

mixnets and, while being more efficient than our first versioin This version is much faster than the one above since it nedgls o
cannot offer requested t-privacy. two expensivéits primitives instead ofV of them.

In several general multi-party computation (MPC) framesor

secretss from an algebraic structure F are distributed among Par3 5 Mixnet-based secret index access

ticipants using sharing schemes. In a sharing scheme, eatb-p )

ipant A; gets a share denotdg]/", and at least participants are  The next protocol achieves the resultirounds, where is the num-
required to reconstruct the secret from their shares. Axétic cir- ber of supposed trusted servers/participants. First, vgamas that
cuits can then be evaluated securely over these shares,[35#0 4 € [0..(IV — 1)] and is shared using an additive sharing with shares
Our arithmetic circuits as well as our other protocols alsorkv  eijther from the set of integet® or from Zy. Transformations from
with MPC schemes where the secret are encrypted with a homomoany sharing to sharing of this form was discussed in [21, 1].

phic public key cyphet allowing additions of plaintext by opera-
tions on ciphertexts [7], and whose secret key is distrithatmongt

e Read at secret index To perform the operation = a[z] where
servers/participants.

a is an array ofN shared secrets, one can use a mixnet related to
the one we proposed in [29]. Each participaijtencrypts his shares
[a1];, .., [an]; Of the elements of using a homomorphic encryption
schemeE; for which it holds the secret key and which allows for
e bits(z). Transform the shared sectet(with ¢ bits) into a vector ~ applying (+) on its plaintext through some operation on cipher-
[z]? of £ shared secretfy)® = by, by, ..., be, with possible values  texts [29]. All shares are then passed through a mixnet fdiyethe
{0,1} and representing the corresponding bits:¢8]. t participants holding shares of EachA; generates a vectarof NV
o EXP(z, [y]”). This primitive computes raises at exponenty random sharings of zero, and then for each input:
wherey is shared on bits [9].

Cryptographic Primitives on Shared Secrets We use the follow-
ing primitives on secret shares:

o +,—, % =, ==,&&,||, <. These operators are equivalent to the I = |E;([a1])), - Ei([an];)]
corresponding “C” operators but work on shared secrets [8].
e a?b : c. This operator is implemented as: (b — ¢) + c. computes the output to be sent to the next agent

e m=SHUFFLE(a). Generates and applies a secret random permuta
tion  on vectora [29].

e UNSHUFFLE(br). Applies on vectob the inverse of the secret
permutationr previously applied on vectar [29].

e |, firstinArray(a). Sets all 1's in the array a to 0, except fue first
1[31].

o firstinArrayldx(a). Returns the index of the first 1 i [28].
Can be implemented by first computing firstinArray(a), anenth
S Giali]).

e y = a[7]. Reads iny the item at index: in the arraya containing A; can prove that he shifted the arrays and did not simply regplac
N shared secrets. Can be implemented with arithmetic ¢&ais-  them with new arrays, by generating an interactive zero kadge
ing N equality testsy = Zf":l((m == 1) * a[i]). [24, 25] gave  proof. The zero knowledge proof is based on generating afskt o

Oj,i = |Ej([a1]; + [21];), -, Ej([an]; + [2n]5)] <<< [2]s

where[z]; is A;'s share ofr and<<< [z]; denotes rotational shift
with [z]; positions. In the case of MPCs based on homomorphic
threshold encryptiorE, the mixnet is run on ciphertexts (operations
remain the same but without involving shares):

O; = |E(a1 +0), ..., BE(an + 0)| <<< [z];



additional claims, consisting of vectors obtained witHeti#nt~ and
different shifts.

Cjx = |E;([ar]j+[21];), - Ei(lan]i+[eh]i)| <<< s,k = [1..K]

The verifiers specify a challenge hit for eachk. For bitsc, = 0,
the prover reveals” and all shares of*, showing that the claims
C.  are a rotation of the input. For bits, = 1, the prover reveals
s* — [z]; and all shares of — z*, showing that the claim is a rotation
of the output.

At the end of the mix-net, the last agent in the chain broadalb

encrypted shares i@. :[1] and each participant decrypts its shares

obtaininga[z].

Write at a secret index To perform the operation[z] = y where

a is an array ofN shared secrets, one can use a bidirectional mixnet

related to the one proposed in [29]. In Phase 1, each paatitif;
encrypts his sharefa];, .., [an]; of the elements of using a ho-
momorphic encryption schem@; for which it holds the secret key
and which allows for applying+ ) on its plaintext. All shares are
then passed through a mixnet formed by thearticipants holding
shares oft. EachA; generates a vectarof N random sharings of
zero, and then for each input:

Li; = |E;([a1];), -, Ej ([an]s)]
computes the output (to be sent to the next agent)
0i,; = |Ej(la1]; + [z1]))s -, Ei(lan]s + [en]5)] <<< [2]i

where[z]; is A;'s share ofr and << < [z]; denotes rotational shift
with [z]; positions towards the left.

Atthe end of the mix-net, theé" participant in the chain obtains as
O.:[1] the encrypted shares ofz]. Now each participantl; sends
to A, its share ofy encrypted withZ;, and A, replace0; ;[1] with
E;(lyl;).

In Phase 2, the mix-net is now run in the reverse directiof wit
O..: as input. Each4; generates a vectar of N random sharings
of zero, and then for each input:

I = |Ej([a1];), -, Ej([an]y)]
computes the output
05 = |Ej([a1]; + [21]); -+ Ej([an]; + [2n]5)| >>> [2]i

where[z]; is A;'s share ofx and>>> [z]; denotes rotational shift
with [z]; positions towards the right. The resul, ; is the result
vectora.

A; can prove that he shifted the arrays and did not simply replac
them with new arrays, by generating an interactive zero kedge
proof. This proof also shows that the rotation is with the earam-
ber of positions and in the reverse direction as the first @h@ike
zero knowledge proof is based on generating a set afdditional
claims, consisting of vectors obtained with differehtand the shifts
of the corresponding claims at the first phase.

Cik = |Bj([a]i+[21))), s Bi([an)i+12R15)] >>> 8"k = [1.K]

The verifiers specify a challenge kit for eachk in [1..K]. For bits
cr, = 0, the prover reveals® and all shares of andz'", showing
that at both phases the claird,. andC’ , are a rotation of their
inputs. For bitsz, = 1, the prover reveals” — [z]; and all shares of
z— 2" andz’ — 2’*, showing that at both phases the claifiis. and
Cj,* are rotations of the output.

3.3 Efficient arithmetic circuit

Here we show a compilation of the stable marriages probléman
standard arithmetic circuit simulating the solution of 13

The Algorithm 1 is equivalent to a circuit of size §¢). The arith-
metic circuit in Algorithm 2 follows more exactly the Galdv&pley
and makes usage of array access for two of Ahdactors, in the
asymptotic complexity.

algorithm SM-GS-AC2(prefM, prefW)
m=SHUFFLE(prefM);
for (i = 0;i < N?; 4+ + i) do
for (k = 1;k<N;+ + k) do
| freelk] = (wifelk]==0);
m = firstInArrayldz(free);
match = (m # 0);
nIndex = proposed[m)] + 1;
proposed[m] = (match)?mIndex : 0,
w = (match)?pref M [m][nIndez| : 0; // select woman
H = (match)?h[w] : 0;
prefC = (match)?prefCrt[w] : 0;
prefN = prefW[w][m]; /I this is expensive ;
match = ((H!=0)&& (prefN < prefC))?0 : match;
prefCrtw] = (match)?prefN : prefC,
h[w] = (match)?m : 0;
wife[H] = match?0 : wife[H];
| wife[m] = match?w : 0;
UNSHUFFLE(wiferr); /I apply on vector wife the inverse
| permutation ofr; vector h can be recomputed from wife

Algorithm 2: Version of Algorithm 1 similar to Gale-Shapley

4 DisCSP Models for Stable Marriages Problems

We employ the distributed CSP framework, aiming to model effi
ciently (i.e. with a reduced search space) the distributibsome
famous CSP problems, namely the stable marriages probE&ass.
cally we argue to the return to a more CSP-like framework \@hmer
direct association of the secret constraints to agentsjisined. Such

a setting is enabled by secret sharing. The relation betweerets
and participants is relevant at computation steps that aigde the
CSP solution (during secret sharing and secret recon&in)ct

Stable Marriages The stable marriages problem is the problem of
finding a set of matches between a set of femalgs,..., A,,, and

a set of malespBu, ..., By, such that if any person from the set of
females,A;, prefers some mald3;, to the partner selected for her,
then B; prefers his current partner td,. If any male,B;, prefers
some femaleA;, to the partner selected for him, thely prefers her
current partner td3;.

The stable marriages problem is an instance of stable match-

ings [30] that can be modeled with a lower number of variabkes
way of modeling the stable marriages problem as a CSP is te hav
one variablez; for each femal& specifying the index of the male
assigned to her by the solution. The constraints are olatdigeore-
processing the input of participants about their prefeesndhe fact
that a persom; prefersB,, to B, is specified by the boolean constant

At the end of the mix-net, the last agent in the chain broadcas (input) P4, (u, v). The fact thatB; prefersA,, to A, is specified by

all encrypted shares i@, ; and each participant decrypts its shares

obtaining the resuld.

3 Or male. Then, everything is defined symmetrically.



sharedsecrex [0..N] > proposed[N+1](0);
sharedsecrex [0..N] > prefCrt[N+1](0);
sharedsecrek [0..N] > wi fe[N+1](0);
sharedsecrek {0,1} > free[N](1);
sharedsecrex [0..N] > h[N+1](0);
sharedsecrek {0,1} > cont;
sharedsecrek {0, 1} > test, match;
sharedsecrex [0..N] > w;

sharedsecrex [0..N] > prefC,prefN;
sharedsecrex [0..N] > H;

int<;

int j;

int k;

algorithm SM-GS-arithmetic-circuit (prefM, prefW)
sharedsecrek [1..N] > prefM[N][N];
sharedsecrex [1..N] > prefW|[N][N];
m=SHUFFLE(prefM);

for (i = 0;i < N%;+ +1i) do

for (j = 1; j<N;+ + j) do

cont =1 — (wife[j]==0);

/I previously proposed woman, by man index, aliied to O
/I preference for fiance, by woman index, initizdd to O
/ current fiancee, by man index, initialized to 0
/ current fiancee, by man index, initialized to 0
/I current fiance, by woman index, initialized to O
/I bool: does the current man get engaged to his next prefefen
/I bool: intermediary test
/I the woman currently addressed
I preference of current woman for her fiance, resp. for nandidate
/I previous fiance of the current woman
/I current round
// index of man currently proposing
/I counter

/I the men’s preferences in order
/I the women's preferences by man index, bigger istée

/I shuffle matrix prefM, by a secret randpermutationr on its first index

//'if already engaged then skip this man
[ try next woman
/Il selected woman among those willing
I prefW[w][H]

[/l This loop can be replaced with array access for k=w

1.1 proposed[j| = (cont)?proposed|j] : proposed[j] + 1;
w = (cont)?wifelj] : prefM]j][proposed[j]];
H = h[w];
prefC = prefCrt[w];
for (k = 1; k<N;+ + k) do
test = (k == w);
1.2 cont = cont?cont : (test)?((H'=0)&& (prefWk][j] < prefC)) : 0;

hlk] = (cont||(1 — test))?h[k] : j;
for (k = 1; k<N;k + +) do
| wife[k] = (cont||(k!=H))?wife[k] : 0;

| wifelj] = cont?wifelj] : w;

| UNSHUFFLE(wiferr);

Il prefCrt[w] = (cont)?prefCrt[w] : prefW[w][j
prefCrtlk] = (cont||(1 — test))?prefCrilk] : prefW[E][j];

i.e., update preference of w
Il prefCrt[w] = (cont)?prefCrt[w] : prefW[w][j]
Il h[@] = (cont)?h[w] : j i.e., setfiance of wtoj

Hwife[H] = cont?wife[H] : 0 i.e., set fiancee of Hto 0

/I set fiancee of j to w

I/l apply on vector wife the inverse permutationmfvector h can be recomputed from wife

Algorithm 1: Stable Marriages: arithmetic circuit for thel®-Shapley algorithm (two circuits, selected with fineixtratherthantry_next).

the boolean constant (inpuB, (u, v). There is a constraint’’ be-
tween every pair of variables; andz;. In first order logic notation,
the constraint between each two variablegndz; is:

def

Vai,zj 0 ¢ (e xy) F (Pag(zj,2:) = Pa, (5,9) A

(PAj (ziyz5) = PBzi (4,7)) A
(z: # ;) @)

In this formulation, the preferences of an agent do not resnéy
require a total order on the possible spouses, naturallyetimaglties,
incomplete lists, etc. Note that a total order is part of thenmon
definition of the stable marriages problem [13, 37].

It is possible to extend the stable marriages problem to &se c
with an unequal number of males and females. In this casenibe
modeled either:

e as a usual instance of the stable matching problem [30], ovith
variable for the partner of each participant, each parictpub-

licly preferring to be alone rather then with somebody ofshene

type, or

with variables only for females (or males), where the vdaab
have an additional value, 0, for specifying that the paptiai re-

mains single.

For the second case, there is a global constraint:

def

V6,¢(6) (Vi7k : ((k 7é 6\{1'1‘}) A PAi (k76\{xi})) =
((k #0) A (F7 2 (€ga;y = k) A P (4,9)))) A

(Vq, b €{ay} # €{ar}) )

The main complication with this kind of CSPs is that the con-
straints are functions of secrets that cannot be easilytegdidrom
the participants. Distributed CSP frameworks are meantdtiress
such problems.

4.1 DisCSP Benchmark: Stable Marriages

Modeling the stable marriages problem with DisCSPs with se-
cret constraints that are known to some agents (e.g., AAS cap
One can model the stable matching problem with secret cnssr
known to some agents [45, 34] by choosing as variahbles, ., zm,
the index of the partner associated to each agent (that has to
computed) and using one additional boolean variable foh eae
cret preferencepPa, (u,v). The total number of boolean variables
is m3, m? of them being actually fixed by public constraints (e.g.
P4, (u,u) = 0). However, also taking into account the variables



@1, ..., Tm, the total search space becom@gm™2™"). This is The constrainy’’/ between every pair of variables andz;, is

O(2") times worse than the centralized CSP formalization whose€fined as in qua:tlon 1. The output functions foe [1..m] are

search space is only @(™). defined aso;i(e) = €(,,;. Namely, each female learns only the
index of the husband proposed to her. To return to each male;
the identity of the spouse proposed the him, the correspgralitput

iS omti < {k|z, = i}.

4.2 Using MPC-DisCSP

In the previous part of this section we have exemplified CSBeiso There is a public constraint:

for the stable marriage problem. We have seen that it is diffio et

model efficiently these problems using existing privatdalale-, or $o = Vi,j,Ti # T (3)
private constraint- oriented distributed constraintsfatition frame-

works.

Let us use a framework for modeling distributed CSPs, where a5 Private Stable Marriages Solutions

constraint is not (necessarily) a secret known to an agefiioic,  Theorem 3 Stable marriages problems can have several solutions.
but can also be a secret unknown to all agents. We have irteodu

such a framework in [30]. We refine it here by removing the fe8U  proof. Namely take four agents withPa,(1,2), Pa,(2,1),
ment that inputs come straight from participants and thgtats are  p,, (2, 1), P, (1,2). q.ed. o

revealed directly to participants, since this forbindsesaghere the

solution of a CSP is just part of a chain of intermediary cotapu If there exist several solutions, the agents will prefertoateveal
tions that can comprise several CSPs (such as in auctionshel ~more then one of them. The remaining solutions would onlgagv
new framework, secret inputs are assumed already sharegravia ~ More secret preferences:

ous step, and are not associated to a participant. Outpritdsay de-
livered in shared form, and are not necessarily revealedriebody
immediately, but can be feed as inputs in other secure catipos.

e Typically there is no other fair way, except randomness,reak
the tie between several solutions.
e |f the single solution that is returned is selected as thé ding

Definition 1 A MPC Distributed CSP (MPC-DisCSP) is defined in some given lexicographic order on the variables and dosai
by six sets 4, X,D,C, I, O) and an algebraic structureF of the problem, then additional information is leaked conogy

A={Ay, .., A} is a set of agentsX, D, and the solution are de- the fact that tuples placed lexicographically before thggested
fined like for CSPs T solution do not satisfy the constraints [26].

1 is a tuple ofa shared secret inputs (defined 1. Each input/
belongs taF'.
Like for CSPs(' is a set of constraints. There may exist a public

constraint inC' ¢o, defined by a predicaig (¢) on tuples of assign- ¢ Finding and returning all solutions using the technique2i{ or
mentse. However, each constraint;, i>0, in C'is defined as a setof 4 Returning only the first solution (e.g. by sequentially dtieg

known predicate; (¢, I) over the secret inputs, and the tuples each tuple in lexicographical order until a solution is fdun
of assignments to all the variables in a set of variablgs X; C X.

O={o1, ..., 0.} is the set of outputs. Let be the number of vari-  Otherwise, strong privacy requirements make techniquesniag
ables.o; : D1 x ... x Dy, x I — F'is a function receiving as  a random solution [26] desirable, despite their potentidiaving a
parameter a solution and the inputs and returning a secrépaiu  lower efficiency.

(from F).

As it follows, if it is known that a certain problem has onlyeon
solution, then any technique is acceptable among either:

The following theorems of [30] apply because this framewisrk 5.1 General Scheme

more general (less specified) that the framework definecther We will note that the main difference between the MPC-DisCSP

. _ framework, and the DisCSPs with secret constraints thakaoe/n
Thegrem 1 The frarnework in Fhe Definition 1 can model any o some agents, is that now the constraints need to be cothgyte
d|st|.r|buted constraint satisfaction problems with prigacon- namically from secrets inputs.
straints [34]. The techniques solving DisCSPs with private constraints lma
. . o used as a black box, except for sharing and reconstructigps st
Theorem 2 Theframework inthe I?eflanlon 1can model distributed Namely, instead of simply sending encrypted Shamir shafreaeis
constraint satisfaction problems with private domains][41 constraint, those shares of the constraints have to be deohfrom
the secret inputs of the agents. We replace the sharing aodseuc-
Modeling the stable marriages problem as a MPC-DisCSP. To tion with with simulations of arithmetic circuit evaluatiavhich will
model the stable marriages problem as a MPC-DisCSP, onerhas @ompute eachby (e, I) for each tuples and for the actual inputs.
agent,A;, for each female participam; in the problem description.  This step is calleghreprocessing
Each participan3; is mapped to an agent,, ;. One hasn vari- Similarly, instead of just reconstructing the assignmeatsari-
ablesx1, ..., z.,, modeling the partners of the agents, ..., A,,. z; ables in a solutior, one has to design and execute secure computa-
specifies the index of the spouse assigned {dy the solution, or  tions of the functionsy (¢). This step is callegost-processing
specifieq), if she remains alone. The inpuksare given by the set of AssumeA is some algorithm using Shamir’s secret sharing for
preferences4, (u, v) and Pp, (u, v), specifying whetherl; prefers  securely finding a solution of a CSP (with secret constraintsvn
B, to By, respectively whetheB; prefersA, to A,, for eachu and  to some agents). The generic extension of the algorithio solve
v. The setF’ for inputs and outputs i§true, false}. problems in the MPC-DisCSP framework is:



e Preprocessing:Share the secrets inwith Shamir’s secret sharing
scheme. Compute eaehy (¢|x, , I) for each tuplec x, and for
the actual inputd by designing it as an arithmetic circuit and
simulating securely its evaluation. The public constraintcan
be shared by any agent.

e Run the algorithmA as a black-box, for finding a solutiogx

shared with Shamir’s secret sharing scheme, for a CSP with pa b

rameters (i.e. constraints) shared with Shamir's secratirs
scheme.

e Post-processingCompute each; (ex) by designing it as an arith-
metic circuit and simulating securely its evaluation. Rdvhe re-
sult of o; (ex) only to A;.

5.2 Pre- and post- processing for stable marriages
problems

In the remaining part of the article we will prove that it isgsible
to design the needed preprocessing and post-processioty&oair
example of DisCSPs: stable marriages, using the generahszhe-
fined above.

Preprocessing for the stable marriages problem. Some simple
arithmetic circuits can implement the preprocessing fa stable
marriages problem.

6 DisCSP Model based on Global Constraints

It can be noted that since in Equation 2 the variables aretioned
to take distinct values, the arithmetic circuit can be \eritin a simple
equivalent form:

(e, ur), ooy (Teyp, un)) =
0, whenu;=u; andu; # 0
[T, (1 — Pa, (0,us)) = otherwise
H?:l,k;ﬁui(l — Pa, (k,ui)*
(=30, (Pe, (D))

The total number of multiplications needed to construcs tibbal
constraint isO(mn™""), namelymn multiplications for each of the
n" tuples. A public constraint for this problem is:

¢0(<&751,U1>, ) <x€n,un)) = { (1): \(/)\It?](é?\xllseuj andu 70
Search Space size for DisCSP modelsNote that the complexity
analysis here is based on the assumption of using only baditan
and multiplication secure primitives. It can be easily shawat by
using other primitives, such as first-in-array, CSPs areatié in a
linear number of rounds [8].

Each variablex; specifies the index of the male associated to Fora problem with size of the search sp&eandc constraints, the

the femaleA;. The input of each femalel; specifies a prefer-
ence valuePy, (j, k) for each pair of males(B;, By). Each male
B; specifies a preference values, (j, k) for each pair of females
(Aj, Ar). Pa,(j, k)=1if and only if A; prefersB; to By. Other-
wise Py, (4, k)=0. Ps, (j, k)=1if and only if B; prefersA; to Aj.
Otherwise Pz, (5, k)=0. A constrainte™ is defined between each

number of messages for finding all solutions with securertiegtes
similar to the one in [20] is given byc — 1)© multiplications of
shared secrets:(n—1) messages for each such multiplication).
For the stable marriages problem modeled with the MPC-DIBCS
framework, ©=m™ and c=1 for the version with a single global
constraint, Orc:m2/2 for the version with binary constraints. For

two variablesz; andz;. ¢*/[u, v] is the acceptance value of the pair the case with binary constraints, it yields a complexityxgin™*?).

of matches{A;, B.), (A;, By). One synthesizes.(m — 1)/2 con-
straints:

0 ifu=vo
¢l v] (1= Pa,(0,0) % (1— Pa, (1))
(I - Pa,(u,v)* (1= Pp,(1,7)) ifu#v

As mentioned before, the preprocessing has compléxjiy.*) mul-
tiplications between shared secrets, resulting in a taiadptexity
O(m?(m™ +m?)).

Solving the same problem with the same algorithm but mod-

eled with the classic DisCSP framework with private constsa
0 =m™2™ andc = m, for one global constraint from each agent.
There is no preprocessing, but the total complexi'@(mm“QmS ).

. . m3
The public constraind, (same as in Equation 3) restricts each pair 1€ MPC-DisCSP framework behaves better since<< 2™ .

of assignments:

Ve, e=((wi, u), (25,)) : dole) = (u # v)

specifying that it is not possible for two persons to be aiséed to
the same spouse in a solution.

Post-processing for the stable marriages problem. The stable
marriages problem requires a post-processing phase touterapd

reveal to each male the spouse proposed to him. Remember thaj,

the variables specify only the spouse for each female. Thetifon

ompi & {k|xr =i} can be computed with the following arithmetic
circuit.

m

Om+i = Z((:ck ==1)?k : 0)

k=1

An implementation for this constraints, written as classigs
ment by students in Spring 2005, is available online at [19].

The comparison is similar for other secure algorithms, MEC-
DisCSP1 [26] whose complexity is given B dm(c+m)©) multi-
plications between shared secrets.

7 Conclusions

DisCSPs [4, 38, 18, 44, 11, 23] are a very active research Brea
vacy has been recently stressed in [2, 12, 39, 10, 43] as aoriam
goal in designing algorithms for solving DisCSPs.

In this article we have investigated how versions of an old fan
us problem, the stable marriages problem [13, 37], cabed
such that the privacy of the participants is guaranteedmoewhat
is leaked by the selected solution. Techniques for this Iprokare
currently applied to college admissions and medical irgerssign-
ments in US. Our technique uses secure simulations of agtibm
circuit evaluations.

We note that the stable marriages problems can be modeléd wit

existing distributed constraint satisfaction framewoitist not very
efficiently. We have therefore stressed the advantageseofhC-
DisCSP distributed constraint satisfaction framework tizan model



such problems with the same search space size as the clessilc
ized CSP models. Fan participants in the stable matching prob-
lem, the size of the search space in the DisCSP model achigtied
MPC-DisCSP isD((m/2)™/?) while the previous framework with
private constraints yields DisCSP instances with a sizé@&earch
space 00(m7”2m3 ). In certain existing secure algorithms for solv- (22]
ing DisCSPs, the number of exchanged messages is fix andlylirec
proportional to the search space size. In other algoritiesnum- 23]
ber of rounds is constant but the size of the messages is izl
to the search space. This explains the importance of theo§ittee
search space in an obtained CSP model. Both mentioned tjpes o (24]
cure algorithms offering requested t-privacy make thisperty of a
problem instance particularly relevant. [25]
A more efficient solution (but selecting solutions with non-
uniform randomness) is proposed with an arithmetic cirsuntulat- [26]
ing the Gale-Shapley algorithm on a shuffled version of tiobdiem.

[21]

Its complexity isO(n?). [27]
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