
Implementing Propagators for Tabular Constraints

Roman Barták, Roman Mecl

Charles University in Prague, Faculty of Mathematics and Physics*
Institute for Theoretical Computer Science

Malostranské nám. 2/25, 118 00 Praha 1, Czech Republic
{bartak,mecl}@kti.mff.cuni.cz

Abstract. Many real-life constraints describing relations between the problem
variables have complex semantics. It means that the constraint domain is
defined using a table of compatible tuples rather than using a formula. In the
paper we study the implementation of filtering algorithms (propagators) for
such constraints that we call tabular constraints. In particular, we propose
compact representations of extensionally defined binary constraints and we
describe filtering algorithms for them. We concentrate on the implementation
aspects of these algorithms so the proposed propagators can be naturally
integrated into existing constraint satisfaction packages like SICStus Prolog.

Introduction

Many real-life problems can be naturally modeled as a constraint satisfaction problem
(CSP) using variables with a set of possible values (domain) and constraints
restricting the allowed combinations of values. Quite often, the semantics of the
constraint is well defined via mathematical and logical formulas like comparison or
implication. However, the intentional description of some constraints is rather
complicated and it is more convenient to describe them extensionally as a set of
compatible tuples. A relation between the type of activity and its duration or the
allowed transitions between the activities are typical examples of such constraints in
the scheduling applications [1,2]. The constraint domain is specified there as a table
of compatible tuples rather than as a formula, thus we are speaking about tabular
constraints. Figure 1 shows an example of such a tabular constraint.

X Y
1 2..20, 30..50
2 - No compatible value
3 inf..sup No restriction on Y
4 2..20, 30..50

Fig. 1. Example of a tabular constraint: a range of compatible values of Y is specified for each
value of X.

* Research is supported by the Grant Agency of the Czech Republic under the contract no.

201/01/0942.

In this paper we study the filtering algorithms (propagators) for binary constraints
where the constraint domain is described as a table. We propose two new filtering
algorithms that use a compact representation of the constraint domain. Such a
compact representation turned out to be crucial for the efficiency of algorithms
applied to real problems with non-trivial domains containing thousands or millions of
values. Rather than providing a full theoretical study of the algorithms we concentrate
on the practical aspects of the implementation, which are usually omitted in research
papers. In particular, the algorithms are proposed in such a way that they can be easily
integrated into existing constraint solvers.

The paper is organized as follows. First, we give a motivation for using tabular
constraints and we survey existing approaches to model such constraints. Then we
describe two new filtering algorithms for tabular constraints. These algorithms extend
our previous works on tabular constraints [3,4] by including better entailment
detection and by using a more compact representation of the constraint domain. We
also propose the algorithms for converting tables to the compact representation. We
conclude the paper by an empirical study of the algorithms.

Motivation

Our work on filtering algorithms for tabular constraints is motivated by practical
problems where important real-life constraints are defined in the form of tables. In
particular, this work is motivated by complex planning and scheduling problems
where the user states constraints over the objects like activities and resources. In
complex environments, there could appear rather complicated relations between the
activities expressing, for example, transitions between two activities allocated to the
same resource like changing a color of the produced item [1]. Typically, the activities
are grouped in such a way that the transitions between arbitrary two activities within
the group are allowed but a special set-up activity is required for the transition
between two activities of different groups. The most natural way to express such a
relation is using a table describing the allowed transitions (Figure 2).

Fig. 2. A transition constraint expressed as a table of compatible transitions (shadow regions)
between eight activities grouped into four groups A, B, C, and D.

As we showed in [2], there are many other constraints of the above type in real-life
planning and scheduling problems, for example a description of the time windows,

B→C

A→A

A
→

B

C→C

D→A

D→C

C→D

A

B

C

D

A B C D

F
R

O
M

TO

duration, and the cost of the activity. The users often define such constraints in the
form of a table describing the set of compatible pairs. Therefore, we are speaking
about tabular constraints. Because it is rather complicated to convert such a table into
a mathematical formula defining a constraint with efficient propagation, it is more
convenient to use special filtering algorithms handling the tabular constraints directly.
Efficiency of such filtering algorithms can be improved by exploiting information
about the typical structure of the constraint domain in a given application. For
example, we have noticed that the structure of many above mentioned binary tabular
constraints consists of several possible overlapping rectangles (see Figure 2) and the
number of such rectangles is much smaller than the number of compatible pairs.

Related Works

Arc consistency (AC) or, in other words, propagation over binary constraints is
studied for a long time and many AC algorithms have been proposed. Since 1986, we
have the AC-4 algorithm [16] with an optimal worst-case time complexity. The
average time complexity of this algorithm has been improved in its followers like
AC-6 [6] and AC-7 [7]. All these algorithms are fine grained in the sense that they are
working with individual pairs of compatible values – they use so called value based
constraint graphs. Moreover, these algorithms need “heavy” data structures to
minimize the number of consistency checks. These features complicate
implementation and make the algorithms impractical due to a space complexity when
large domains of variables are used. Therefore, an older but a simpler algorithm AC-3
[14] is used more widely in the constraint packages like SICStus Prolog, ECLiPSe,
ILOG Solver, CHIP, Mozart etc. Actually, a variant of this algorithm that is called
AC-8 [12] is used by these systems. AC-8 uses a list of variables with the changed
domain instead of the list of constraints to be revised that is used by AC-3.

Recently, the new algorithms AC-3.1 [20] and AC-2000/2001 [8] based on the
AC-3 schema have been proposed. AC-3.1 and AC-2001 achieve an optimal worst-
case time complexity without using heavy data structures. However, they still require
the data structures for individual values in the variables’ domains which could
complicate their usage for very large domains due to a space complexity.

In this paper, we concentrate on filtering algorithms for extensionally defined
binary constraints over large domains. The proposed filtering algorithms are intended
for existing constraint solvers so these algorithms must fit in the AC-3 (AC-8)
schema. To achieve a good time and space complexity of the algorithms, we are
exploiting the structure of the constraint domain. There exist several works about AC
algorithms exploiting the structure of the constraint domain. For example, the generic
AC-5 algorithm [19] achieves better time efficiency for functional, monotonic, and
anti-functional constraints. The paper [11] describes a technique for converting the
extensionally represented constraints into a set of simple constraints.

The existing constraint solvers usually provide a mechanism to model
extensionally defined constraints without necessity to program a new filtering
algorithm. For example, the element constraint is often included in the constraint
solvers. N such element constraints can model arbitrary N-ary constraint. However,

because every consistent tuple must be specified there, it is not possible to represent
the constraints with infinite domains like the constraint from Figure 1.

In SICStus Prolog [17], there is a relation constraint where the user may
specify a binary constraint as a list of compatible pairs similar to the table from Figure
1. In particular, for each value of the first (leading) variable, the user describes a
range of compatible values of the second (dependent) variable. The range is a finite
set of disjoint intervals. The domain for the leading variable must be finite and till the
version 3.8.7 the range for the dependent variable must consist of finite intervals only.

The latest versions of SICStus Prolog (since 3.10.0) provide a generalization of the
relation constraint. This new constraint called case allows compact modeling of
arbitrary N-ary relations similar to our models. We compare empirically our filtering
algorithms both to relation and case constraints later in the paper.
Unfortunately, the filtering algorithms behind the relation and case constraints
are not published which prevents a deeper comparison of the techniques.

In [4] a straightforward filtering algorithm called general relation was proposed.
This algorithm supports infinite domains for the dependent variable and it provides a
mechanism to detect constraint entailment when the reduced constraint domain has a
rectangular structure [3]. Later in the paper we describe an efficient extension to this
algorithm that uses a more compact representation of the constraint domain.

In [5], a new technique called sweep was proposed to explore constraint domains.
This technique was applied to tabular constraints in [3]. The sweep filtering algorithm
represents the constraint domain using a rectilinear rectangular covering – a set of
possibly overlapping rectangles – so the representation is more compact. However,
this algorithm has no mechanism to detect constraint entailment. Later in the paper,
we present an extension to this algorithm that includes a detector of constraint
entailment and that uses a more compact representation of the constraint domain.

Preliminaries

Constraint programming is a framework for declarative problem solving by stating
constraints over the problem variables and then finding a value for each variable in
such a way that all the constraints are satisfied. The value for a particular variable can
be chosen only from the variable domain that is from a set of possible values for the
variable. Constraint is an arbitrary relation restricting the possible combinations of
values for the constrained variables. The constraint domain is a set of value tuples
satisfying the constraint. For example, {(0,2), (1,1), (2,0)} is a domain of the
constraint X+Y=2 where variables’ domains consist of non-negative integers. If C is a
constraint over the ordered set of variables Xs then we denote the constraint domain
C(Xs). We say that the constraint domain has a rectangular structure if C(Xs) = ×X∈Xs
C(Xs)↓X, where C(Xs)↓X is a projection of the constraint domain to the variable X
(Figure 3). For example, the above constraint X+Y=2 does not have a rectangular
structure because the projection to both variables is {0,1,2} and the Cartesian product
{0,1,2}×{0,1,2} is larger than the constraint domain. The notion of a rectangular
structure is derived from the domain structure of binary constraints where the
constraint domain forms a rectangle with possible vertical and horizontal gaps.

Assume that C(Xs) is a domain of the constraint C and D(X) is a domain of the
variable X – a set of values. We call the intersection C(Xs) ∩ (×X∈Xs D(X)) a reduced
domain of the constraint. Note, that the reduced domain consists only of the tuples
(v1,…,vn) such that ∀i vi∈D(Xi).

Fig. 3. Example of a constraint domain (shadow rectangles), its projection to the variable Y
(C(X,Y)↓Y), and a reduced constraint domain (the striped rectangle).

Many constraint solvers are based on maintaining consistency of constraints during
enumeration of variables. We say that the constraint is consistent (arc-consistent,
hyper arc-consistent)1 if every value of every variable participating in the constraint is
part of some assignment satisfying the constraint. More precisely, every value of
every variable participating in the constraint must be part of some tuple from the
reduced constraint domain. For example, the constraint X+Y=2, where both the
variables X and Y have domain {0,1,2}, is consistent while the constraint from Figure
3 is not consistent. To make the constraint consistent we can reduce the domains of
involved variables by projecting the reduced constraint domain to the variables:

∀Y∈Xs: D(Y) ← (C(Xs) ∩ (×X∈Xs D(X)))↓Y.

The algorithm that makes the constraint consistent is called a propagator [10]. More
precisely, the propagator is a function that takes variables’ domains as the input and
that proposes a narrowing of these domains as the output. The propagator is complete
if it makes the constraint consistent that is all locally incompatible values are
removed. The propagator is sound if it does not remove any value that can be part of
the solution. The propagator is idempotent if it reaches a fix point that is the next
application of the propagator to the narrowed domains does not narrow them more.

We say that the constraint satisfaction problem is (hyper) arc-consistent, if every
constraint is consistent. It is not enough to make every constraint consistent by a
single call to its complete propagator because the domain change might influence
consistency of already consistent constraints. Thus the propagators are called
repeatedly in a propagation loop until there is no domain change. In fact, the
particular propagator is called only when the domain of any variable involved in the
constraint is changed. Many constraint systems allow a finer definition when the
propagator should be evoked via so called suspensions, for details see [9,10].

1 The notion of arc-consistency is used for binary constraints only. For constraints of higher arity, the

notions of hyper arc-consistency or generalised arc-consistency are used. For simplicity reasons we will
use the term consistency there.

C
(X

,Y
)↓

Y

X

Y

D(Y)

D(X)

Reduced
constraint domain

Nevertheless, the existing constraint solvers rarely go beyond the arc-consistency
schema in the propagation loop.

When the domains of all variables in the constraint contain exactly one value then
it is not necessary to call the propagator again because it will not narrow the domains
anymore. However, the propagator may be stopped even sooner. Assume that the
domain of X is {1,2,3} and the domain of Y is {5,6,7}. Then the propagator for the
constraint X<Y deduces no domain narrowing. This is because every combination of
values from the variables’ domains satisfies the constraints - the constraint is entailed.
We say that the constraint is entailed if the constraint is satisfied for any combination
of values from variables’ domains. Visibly, the constraint is entailed if and only if the
reduced constraint domain has a rectangular structure.

The rest of the paper deals with the propagators for extensionally defined binary
constraints over totally ordered domains. We expect the propagator to be evoked
when the domain of any variable involved in the constraint is changed. Our goal is to
design efficient, complete, idempotent, and sound propagators.

Compact General Relation

The general relation (GR) constraint or more precisely the GR propagator was first
described in [4]. This propagator uses a set representation of the constraint domain
where one variable is selected as the leading variable and the other variable is
dependent. The constraint domain is represented as a set of pairs (x,dy), where x is a
value of the leading variable and dy is a set of compatible values of the dependent
variables (Figure 4). The values of the leading variable are pair-wise different. This is
a natural representation of the constraints that are described using a table like in
Figure 1. This representation requires a finite projection of the constraint domain to
the leading variable and a finitely representable projection to the dependent variable,
for example a finite set of disjoint intervals that we call a range. Notice that this
representation also covers some infinite constraint domains.

Fig. 4. Representation of the constraint domain by the GR propagator.

The filtering algorithm proposed in [4] simply explores the set representing the
constraint domain and tests whether xi is a part of the current domain of X and
whether the intersection of dyi with the current domain of Y is non-empty. In such a
case xi remains in the domain of X and dyi ∩ D(Y) will be a part of the narrowed
domain of Y.

When using the above algorithm with real-life constraints in a scheduling
application [2], we have noticed that many dyi are identical. Thus, we can compact the
domain representation to reduce memory consumption and to speed-up the filtering
algorithm.

(x1,dy1) (x2,dy2) (x3,dy3) (x4,dy4) (x5,dy5)

nil

Domain Generator

Let T = {(xi,dyi) | i=1..n} be a representation of the binary constraint domain where xi
are pair-wise different values of the leading variable and dyi is a range of values of the
dependent variable that are compatible with the value xi. Such representation can be
derived directly from the table defining the constraint. Because the time complexity of
the above sketched GR propagator depends on the size of T, it could be beneficial to
compact the representation and to upgrade the GR propagator for such a compact
representation. In particular, it is possible to compact all pairs (xi,dyi) with identical
dyi component. Formally, for the original set T we get a new compacted set:

CT = {(dxi,dyi) | dxi = { x | (x,dyi)∈T } & dxi ≠ ∅ }

We use a straightforward algorithm that converts T into CT with the time complexity
O(n.log n), where n is a number of the elements in the set T. First, the algorithm
orders lexicographically the set T according to dyiThen, the pairs (dxi,dyi) with the
identical component dyi form continuous sub-sequences in the ordered set and thus it
is easy to collect them in a linear time. Figure 5 shows an example of such a compact
representation.

Fig. 5. A decomposition of the constraint domain (shadow rectangles) into a set of non-
overlapping sub-domains with the rectangular structure.

Notice that the pair (dx,dy) in CT describes an area with a rectangular structure in
the constraint domain and all these areas are pair-wise disjoint. Actually, the
constraint domain is decomposed into a set of areas with a rectangular structure. This
simplifies the filtering algorithm that can handle each such area independently as we
will show in the next section. In general, the proposed filtering algorithm requires the
areas to have a rectangular structure but it does not require them to be disjoint. Thus,
we can see there a possibility to design other decompositions of the constraint domain
that are perhaps even more compact.

On the other hand, the proposed filtering algorithm includes an entailment detector
that requires the dx components to be disjoint (CT has this feature). Consequently, the
areas are disjoint as well. Thus, if this particular entailment detector is used (and we
will show later that it brings some speed-up) then CT is the optimal decomposition2.
The open question is whether it is possible to design efficient entailment detectors that
do not require the above feature.

2 CT has the smallest number of rectangular areas such that their union equals to the constraint

domain and their projections to the leading variable are disjoint.

 1 2 3 4 5 6 7 8 9 10 11

 1

2
 3

4

 5

6
 7

1

1 1

2 1

3

2

Filtering Algorithm

The filtering algorithm for the compacted GR relation mimics the behavior of the
original filtering algorithm from [4] that we described above. There are just few
changes to respect the new compact representation of the constraint domain. Figure 6
describes the new compact GR propagator.

The compact GR propagator incrementally constructs the projection of the reduced
constraint domain to both variables by exploring the areas in the compact
representation of the constraint domain. For each area (DX,DY), the propagator
checks whether the area has a non-empty intersection with the reduced constraint
domain (rows 10-13). Actually, the propagator constructs a reduced area
(CompatibleX,CompatibleY) and the projections of this reduced area to both
variables become parts of the narrowed domains of the variables (rows 17-18, 30-31).

1 procedure GR(Constraint,X,Y)
2 NewDomainOfX ← empty
3 NewDomainOfY ← empty
4 ConstraintDomain ← domain(Constraint)
5 Entailed ← true
6 LastProjectionOfY ← empty
7 NewDomain ← empty
8 while non_empty(ConstraintDomain) do
9 (DX,DY) ← head(ConstraintDomain)
10 CompatibleX ← intersection(domain(X),DX)
11 if non_empty(CompatibleX) then
12 CompatibleY ← intersection(domain(Y),DY)
13 if non_empty(CompatibleY) then
14 if empty(NewDomain) then
15 NewDomain ← ConstraintDomain
16 end if
17 NewDomainOfX ← union(NewDomainOfX, CompatibleX)
18 NewDomainOfY ← union(NewDomainOfY, CompatibleY)
19 if Entailed then
20 if empty(LastProjectionOfY) then
21 LastProjectionOfY ← CompatibleY
22 else
23 Entailed ← (LastProjectionOfY == CompatibleY)
24 end if
25 end if
26 end if
27 end if
28 ConstraintDomain ← tail(ConstraintDomain)
29 end while
30 X in NewDomainOfX
31 Y in NewDomainOfY
32 domain(Constraint) ← NewDomain
33 end GR

Fig. 6. The filtering algorithm of the compact GR propagator.

The propagator might change the representation of the constraint domain to keep
only the reduced constraint domain. This would help when the propagator is called
next time because a smaller number of smaller areas will be explored which would

Domain
filtering

Entailment
detector

Domain
shift

speed-up the propagator. However, many constraint solvers including the solvers in
Prolog keep the domains in memory after any change to allow fast recovery of the
domain upon backtracking [10]. The paper [4] showed that it significantly increases
memory consumption for a simple GR propagator that updates the constraint domain.
So instead of keeping the reduced constraint domain, a technique called domain shift
has been proposed in [4] to keep only a part of the reduced constraint domain. The set
modeling the constraint domain is represented as a list there and domain shift means
skipping the areas at the beginning of the list that are not part of the reduced
constraint domain. This reduces a bit the size of the constraint domain (the number of
areas to be explored when the propagator is called next time) while keeping low
memory consumption. The compact GR propagator uses the same technique (rows
14-16, 32).

Last but not least, we have accompanied the compact GR propagator by an
entailment detector. The entailment detector checks whether the reduced constraint
domain has a rectangular structure. Because the projections of the areas to the leading
variable are disjoint (this is a feature of CT), the entailment detection is done simply
by comparing the projections of the non-empty reduced areas to the dependent
variable (rows 19-24). If all these projections are identical then the constraint is
entailed so it is not necessary to evoke the propagator again because it will not deduce
any domain pruning. Note, that the research papers usually omit the implementation
details like entailment detection. However, entailment detection may improve the
time efficiency as we will show later.

Time complexity of the compact GR propagator depends on the number of areas in
the representation of a constraint domain. Each time the propagator is evoked, every
such area is explored (rows 8-29) and thus having a smaller number of areas in the
domain representation is an advantage. That is the reason why the compact GR
propagator is more time and space efficient then the original GR propagator.

Sweep Filtering Algorithm

The GR propagator uses a straightforward decomposition of the constraint domain to
non-overlapping areas with a rectangular structure. Moreover, the projections of these
areas to the leading variable are disjoint (Figure 5) which has no effect on the filtering
algorithm but it simplifies detection of constraint entailment. In [15] a different
decomposition of the constraint is proposed, in particular the decomposition into a set
of rectangles covering the constraint domain, so called rectilinear rectangular
covering [18]. The filtering algorithm for such decomposition is based on the
technique called sweep that is widely used in computational geometry and that was
first applied to domain filtering in [5]. The sweep algorithm moves a vertical line
called a sweep line along the axis of the leading variable. Each time it encounters or
leaves a rectangle – this is called an event – it triggers some event handler according
to the event type. Thus the algorithm sweeps the plane, hence its name.

In this paper, we propose a generalization of the filtering algorithm from [3]. It is
based on observation that the sweep filtering algorithm can use more general objects
than simple rectangles. The algorithm requires the object to have a rectangular

structure and its projection to the leading variable to be an interval. We call such an
object a generalized rectangle (Figure 7). In the next section, we will present a new
algorithm constructing the domain representation with generalized rectangles from the
original table modeling the constraint domain.

Fig. 7. Example of a generalized rectangle. This rectangle can be represented using the term
rect(3,7,[2,5..6]).

Domain Generator

Before the constraint domain can be used by a sweep pruning algorithm, it must be
first decomposed into a set of generalized rectangles. It is easy to get a sequence of
non-overlapping generalized rectangles from the original set T = {(xi,dyi) | i=1..n}
describing the constraint domain. Simply, the neighboring (in the sense of values of
the leading variable) pairs with the identical dy component are joined so we get a set:

CTsweep = {(mini .. maxi, dyi) | mini ≤ maxi & ∀x mini ≤ x ≤ maxi: (x,dyi)∈T}.

Notice the difference from the compact GR model; now the projection of an object in
CTsweep to the leading variable is an interval and thus |CT|≤|CTsweep|. Because the
efficiency of the filtering algorithm depends on the number of generalized rectangles,
we decided to generate a more compact decomposition from CTsweep. The
decomposition algorithm simply joins the neighboring parts of the rectangles. The
idea is as follows: the algorithm takes the generalized rectangle and it tries to extend it
to the largest possible x. Then this generalized rectangle is removed from the
constraint domain and the process is repeated until the domain is empty (Figure 8).

Fig. 8. The number of generalized rectangles covering the constraint domain can be decreased
by using a different decomposition of the constraint domain.

 1 2 3 4 5 6 7 8 9 10 11

 1

2
 3

4

 5

6
 7

1

1

 1 2 3 4 5 6 7 8 9 10 11

 1

2
 3

4

 5

6
 7

1

1 5

2 5

3

4

 1 2 3 4 5 6 7 8 9 10 11

 1

2
 3

4

 5

6
 7

1

1 3

2

3

We present here a decomposition algorithm based on the sweep technique (Figure 9).
The set CTsweep is ordered increasingly in the values mini. Then, the decomposition
algorithm explores the generalized rectangles from the ordered set CTsweep and it tries
to extend each rectangle to the right. To do this job, the algorithm keeps a set of the
rectangles that can be extended, so called active rectangles (ActiveRects), as well as
an “active” projection of these rectangles to the dependent variable (ActiveDy). The
projections of the currently active rectangles to the dependent variable are disjoint.
Thus, if an active rectangle is closed (see below) then we can simply remove its
projection from the “active” projection (row 12). Each time the algorithm takes a new
rectangle, it tests whether the active rectangles can still be extended to this new
rectangle (row 9). If an active rectangle cannot be extended then it is removed from
the set of active rectangles and it is put to the final decomposition (Rects) - we call it
closing the rectangle (rows 12-13). After extending all the active rectangles, the
remaining part of the new rectangle (if any) will be included among the active
rectangles (rows 17-20). When all the rectangles are explored then the remaining
active rectangles are closed (rows 23-25).

1 procedure GenerateRectangles(D)
2 Rects ← empty
3 ActiveRects ← empty
4 ActiveDy ← empty
5 LastX ← inf
6 for each (Xmin..Xmax,Dy) in D (in increasing order of Xmin) do
7 TmpRects ← empty
8 for each r(RXmin,RDy) in ActiveRects do
9 if RDy ⊆ Dy && LastX+1=Xmin then
10 TmpRects ← r(RXmin,RDy) : TmpRects
11 else
12 ActiveDy ← ActiveDy - RDy
13 Rects ← rect(RXmin,LastX,RDy) : Rects
14 end if
15 end for
16 ActiveRects ← TmpRects
17 if non_empty(Dy – ActiveDy) then
18 ActiveRects ← r(Xmin, Dy – ActiveDy) : ActiveRects
19 ActiveDy ← Dy
20 end if
21 LastX ← Xmax
22 end for
23 for each r(Xmin,Dy) in ActiveRects do
24 Rects ← rect(Xmin,LastX,Dy) : Rects
25 end for
26 end GenerateRectangles

Fig. 9. The algorithm for domain decomposition.

In the worst case, the number of rectangles generated by the above algorithm will
be |CTsweep|. However, the algorithm decreases the number of rectangles in many
cases (see Figure 8). Note also that the presented decomposition algorithm generates
non-overlapping rectangles. Figure 10 demonstrates the run of the algorithm.

Rectangle
extension

New

rectangle

Rectangles LastX ActiveDy ActiveRects Rects
 inf empty empty empty
(2..2)-[2,5..6] 2 [2,5..6] r(2,[2,5..6]) empty
(3..4)-[2..6] 4 [2..6] r(3,[3..4]),

r(2,[2,5..6])
empty

(5..6)-[3..4] 6 [3..4] r(3,[3..4]) rect(2,4,[2,5..6])
(7..7)-[2..6] 7 [2..6] r(7,[2,5..6]),

r(3,[3..4])
rect(2,4,[2,5..6])

(8..9)-[2,5..6] 9 [2,5..6] r(7,[2,5..6]) rect(3,7,[3..4]),
rect(2,4,[2,5..6])

 rect(7,9,[2,5..6]),
rect(3,7,[3..4]),
rect(2,4,[2,5..6])

Fig. 10. Example run of GenerateRectangles with the constraint domain from Figure 8.

Filtering Algorithm

The filtering algorithm based on the sweep technique was proposed in [15, 3] and the
same sweep pruning algorithm can be used for generalized rectangles without any
modification. The sweep pruning (SP) algorithm moves a vertical line called a sweep
line along the horizontal axis from left to right. Each time it encounters or leaves an
object – this is called an event – it triggers a relevant event handler. In case of domain
filtering, there are four types of events used by the sweep algorithm:

rect_start(PosX,NumR,IntY) - indicates the left border (PosX) of the rectangle
identified by NumR with the vertical projection IntY,

rect_end(PosX,NumR) - indicates the right border (PosX) of the rectangle
identified by NumR,

x_start(PosX) - indicates the start of some continuous interval within the
current domain of the leading variable,

x_end(PosX) - indicates the end of some continuous interval within the current
domain of the leading variable.

The list of events can be generated in advance from the constraint domain and from
the current domain of the leading variable. We call such a list an event point series.
The events in the event point series are ordered increasingly according to the x-
coordinate of the event (PosX). Moreover, we require the start events to precede the
end events with the same x-coordinate. This is necessary for the algorithm to capture
“one-point” overlaps between the objects. Figure 11 shows an example of the event
point series for the constraint domain consisting of three generalized rectangles and
the domain of the leading variable consisting of two intervals.

The SP algorithm incrementally builds the new domains for both variables by
exploring the generalized rectangles (Figure 12). ListOfX keeps a list of bounds of the
intervals in the new domain of the leading variable (in the reverse order). This list is
then converted to the domain of the dependent variable (rows 10-15). ListOfDomY is
a list of projections of the rectangles, which have non-empty intersection with the
reduced constraint domain, to the dependent variable.

Fig. 11. A constraint domain (left) and its corresponding event point series (right),

During the computation, the SP algorithm keeps some global data structures that
describe the status of computation:

InDomain: indicates whether the sweep line is within the domain of the
leading variable that is between x_start and x_end events
corresponding to a single continuous interval,

ActiveRects: describes the set of rectangles that are currently crossed by the
sweep line that is the rectangles where the rect_start event has been
processed and the corresponding rect_end has not been reached yet.

We have added a simple entailment detector (row 18) to the SP algorithm. If all the
rectangle projections in ListOfDomY are identical then the constraint is entailed.
Visibly, this entailment detector is not complete because it does not detect all
constraint entailments. For example, assume the constraint domain from Figure 11,
the domain of the leading variable to be {4,7}, and the domain of the dependent
variable to be (3..5). Then the constraint is entailed but the algorithm does not detect
it because the projections of the rectangles 1 and 2 are not identical.

1 procedure SP(Constraint,X,Y)
2 EventPointSeries ← make_event_point_series(Constraint,X)
3 ListOfDomY, ActiveRects, ListOfX ← empty
4 DY ← domain(Y)
5 InDomain ← false
6 while non_empty(EventPointSeries) do
7 Event ← select_and_delete_first(EventPointSeries)
8 process_event(Event,DY,ActiveRects,InDomain,ListOfX,ListOfDomY)
9 end while
10 NewDomainOfX ← empty
11 while non_empty(ListOfX) do
12 Max ← select_and_delete_last(ListOfX)
13 Min ← select_and_delete_last(ListOfX)
14 NewDomainOfX ← union(Min..Max,NewDomainOfX)
15 end while
16 X in NewDomainOfX
17 Y in intersection(union(ListOfDomY),DY)
18 Entailed ← all elements in ListOfDomY are identical
19 end SP

Fig. 12. The filtering algorithm of the SP propagator.

Event point series:
rect_start(2,1,[2,5..6]),
rect_start(3,2,[3..4]),
x_start(3),
rect_end(4,1),
x_end(5),
rect_start(7,3,[2,5..6),
rect_end(7,2),
x_start(8),
rect_end(9,3),
x_end(10)

 1 2 3 4 5 6 7 8 9 10 11

 1

2
 3

4

 5

6
 7

1

1 3

2

3

The power behind the SP algorithm is hidden in the procedures for event processing
(Figure 13). Notice that only the rectangles having a non-empty projection to the
domain of the dependent variable are processed (rows 20, 29). Let us call these
rectangles relevant.

If the sweep line enters a relevant rectangle (rec_start event) and it is within the
domain of the leading variable X (row 21), then the projection of the rectangle to y-
axis is added to the new domain of Y (row 22). If it is the first rectangle that has a
non-empty intersection with the current interval of X (row 23) then the start of the
new interval is added to ListOfX (row 24). When entering the relevant rectangle we
make this rectangle active by memorizing it in the ActiveRects structure (row 27).

If we leave a rectangle (rect_end event) that is the last active rectangle and the
sweep line is within the domain of X (row 30) then the end of a new interval is added
to ListOfX (row 31).

If we enter a new interval within the domain of X (x_start event) and there is any
active rectangle (row 35) then the start of a new interval is added to ListOfX (row 36).
Also, the new domain of Y is extended by the projections of the active rectangles to
y-axis (rows 37-39).

If we leave an interval within the domain of X (x_end event) and there is still some
active rectangle then the end of a new interval is added to ListOfX (row 43).

EVENT - ACTION
rect_start(PosX,NumR,IntY)

20 if non_empty(intersection(IntY,DY)) then
21 if InDomain then
22 ListOfDomY ← IntY : ListOfDomY
23 if empty(ActiveRects) then
24 ListOfX ← PosX : ListOfX
25 end if
26 end if
27 ActiveRects ← r(NumR,IntY) : ActiveRects
28 end if

rect_end(PosXx,NumR)
29 if find_and_delete(r(NumR,_),ActiveRects) then
30 if InDomain && empty(ActiveRects) then
31 ListOfX ← PosX : ListOfX
32 end if
33 end if

x_start(PosX)
34 InDomain ← true
35 if non_empty(ActiveRects) then
36 ListOfX ← PosX : ListOfX
37 for each r(NumR,IntY) in ActiveRects do
38 ListOfDomY ← IntY : ListOfDomY
39 end for
40 end if

x_end(PosX)
41 InDomain ← false
42 if non_empty(ActiveRects) then
43 ListOfX ← PosX : ListOfX
44 end if

Fig. 13. The algorithms for event processing for the SP propagator.

Figure 14 gives an example of event processing. It describes how the data are changed
after processing the events from the event point series.

EVENT ListOfX InDom. ActiveRects NewDY
rect_start(2,1,[2,5..6]) empty false r(1,[2.5..6]) empty
rect_start(3,2,[3..4]) empty false r(2,[3..4])

r(1,[2,5..6])
empty

x_start(3) 3 true r(2,[3..4])
r(1,[2,5..6])

[2,5..6]
[3..4]

rect_end(4,1) 3 true r(2,[3..4]) [2,5..6]
[3..4]

x_end(5) 5,3 false r(2,[3..4]) [2,5..6]
[3..4]

rect_start(7,3,[2,5..6]) 5,3 false r(3,[2,5..6])
r(2,[3..4]

[2,5..6]
[3..4]

rect_end(7,2) 5,3 false r(3,[2,5..6]) [2,5..6]
[3..4]

x_start(8) 8,5,3 true r(3,[2,5..6]) [2,5..6]
[3..4]

rect_end(9,3) 9,8,5,3 true empty [2,5..6]
[3..4]

x_end(10) 9,8,5,3 false empty [2,5..6]
[3..4]

Fig. 14. Example run of the SP filtering algorithm for the constraint domain from Figure 11.
The constraint is not entailed and the domains are narrowed to DX=[3..5,8..9], DY=[2..6].

Experiments and Comparison

We have compared the GR and SP propagators to existing relation and case
constraints in SICStus Prolog 3.11.0 [9, 17]. The comparison was done using real-life
scheduling problems solved by the Visopt ShopFloor system [2] and using a new
artificial benchmark. The tests run under Windows XP Professional on 1.7 GHz
Mobile Pentium-M 4 with 768 MB RAM and the running time is measured via the
statistics predicate with the walltime parameter [17].

The GR and SP propagators are compared to relation and case constraints.
The propagators behind these constraints maintain full arc consistency like the GR
and SP propagators. The constraint domain in the relation constraint is described
using a simple table T = {(xi,dyi) | i=1..n}, where xi are pair-wise different values of
the leading variable and dyi is a range of values of the dependent variable compatible
with the value xi. Since the version 3.10.0 of SICStus Prolog, the relation
constraint is implemented using a more general case constraint which, like our
approach, allows more compact representation of the constraint domain. We use a
table CT = {(dxi,dyi) | dxi = {x | (x,dyi)∈T } & dxi ≠ ∅ } to describe the constraint
domain for the case constraint – the actual representation contains one more element
in the list representing CT, for details of syntax see [17]. This is exactly the same
table used by the GR propagator. Note finally, that the case constraint is
implemented in C while our propagators are implemented in Prolog.

Real-life experiments in Visopt ShopFloor

Visopt ShopFloor [2] is a scheduling system where the user describes declaratively
the resources, item flows, and the demands and the system generates a schedule of
production. Because of its generic character, the system uses many tabular constraints
to describe the real-life relations like the time windows and the resource state
transitions [1]. Originally, the GR propagator was designed for this system to capture
a typical structure of constraint domains that appear there.

We have selected five different problems based on real-life factories to
demonstrate capabilities of the proposed propagators. These problems vary in the size
and the structure of the factories – the actual data are confidential so it is not possible
to publish them. Table 1 describes the size of the problems as a number of different
constraint domains (tables), a number of tabular constraints using these domains, and
an average size of the constraint domain representation. The size of the representation
is measured as an average number of rectangles per table for GR and SP propagators
and as an average length of the lists describing the domains in the relation and
case constraints.

Table 1. The size of the test problems and constraint representations.

constraints average representation size per table problem
no.

tables
total per table GR SP relation case

1 401 16977 42 1.13 4.40 20.76 2.13
2 49 1921 39 3.08 15.78 39.57 4.08
3 158 5734 36 2.32 20.27 44.82 3.32
4 244 82804 339 1.20 1.80 3.60 2.10
5 112 7624 68 1.04 1.59 3.65 2.04

Notice, that many constraints share the same domain, for example more than three
hundred constraints share the domain (in average) in the problem no 4. This domain
sharing decreases memory consumption. Moreover, the domain generator for both GR
and SP propagators runs once per table which decreases running time. Notice also that
the domain representation is very compact for GR and SP propagators. The only
exception is the domain representation for the SP propagator in problems 2 and 3.
A compact representation further reduces the running time because the time
complexity of GR and SP propagators depends on the number of rectangles in the
representation [3,4]. As expected, the representation for the GR propagator is more
compact than the representation for the SP propagator.

Table 2 compares the number of calls to GR and SP propagators with and without
the entailment detector (this information is not available for the built-in relation
and case constraints). When the entailment detector is not used (off) then the
number of calls is identical for both GR and SP because this number is influenced by
the environment, where the algorithm sits, not by the algorithm itself. When the
entailment detector is used (on) then the number of calls is much smaller. Notice also
that for the problems 2, 3, and 4, the number of calls to SP is larger than the number
of calls to GR. This indicates that the entailment detector for SP is not complete.

Table 2. The number of calls to the propagators. The number in brackets indicates the number
of calls relative to the number of calls when the entailment detector is used (on).

GR SP problem
no. on off on off
1 18515 117328 (634%) 18515 117328 (634%)
2 3372 9062 (269%) 3436 9062 (264%)
3 16688 56413 (338%) 19072 56413 (296%)
4 82830 145654 (176%) 86265 145654 (169%)
5 8014 32301 (403%) 8014 32301 (403%)

Finally, Table 3 compares the running times of the algorithms. The average time of
five runs for each problem is indicated in the table. Note also, that we compare a total
running time to solve the problem including propagation in all constraints as well as
search. Thus, the actual running time of the compared algorithms is just a fraction of
the presented time. Still, only the compared algorithms are responsible for the
difference in the running time so the relative time difference between the algorithms
is higher than it might seem from Table 3. We decided for this test because it shows
better what speed-up/slow-down one may expect in a complex system.

Table 3. The running time (in seconds) of the propagators. The numbers in brackets show time
relative to the GR propagator with entailment detector (in percent).

GR SP problem
no. on off on off

relation case

1 82,0 81,7 (100%) 81,5 (99%) 88,8 (108%) 91,5 (112%) 89,0 (108%)
2 3,6 3,7 (102%) 4,6 (127%) 5,0 (138%) 4,2 (117%) 4,1 (114%)
3 48,6 53,8 (111%) 57,8 (119%) 66,6 (137%) 66,6 (137%) 62,2 (128%)
4 86,1 87,8 (102%) 88,4 (103%) 90,4 (105%) 96,2 (112%) 94,6 (110%)
5 26,5 26,3 (99%) 26,4 (100%) 27,7 (105%) 35,0 (132%) 37,9 (143%)

The GR propagator with entailment detector achieved the best results in the tests. It
has the smallest running time for the problems 2, 3, and 4 and its running time is very
close to the best results in tests 1 (SP on) and 5 (GR off).

The behavior of the SP propagator with entailment detector was less stable. In
particular, it achieved much worse running time than GR in tests 2 and 3. However,
recall that the representation of the constraint domain is less compact for SP than for
GR (Table 1) and better domain generator may further improve time efficiency of SP.
Moreover, the SP propagator uses simpler elementary operations than GR which is
the reason why SP is better in some tests despite the fact that it has a larger domain
representation than GR.

The tests also show that entailment detection pays off especially for the SP
propagator where entailment detection brings almost no overheads. The entailment
detector for GR is more complex and it adds more overhead to computation. That is
the reason why the GR propagator without entailment detection may get slightly
better results in some problems.

Notice finally, that the built-in relation and case constraints implemented in
C achieved worse results than GR and SP (with the exception of problem 2 for SP)
implemented in Prolog. The reason could be that GR is designed for tabular

constraints which have almost rectangular structure. However, note that we use the
same compact representation for the case constraint.

The real-life tests justified the choice of the GR propagator with entailment
detector in the Visopt ShopFloor system. However, they did not uncover the general
features of the new propagators like the relation between the compaction factor and
the running time. Therefore, we proposed an artificial benchmark to test the
comparators independently of a particular application.

Artificial benchmarks

Artificial benchmarks help to understand general features of the algorithms without a
direct relation to a particular application. Random CSP [13] is a widely accepted set
of benchmarks for testing constraint satisfaction algorithms. However, the
disadvantage of Random CSP is that there is no direct relation between the parameters
of the random problem, like density and tightness, and the structure of the constraint
domain. Because time and space complexity of the propagators studied in this paper
depends strongly on the structure of the constraint domain, we decided to design a
new random benchmark where the number of rectangles in the constraint domain can
be controlled by a parameter.

The basic idea of the proposed benchmark is to use a single binary constraint with
a randomly generated domain. The size of domains for the variables is a parameter of
the benchmark; we decided for the size 10 000 because we studied propagators for
large domains. For each value of the leading variable, we randomly generate an
interval of the compatible values for the dependent variable. The length of this
interval is another parameter of the benchmark; we tested lengths from 1000 to 9000
with the step 1000. Note, that the length of the interval is identical for each value of
the leading variable, only the position of the interval is generated randomly. Thus, the
larger interval implies a smaller number of possible positions which further implies a
smaller number of rectangles in the constraint domain. Figure 15 shows the relation
between the length of the interval and the size of the domain representation – the
number of rectangles. For each length we randomly generated ten constraint domains
and we present the average results over these constraint domains.

0

2000

4000

6000

8000

10000

12000

1000 2000 3000 4000 5000 6000 7000 8000 9000

length of the compatible interval

si
ze

 o
f r

ep
re

se
nt

at
io

n

SP/relation

GR/case

Fig. 15. A size of the domain representation for GR and SP propagators.

As we can see from Figure 15, the number of rectangles for the GR propagator is
continuously decreasing with the increasing length of the interval. Unfortunately, the
domain generator for the SP propagator does not compact the domain at all so we
cannot expect good efficiency of the SP propagator in the following tests.

When the constraint domain is generated, the question is how to evoke the
propagator. In the AC-3 (AC-8) schema, the propagator is evoked when the domain of
any variable in the constraint is changed. So, we randomly prune the domains of the
variables until one of these domains contains exactly one value. Then the constraint is
entailed. The leading and dependent variables alternate in this process to suppress the
role of the variable. By using this technique, we can measure the time spent only in
the filtering algorithm. In particular, such benchmark abstracts from the complexity of
the constraint satisfaction problem and the size of the search space is irrelevant here.
Still, the question how to prune the variables’ domains remains unanswered. We have
tested three different schemas of domain pruning: domain splitting, arbitrary
deletions, and shaving.

Domain splitting. In domain splitting, the variable’s domain is randomly split into
two parts and one of these parts is pruned. In particular, we generate a random value
called a cutting point between the lower and upper bound of the variable domain and
we randomly decide whether to cut the lower or upper part of the domain with respect
to the cutting point. Figure 16 shows the running time (in milliseconds) as a function
of the length of the compatible interval.

10

100

1000

10000

100000

1000 2000 3000 4000 5000 6000 7000 8000 9000

length of the compatible interval

ru
nn

in
g

tim
e

(m
s)

SP on

SP off

case

relation

GR on

GR off

Fig. 16. The running time (a logarithmic scale in milliseconds) as a function of the length of the
compatible interval for domain splitting.

For domain splitting, the GR propagator is the fastest propagator among the tested
algorithms. It is about two times faster than the relation constraint (note, that we
use a logarithmic scale in Figure 16). We can also see that entailment detection for
GR pays off when the domain is more compacted. Surprisingly, the case constraint
is not as good, even if it uses the same domain representation as the GR propagator.
Nevertheless, the case constraint is becoming more efficient when the domain
representation is more compact. The SP propagator does not behave well, probably
because of the large domain representation.

Arbitrary deletions. In many constraint satisfaction problems, the values are deleted
from all over the domain. To capture this situation, we randomly generate a given
number of values in the variable’s domain and, then, we remove these values together
from the domain. The number of values for deletion is given in percent of the current
size of the domain. We tested four scenarios with 5%, 10%, 20%, and 40% of values
deleted together from the domain. Figure 17 shows the running time (in milliseconds)
as a function of the length of the compatible interval for all these scenarios.

1000

10000

100000

1000000

1000 2000 3000 4000 5000 6000 7000 8000 9000

1000

10000

100000

1000000

1000 2000 3000 4000 5000 6000 7000 8000 9000

1000

10000

100000

1000 2000 3000 4000 5000 6000 7000 8000 9000

1000

10000

100000

1000 2000 3000 4000 5000 6000 7000 8000 9000

Fig. 17. The running time (a logarithmic scale in milliseconds) as a function of the length of the
compatible interval for arbitrary deletions. A given percent of randomly selected values is
deleted from the domain.

For arbitrary deletions, the relation constraint is the best followed by the case
constraint. Again, for more compacted representation, the case constraint is closer to
the relation constraint. The GR propagator did not behave very well in these tests.
The reason could be that the compact representation of the GR propagator works
better when intervals of values are pruned rather than when individual values are
deleted from domains. Notice also that the more values are removed together, the
closer the GR propagator is to the relation and case constraints. Entailment
detection has almost no effect here.

Shaving. In some applications, like scheduling, the domains of variables are pruned
in a specific way. In particular, upper or lower parts of the domains are pruned which
we call shaving. This technique is close to domain splitting but we can now control
better the number of deleted values. In particular, we shave a given percent of the
domain, namely 5%, 10%, 20%, and 40%. The choice whether to shave upper or
lower part of the domain is done randomly. Figure 18 shows the running time (in
milliseconds) as a function of the length of the compatible interval.

5% 10%

20% 40%

SP on

SP off

GR on

GR off

case

relation

10

100

1000

10000

100000

1000000

1000 2000 3000 4000 5000 6000 7000 8000 9000

10

100

1000

10000

100000

1000000

1000 2000 3000 4000 5000 6000 7000 8000 9000

10

100

1000

10000

100000

1000 2000 3000 4000 5000 6000 7000 8000 9000

10

100

1000

10000

100000

1000 2000 3000 4000 5000 6000 7000 8000 9000

Fig. 18. The running time (a logarithmic scale in milliseconds) as a function of the length of the
compatible interval for shaving. A given percent of values is shaved from the domain.

The power of the GR propagator is visible in the tests with shaving. Actually, the GR
propagator outperforms the relation constraint when the constraint domain is
more compacted and when more values are shaved. This trend is even stronger when
we compare the GR propagator with the case constraint. Finally, notice that the
entailment detector for GR also pays off significantly in these cases.

Conclusions

The paper proposed and compared two approaches to domain filtering for
extensionally defined binary constraints, namely GR and SP propagators. Both
approaches are based on the idea of compact representation of the constraint domain
as a set of rectangles. They differ in the structure of these rectangles and in the way
how this structure is explored during filtering. We presented the filtering algorithms
as well as the algorithms for constructing a domain representation. We also described
entailment detection mechanism and we showed that it improves real performance of
the propagators. The experimental comparison showed that efficiency of the proposed
propagators depends strongly on the size of domain representation. Thus, the future
research may go in the direction of designing smaller decompositions of the constraint
domain especially for the SP propagator. Also, both propagators explore the
constraint domain completely after variable’s domain change which penalizes them
when just a few values are deleted. It could be interesting to reduce the number of
compatibility checks during filtering, for example using information about the cause
of calling the propagator like in [8, 20].

5% 10%

20% 40%

SP on

SP off

GR on

GR off

case

relation

References

1. Barták, R.: Modelling Resource Transitions in Constraint-Based Scheduling. In Grosky
W.I., Plášil F. (eds.): Proceedings of SOFSEM 2002: Theory and Practice of Informatics,
LNCS 2540, Springer Verlag (2002), pp. 186-194.

2. Barták, R.: Visopt ShopFloor: On the edge of planning and scheduling. In Van
Hentenryck P. (ed.): Proceedings of the 8th International Conference on Principles and
Practice of Constraint Programming, LNCS 2470, Springer Verlag (2002), pp. 587-602.

3. Barták, R.: Filtering Algorithms for Tabular Constraints. In Proceedings of Colloquium
on Implementation of Constraint and Logic Programming Systems (CICLOPS), Paphos
(2001), pp. 168-182.

4. Barták, R.: A General Relation Constraint: An Implementation. In Proceedings of
CP2000 Post-Workshop on Techniques for Implementing Constraint Programming
Systems (TRICS), Singapore (2000), pp. 30-40.

5. Beldiceanu N., Carlsson M.: Sweep as a generic pruning technique applied to the non-
overlapping rectangles constraint. In Walsh T. (ed.): Proceedings of the 7th International
Conference on Principles and Practice of Constraint Programming, LNCS 2239, Springer
Verlag (2001), pp. 377-391.

6. Bessière Ch.: Arc-consistency and arc-consistency again. Artificial Intelligence 65
(1994), pp. 179-190.

7. Bessière Ch., Freuder E.C., and Régin J.-Ch.: Using constraint metaknowledge to reduce
arc consistency computation. Artificial Intelligence 107 (1999), pp. 125-148.

8. Bessière Ch. and Régin J.-Ch.: Refining the Basic Constraint Propagation Algorithm. In
Proceedings of JFPLC‘2001 (2001).

9. Carlsson M., Ottosson G., Carlsson B.: An Open-Ended Finite Domain Constraint Solver.
In Proceedings Programming Languages: Implementations, Logics, and Programs (1997).

10. Carlsson, M., and Schulte, Ch.: Finite-Domain Constraint Programming Systems.
Tutorial at CP 2002.

11. Cheng K.C.K., Lee J.H.M., and Stuckey P.J.: Box constraint collections for adhoc
constraints. In Rossi F. (ed.): Proceedings of the 9th International Conference on
Principles and Practices of Constraint Programming, LNCS, Springer-Verlag (2003).

12. Chmeiss A., Jégou P.: Efficient Path-Consistency Propagation. International Journal of
Artificial Intelligence Tools 2 (1998), pp. 121-142.

13. Gent I.P., MacIntyre E., Prosser P., Smith B.M., and Walsh T.: Random constraint
satisfaction: Flaws and structure. Technical Report APES-08-1998, APES Research
Group (1998).

14. Mackworth, A.K.: Consistency in Networks of Relations. Artificial Intelligence 8 (1977),
pp. 99-118.

15. Michalský, R.: Algorithms for Constraint Satisfaction, Master Thesis, Charles University,
Prague (2001).

16. Mohr R., Henderson T.C.: Arc and Path Consistency Revised. Artificial Intelligence 28
(1986), pp. 225-233.

17. SICStus Prolog 3.11.0 User's Manual, SICS (2003).
18. Shearer J.B, Wu, S.Y., and Sahni S.: Covering Rectilinear Polygons by Rectangles. In

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 9
(1990).

19. Van Hentenryck P., Deville Y., and Teng C.-M.: A generic arc-consistency algorithm and
its specializations. Artificial Intelligence 57 (1992), pp. 291-321.

20. Zhang Y., Yap R.: Making AC-3 an Optimal Algorithm. In Proceedings of IJCAI-01
(2001), pp. 316-321.

