
Modelling Transition Constraints

Roman Barták

Charles University in Prague, Faculty of Mathematics and Physics
Malostranské námestí 2/25, 118 00 Praha 1, Czech Republic

bartak@kti.mff.cuni.cz

Abstract. Scheduling problems belong to a very successful application area of
constraint programming partially thanks to many specialised global constraints
defined for scheduling problems. In the paper we propose a concept of the
transition constraint that is used to model a state change in resources. We
describe and compare three models of the transition constraint. These models
have been implemented and tested in the scheduling engine of Visopt
ShopFloor system.

Introduction

Scheduling is a successful application area of constraint programming because a
scheduling problem can be naturally modelled as a constraint satisfaction problem and
many specialised constraints support such modelling and solving. A traditional
scheduling problem is defined by a set of activities with precedence constraints and
by a set of resources with capacity limits. The task is to allocate the activities to
available resources respecting the precedence and capacity constraints (and
minimising or maximising a given objective function). In most current scheduling
systems, the resources are rather simple, usually only a capacity limit is used to
describe the resource. In some systems, set-up times are assumed between the
activities, i.e., a time gap must be inserted between two activities allocated to a single
resource. In more complex industries, like chemical, pharmaceutical, and food
enterprises, the resources are becoming even more complex and resource-centric
models are more suitable to describe scheduling problems in such industries [1,2]. In
particular, a complex transition scheme is given to describe behaviour of the resource.
Such transition scheme defines allowed transitions between the activities and
repetitions of the activities. For example, an activity of type B may follow an activity
of type A but not the activity of type C and at least two activities of type B and at
most five activities of type B can be processed in a sequence. Note that such transition
scheme cannot be fully modelled using the standard concept of set-up times, where a
long set-up time (or large cost) is used to describe the forbidden transition. Long set-
up time does not forbid the transition, it makes it only less usable (depending on the
objective function). Moreover, set-up times do not provide a mechanism to describe
limited repetition of activities. Therefore, we propose a special transition constraint
that is able to model fully the above transition scheme. This constraint has been
implemented in the Visopt ShopFloor system [5] and as far as we know, it is the only

2

system that can cover such complexity of resources. In [6], Beck and Fox proposed a
model for alternative activities that could be used to model the above transition
scheme. However, this model requires introduction of all the alternative activities in
the form of a process plan. As we argue in [2], it is less suitable when the number of
alternative branches is large.

In this paper, we describe three models of the transition constraint. First, we sketch
the problem area in more details. Then we explain the basic ideas behind the slot
representation of resources and finally, we describe and compare the models of the
transition constraints. Due to time reasons, we do not provide a precise comparison of
the models - the informal comparison is based on our experience with real-life data.

Problem Area

Visopt ShopFloor is a generic scheduling system designed to address complex
problems where traditional scheduling techniques failed [1,5]. A typical feature of our
problem area is using resources (machines) with complex behaviour. This behaviour
is described using states and transitions between the states. At each time, the resource
can be at one state only or the resource is in the transition between two states (we
allow transition time to be assigned to each transition). The transition scheme is
typically described by a directed graph (Figure 1) or by a transition table (Figure 3).
Note that using this general concept we can model set-ups, changeovers etc. either
using transition times or using states. The set-up states are useful, if these states are
connected to other resources. For example, if some by-product is produced during the
set-up or if a worker (another resources) is required to do the set-up. Still, at the
modelling level set-up states are handled like all other states. The number of states in
the resource is not limited; some resources have just one state, in other resources the
number of states can be very large (tens to hundreds).

Fig. 1. A simple transition scheme for the resource.

Currently, we concentrate on batch production primarily so the schedule of the
resource is described by a sequence of non-overlapping batches1. Each batch belongs
to one of the resource states. The user may also restrict the length of the batch
sequence in given state. For example a minimal number of five batches and maximal
number of ten batches of some state S can be in sequence. It means that we cannot
change the state S of the resource until at least five batches of this state are processed
and we have to change the state S to another state (following the transition scheme) if
ten batches of the state S have been processed.

1 Continuous process can be decomposed into a sequence of batches.

loading

heating unloading

cleaning

cooling

3

Slot Representation

Traditional scheduling systems use a task-centric model of the problem where the
activities are grouped per task. Because, the resources in our problem area are more
complex than the traditional "capacity-only" resources, we prefer a resource-centric
model [1] in the Visopt ShopFloor system, i.e., the activities are primarily grouped by
the resource. We will use the word batch instead of activity in the following text.

The resource centric model is realised via slots. Slot is a shell filled by a batch
during scheduling. For each resource we have a chain of slots and during scheduling
these slots are being filled by batches. The difference from slots in timetabling is time
location of slots. In timetabling, the slots represent fixed time intervals. In the Visopt
solver, the slots may slide in time. Still, the order of slots is fixed but the slots may be
shifted in time, e.g., if the slot is moved to later time then all the successive slots must
be moved as well (Figure 2).

Fig. 2. Slots can move in time provided that the ordering of slots is preserved

The details about slot representation can be found in [2,5], we extract here only the
slot parameters necessary to model the transitions. The batch type - state - that can be
filled to the slot is described by a finite domain (FD) variable state. The constraint
binding the state variables of two consecutive slots describes naturally the allowed
transitions. In complex transition schemes, we need to restrict repetition of states in
the slots. Therefore, we introduce a FD variable serial_number that indicates a
relative position of the batch (in given slot) in the longest continuous sequence of the
batches of the same state (see Figure 3).

Fig. 3. Serial numbers in slots indicate the position of the batch (slot) in the sequence of slots
of the same state.

In many problems, the maximal number of batches is not restricted for some states.
Typically, set/up, cleaning, maintenance, and similar states have upper limit for the
number of batches (usually, it equals to one), while processing states have no upper

state = 1
serial = 1

state = 1
serial = 2

state = 1
serial = 3

state = 2
serial =1

state = 2
serial =2

state = 1
serial =1

State MinBatches MaxBatches NextStates

1 3 4 2

2 1 2 1

Required state
change

Possible but
non-required
state change

time shift

Before

After

4

limit (but usually they have the lower limit greater than one for technology reasons).
Because, we are generating schedules for a fixed time horizon [5], we can estimate
the maximal number of batches of given state in the schedule, e.g., by dividing the
schedule duration by the batch duration. Thus, we can expect that the maximal
number of batches is finite (i.e. different from supreme) for all the states.

It may seem that if we assume the maximal number of batches to be either one or
supreme2 then we can use a simple transition scheme without constraints restricting
repetitions. Simply, the minimal number of batches of state S can be modelled as a
single batch of newly introduced state S' such that S must be preceded by S'. Maximal
number of batches of this newly introduced state S' equals one. After batch joining,
the minimal number of batches equals one in all the states. If maximal number of
batches equals one then the transition to a different state is forced.

However, such batch joining works just for one resource. Note that the batches of
different resources are also connected e.g. using supplier-consumer dependencies. If
we introduce a new "joined" batch then it is not clear how the batches should be
connected (see Figure 4). Thus, we really need to model a transition scheme in its
generality.

Fig. 4. Batch joining cannot substitute fully the general transition scheme because it is not clear
how the joined batch is connected to batches in other resources (dashed lines).

Constraint Models

Basically, the transition constraint connects the state variables and the serial numbers
of two consecutive batches (slots) in such a way that the transition scheme is fulfilled.
Because the user defines the transitions between the states we must be ready to cover
an arbitrary state transition relation. In [3,4], we proposed filtering algorithms for
general binary constraints, we call them tabular constraints, and these algorithms are
used in the transition constraint as well. Note also that the tabular constraint is used to
model the relation between the state and the minimal number of batches and between
the state and the maximal number of batches.

In the following paragraphs, we describe three different models of the transition
constraint. All of these models use some form of the tabular constraint.

2 This is a frequent case but still many real resources do have a general transition scheme.

Original sequence

Sequence after
batch joining

Connection to batches
in other resources

5

A basic logic model

The simplest model of the transition constraint describes the state transition and the
repetition restriction separately using the tabular constraints. For simplicity reasons,
we use a meta-formulation of the constraints where the tabular constraint is integrated
to existing primitive constraints like implication and comparison. Nevertheless, it is
not a problem to separate the constraints using auxiliary variables, i.e., to follow the
syntax of a particular underlying solver.

First, we define the state transition constraint via the tabular constraint. Basically,
it is a general binary constraint with the domain defined using the table NextStates.
The index of the variable indicates the ordinal number of the batch (slot).

statei+1 in {statei} ∪ NextStates(statei)

Now, we can define how the serial number changes in the next batch (slot). Simply, if
the states in the batches (slots) are identical then the serial number is increased,
otherwise the serial number is set to one (we are starting to count batches of another
state). Because exactly one of the preconditions of the following implications holds,
one of the conclusions must hold as well (constructive disjunction can be used there).

statei=statei+1 ⇒ serial_numberi+1 = serial_numberi+1
statei≠statei+1 ⇒ serial_numberi+1 = 1

Finally, we need to connect the serial number and the state variable in each batch to
model the repetition restriction. The serial number cannot be greater than the maximal
number of batches of given state, this can be modelled using a tabular constraint,
where the table MaxBatches describes the relation. A similar table MinBatches
describes the lower limit for the number of batches. If the serial number in the batch
(slot) is lower than the minimal number of batches then the state in the next batch
must be identical to the state in the current batch.

serial_numberi in 1..MaxBatches(statei)
serial_numberi<MinBatches(statei) ⇒ statei=statei+1

The above model is a straightforward formulation of the transition constraint and if
we have the tabular constraint, such model can be implemented easily. However, this
model suffers from weak domain filtering, i.e., there remain inconsistent values in the
domain of variables. In particular, setting a wrong state in the batch is undesirable.

Fig. 5. A locally (arc) consistent sequence of batches that is not globally consistent - the
seventh batch must be in the state 1.

state = 1
serial = 1

state = 1
serial = 2

state = 1
serial = 3

state = {1,2}
serial = {1,4}

state = {1,2}
serial = {1,2}

state = {1,2}
serial = {1,2,3}

State MinBatches MaxBatches NextStates

1 3 4 2

2 1 2 1

state = 2
serial = {1,2}

1 2 3 4 5 6 7

6

A simple tabular model

The reason for weak propagation in the basic logic model is hidden in separation of
the state and serial number variables. If we look at Figure 5, we can see that in the
batch 6 there is an inconsistent serial number 3. This value is deduced from the value
2 of the serial number in the batch 5 for the state 1. Locally, this is a correct decision,
i.e., all the constraints are locally consistent. The problem is that the serial number 2
in batch 5 belongs to state 2. To keep information about the connection between the
serial numbers and the states we propose to encode the state and the serial number
into a compound serial number. The following formulas can be used to define the
encoding:

(){ } statesiiMaxBatches ∈= maxlog1010separator
compound_serial = separator*state + serial

The complete transition scheme can then be converted into a simple transition table
describing the transitions in terms of compound serial numbers. As we can see at
Figure 6 such table describes state transitions as well as MinBatches/MaxBatches
restrictions. For example the compound serial number 13, that represents a third batch
of state 1, can either go to 14, i.e., to the fourth batch of state 1, or to 21, i.e., to a first
batch of state 2. But, if the compound serial number is 11 or 12 then we can continue
with 12 or 13 respectively so the state is not changed. Note also that the domain
filtering is now complete, i.e., all inconsistencies are removed (Figure 6).

Fig. 6. Conversion of the transition scheme into a transition table for compound serial numbers.

Now, the transition constraint is modelled using a single tabular constraint between
two consecutive compound serial numbers. The state can be decoded from the
compound serial number easily3.

compound_seriali+1 in NextSerials(compound_seriali)
statei = integer(compound_seriali / separator)

3 States play role in other scheduling constraints so the state variable should be preserved. The

serial numbers are used just to model transitions so it is not necessary to decode them from
the compound serial number.

State MinBatches MaxBatches NextStates

1 3 4 2

2 1 2 1

Compound serial NextSerials

11 12

12 13

13 14,21

14 21

21 11,22

22 11

state = 1
cserial = 11

state = 1
cserial = 12

state = 1
cserial = 13

state = {1,2}
cserial = {14,21}

state = {1,2}
cserial = {11,21,22}

state = {1,2}
cserial = {11,12,22}

state = 1
cserial = {11,12,13}

1 2 3 4 5 6 7

7

A compound model

The simple tabular model provides a complete domain filtering for the transition
constraint. It is also easy to implement it provided that we have a tabular constraint.
Unfortunately, in large-scale real-life problems, the size of the induced transition table
for the compound serial numbers can be very large. Assume that we have 300 states
and the maximal number of batches per state is slightly less than 1000. Then, the
induced transition table has about 300 000 rows. Moreover the structure of such table
is not very compact so we cannot use the rectangular representation of the domain as
proposed in [4]. Thus we decided to combine the representation using the compound
serial numbers with the intentional model of the transition constraint.

The new filtering procedure uses the original transition scheme, i.e., the tables
NextStates, MinBatches, and MaxBatches. For efficiency reasons, the values in
MinBatches and MaxBatches tables are expressed as compound values, i.e., they
include the state. The filtering procedure computes the induced transition table during
runtime so it does not need to keep the table in memory. Thus, we can achieve the
same pruning as the simple tabular model (all inconsistencies are removed) while
keeping reasonable memory consumption. The following code describes the basic
structure of the filtering algorithm for the transition constraint.

procedure TransitionConstraint(FromState,FromSerial,ToState,ToSerial)
ToSerial := relevant_serials(ToState,ToSerial)
NewFromState := NewToState := NewFromSerial := NewToSerial := {}
for each State from FromState do
Serial := relevant_serials({State},FromSerial)
if nonempty Serial then

NextSerial := increase(Serial,MaxBatches(State)) ∩ ToSerial
if nonempty NextSerial then

 // transition to identical state

NewFromState := NewFromState ∪ {A}
 NewToState := NewToState ∪ {A}

NewFromSerial := NewFromSerial ∪ decrease(NextSerial)
NewToSerial := NewToSerial ∪ NextSerial

 end if
NextSerial := start_serial(NextStates(State)) ∩ ToSerial
if nonempty NextSerial & MinBatches(State)≤max(Serial) then

 // transition to different state
NewFromState := NewFromState ∪ {A}
NewToState := NewToState ∪ NextStates(State)
NewFromSerial := NewFromSerial ∪

 (MinBatches(State)..MaxBatches(State))

NewToSerial := NewToSerial ∪ NextSerial
 end if
 end if

end for
 FromState in NewFromState
 ToState in NewToState
 FromSerial in NewFromSerial
 ToSerial in NewToSerial
end procedure

It may seem that the efficiency of the dedicated filtering algorithm is not as good as
efficiency of the simple tabular model. However note, that the main complexity of the

8

tabular model is hidden in the tabular constraint. Because, the new filtering algorithm
mimics behaviour of the filtering algorithm for tabular constraints described in [3],
there is no significant decrease of efficiency. Additional work done during filtering is
balanced by using smaller and more compact tables compared to the tabular model.

Discussion and conclusions

In the paper, we propose and discuss three models for a special transition constraint
that is useful in modelling complex resources. All these models have been
implemented using the clpfd library of SICStus Prolog [7] and tested in the real-life
scheduling system Visopt ShopFloor [5]. First, we defined the transition constraint
using a general concept of tabular constraints. This concept provides very good
domain filtering but for resources with many states (and many slots), the memory
consumption of such model is unacceptable. Therefore, we returned to a basic logic
model of the transition constraint. Unfortunately, this model does not filter as good as
the simple tabular model (see Figure 5). In fact, missing propagation led to "infinite"
solving times of some real-life problems with restrictive transition scheme. Therefore
we proposed a special transition constraint that mix the advantages of both logic and
tabular models: good domain filtering and reasonable memory consumption. This
compound model is used in the current version of Visopt ShopFloor system. We also
use a variant of the basic logic model there to describe counters over the sequence of
batches [5]. Counter is a generalisation of the transition scheme forcing some
transitions after a given number of batches (perhaps of different states). Thus, the
counter can be used to model maintenance and cleaning batches that typically appear
after a specified number of production cycles; its detail description is out of scope of
this paper.

References

1. Barták, R.: Conceptual Models for Combined Planning and Scheduling. Electronic Notes
in Discrete Mathematics, Volume 4, Elsevier (1999).

2. Barták, R.: Dynamic Constraint Models for Planning and Scheduling Problems.
Proceedings of the ERCIM/CompulogNet Workshop on Constraint Programming, LNAI
Series, Springer Verlag (2000).

3. Barták R.: A General Relation Constraint: An Implementation. Proceedings of CP2000
Post-Workshop on Techniques for Implementing Constraint Programming Systems,
Singapore (2000).

4. Barták, R.: Filtering Algorithms for Tabular Constraints. Proceedings of CP2001
Workshop CICLOPS, Paphos, Cyprus (2001), 168-182.

5. Barták, R.: Visopt ShopFloor: On the edge of planning and scheduling. Submitted to
CP2002.

6. Beck, J.Ch. and Fox, M.S.: Scheduling Alternative Activities. Proceedings of AAAI-99,
USA (1999), 680-687.

7. Carlsson M., Ottosson G., Carlson B. An Open-Ended Finite Domain Constraint Solver.
Proceedings Programming Languages: Implementations, Logics, and Programs (1997).

