
Temporal Reasoning in Nested Temporal Networks
 with Alternatives

Roman Barták, Ondřej Čepek, Martin Hejna

Charles University in Prague, Faculty of Mathematics and Physics
Malostranské nám. 2/25, 118 00 Praha 1, Czech Republic

roman.bartak@mff.cuni.cz, ondrej.cepek@mff.cuni.cz,
mhejna@matfyz.cz

Abstract. Temporal networks play a crucial role in modeling temporal relations
in planning and scheduling applications. Temporal Networks with Alternatives
(TNAs) were proposed to model alternative and parallel processes in produc-
tion scheduling, however the problem of deciding which nodes can be consis-
tently included in such networks is NP-complete. A tractable subclass, called
Nested TNAs, can still cover a wide range of real-life processes, while the
problem of deciding node validity is solvable in polynomial time. In this paper,
we show that adding simple temporal constraints (instead of precedence rela-
tions) to Nested TNAs makes the problem NP-hard again. We also present sev-
eral complete and incomplete techniques for temporal reasoning in Nested
TNAs.

1 Introduction

Planning and scheduling applications almost always include some form of temporal
reasoning, for example, a causal relation (the effect of some activity is required for
processing another activity) implies a precedence constraint. These relations are fre-
quently modeled using temporal networks where nodes correspond to activities and
arcs are annotated by the temporal relations between activities. Current temporal net-
works handle well temporal information including disjunction of temporal constraints
[13] or uncertainty [4]. Several other extensions of temporal networks appeared re-
cently such as resource temporal networks [10] or disjunctive temporal networks with
finite domain constraints [11]. These extensions integrate temporal reasoning with
reasoning on non-temporal information, such as fluent resources (for example fuel
consumption during car driving). All these approaches assume that all nodes are pre-
sent in the network, though the position of nodes in time may be influenced by other
than temporal constraints. Conditional Temporal Planning [14] introduced an option
to decide which node will be present in the solution depending on a certain external
condition. Hence CTP can model conditional plans where the nodes actually present
in the solution are selected based on external forces. Temporal Plan Networks [8]
(TPN) also include conditional branching and they attempt to model all alternative
plans in a single graph. Temporal Networks with Alternatives [1] (TNA) introduced a

different type of alternatives with so called parallel and alternative branching. They
are more general than TPN but the problem of deciding which nodes can be consis-
tently included in the network, if some nodes are pre-selected, is NP-complete even if
no temporal constraints are imposed. Therefore a restricted form, so called Nested
TNAs, was proposed in [2]. Nested TNAs have a similar topology as TPNs though
the original motivation for their introduction was different – a Nested TNA focuses
on manufacturing processes while a TPN models plans for unmanned vehicles. The
paper [2] shows that the problem of deciding whether a subset of nodes can be se-
lected to satisfy the branching constraints is now tractable, but it still leaves open the
question what happens if temporal constraints are assumed. In this paper we present a
new complexity result for Nested Temporal Networks with Alternatives where simple
temporal constraints are included. We also present some new algorithms that can help
in solving problems based on (Nested) TNAs. These algorithms exploit the integrated
reasoning on both logical (branching) and temporal constraints.

There exist other frameworks mixing temporal and logical reasoning. In problems,
such as log-based reconciliation [7], we need to model inter-dependencies between
nodes which concern their presence/absence in the final solution. The possibility to
select nodes according to logical, temporal, and resource constrains was introduced to
manufacturing scheduling by ILOG in their MaScLib [12]. The same idea was inde-
pendently formalized in Extended Resource Constrained Project Scheduling Problem
[9]. In the common model each node has a Boolean validity variable indicating
whether the node is selected to be in the solution. These variables are a discrete ver-
sion of PEX variables used by Beck and Fox [3] for modeling presence of alternative
activities in the schedule. In many recent approaches, these variables are intercon-
nected by logical constraints such as the dependency constraint described above.

In this paper, we first give motivation for using Temporal Networks with Alterna-
tives and formally introduce TNAs and their nested form. The main part of the paper
shows that using temporal constraints in Nested TNAs makes the problem of deciding
which nodes can be consistency included in the network NP-complete again. We also
present several techniques that can help in solving the problem. These techniques are
proposed in the context of constraint satisfaction so they can be easily integrated with
other constraints, for example with constraints that model resources. Hence the pro-
posed techniques are useful for solving oversubscribed real-life scheduling problems.

2 Motivation and Background

Let us consider a manufacturing scheduling problem of piston production. Each pis-
ton consists of a rod and a tube that need to be assembled together to form the piston.
Each rod consists of the main body and a special kit that is welded to the rod (the kit
needs to be assembled before welding). The rod body is sawn from a large metal
stick. The tube can also be sawn from a larger tube. Rod body, the kit, and tube must
be collected together from the warehouse to ensure that their diameters fit. If the tube
is not available, it can be bought from an external supplier. In any case some welding
is necessary to be done on the tube before it can be assembled with the rod. Finally,
between sawing and welding, both rod and tube must be cleared of metal cuts pro-

duced by sawing. Assume that welding and sawing operations require ten time units,
assembly operation requires five time units, clearing can be done in two time units,
and the material is collected from warehouse in one time unit. If the tube is bought
from an external supplier then it takes fifty time units to get it. Moreover, tube and
rod must cool-down after welding which takes five time units.

Fig. 1. Example of a manufacturing process with alternatives.

The manufacturing processes from the above problem can be described using a
Temporal Network with Alternatives depicted in Figure 1. Nodes correspond to start
times of operations and arcs are annotated by simple temporal constraints in the form
[a, b], where a describes the minimal distance (in time) between the nodes and b de-
scribes the maximal distance. Informally, this network describes the traditional simple
temporal constraints [5] together with the specification of branching of processes.
There is a parallel branching marked by a semi-circle indicating that the process
splits and runs in parallel and an alternative branching marked by ALT indicating
that the process will consists of exactly one alternative path (we can choose between
buying a tube and producing it in situ).

3 Temporal Networks with Alternatives

Let us now formally define Temporal Networks with Alternatives from [1]. Let G be
a directed acyclic graph. A sub-graph of G is called a fan-out sub-graph if it consists
of nodes x, y1,…, yk (for some k) such that each (x, yi), 1 ≤ i ≤ k, is an arc in G. If
y1,…, yk are all and the only successors of x in G (there is no z such that (x, z) is an
arc in G and ∀i = 1,…,k: z ≠ yi) then we call the fan-out sub-graph complete. Simi-
larly, a sub-graph of G is called a fan-in sub-graph if it consists of nodes x, y1,…, yk
(for some k) such that each (yi, x), 1 ≤ i ≤ k, is an arc in G. A complete fan-in sub-

weldTube
weldRod

[50,∞]

[5,∞]

assembleKit

shipPiston

buyTube

sawTube

clearTube

sawRod

clearRod

assemblePiston

ALT

ALT

[1,∞] [0, ∞]

[0, ∞]

[10,∞] [10,∞]

[2,∞] [2,∞]

[1,∞]

[15,∞] [15,∞]

collectMaterial

[5,∞]

[1,∞]

graph is defined similarly as above. In both cases x is called a principal node and all
y1,…, yk are called branching nodes.

Definition 1: A directed acyclic graph G together with its pair wise edge-disjoint
decomposition into complete fan-out and fan-in sub-graphs, where each sub-graph in
the decomposition is marked either as a parallel sub-graph or an alternative sub-
graph, is called a P/A graph.

Definition 2: Temporal Network with Alternatives is a P/A graph where each arc
(x, y) is annotated by a pair of numbers [a,b] (a temporal annotation) where a de-
scribes the minimal distance between x and y and b describes the maximal distance,
formally, a ≤ ty – tx ≤ b, where tx denotes the position of node x in time. Frequently,
both numbers are non-negative, but our techniques do not require this restriction.

Figure 1 shows an example of Temporal Network with Alternatives. If we remove
the temporal constraints from this network then we get a P/A graph. Note that the arcs
(sawTube, clearTube), (sawRode, clearRod), and (assemblePiston, shipPiston) form
simple fan-in (or fan-out, it does not matter in this case) sub-graphs. As we will see
later, it does not matter whether the sub-graphs consisting of a single arc are marked
as parallel or alternative – the logical constraint imposed by the sub-graph will be
always the same. Hence, we can omit the explicit marking of such single-arc sub-
graphs to make the figure less overcrowded.

We call the special logical relations imposed by the fan-in and fan-out sub-graphs
branching constraints. Temporarily, we omit the temporal constraints, so we will
work with P/A graphs only, but we will return to temporal constraints later in the pa-
per. In particular, we are interested in finding whether it is possible to select a subset
of nodes in such a way that they form a feasible graph according to the branching
constraints. Formally, the selection of nodes can be described by an assignment of 0/1
values to nodes of a given P/A graph, where value 1 means that the node is selected
and value 0 means that the node is not selected. The assignment is called feasible if
• in every parallel sub-graph all nodes are assigned the same value (both the prin-

cipal node and all branching nodes are either all 0 or all 1),
• in every alternative sub-graph either all nodes (both the principal node and all

branching nodes) are 0 or the principal node and exactly one branching node are
1 while all other branching nodes are 0.

Notice that the feasible assignment naturally describes one of the alternative proc-
esses in the P/A graph. For example, weldRod is present if and only if both clearRod
and assembleKit are present (Figure 1). Similarly, weldTube is present if exactly one
of nodes buyTube or clearTube is present (but not both). Though, the alternative
branching is quite common in manufacturing scheduling, it cannot be described by
binary logical constraints from MaScLib [12] or Extended Resource Constrained Pro-
ject Scheduling Problem [9]. On the other hand, the branching constraints are specific
logical relations that cannot capture all logical relations between the nodes.

Obviously, given an arbitrary P/A graph the assignment of value 0 to all nodes is
always feasible. On the other hand, if some of the nodes are required to take value 1,
then the existence of a feasible assignment is by no means obvious. Let us now for-
mulate this decision problem formally.

Definition 3: Given a P/A graph G and a subset of nodes in G which are assigned to
1, the P/A graph assignment problem is “Is there a feasible assignment of 0/1 values
to all nodes of G which extends the prescribed partial assignment?”

Intuition motivated by real-life examples says that it should not be complicated to
select the nodes to form a valid process according to the branching constraints de-
scribed above. The following proposition from [1] says the opposite.

Proposition 1: The P/A graph assignment problem is NP-complete.

Nevertheless, if we look back to the motivation example (Figure 1), we can see
that the TNA has a specific topology which is, according to our experience, very typi-
cal for real-life processes. First, the process has usually one start point and one end
point. Second, the graph is built by decomposing meta-processes into more specific
processes until non-decomposable processes (operations) are obtained. There are ba-
sically two (three) types of decomposition. The meta-process can split into two or
more processes that run in a sequence, that is, after one process is finished, the subse-
quent process can start. The meta-process can split into two or more sub-processes
that run in parallel, that is, all sub-processes start at the same time and the meta-
process is finished when all sub-processes are finished. Finally, the meta-process may
consists of several alternative sub-processes, that is, exactly one of these sub-
processes is selected to do the job of the meta-process. Notice, that the last two de-
compositions have the same topology of the network, they only differ in the meaning
of the branches in the network. Note finally, that we are focusing on modeling in-
stances of processes with particular operations that will be allocated to time. Hence
we do not assume loops that are sometimes used to model abstract processes. Figure 2
shows how the network from Figure 1 is constructed from a single arc by applying
the above mentioned decomposition steps.

Fig. 2. Building a labeled nested graph.

We will now formally describe this concept that we called nesting. The resulting net-
work is called a Nested Temporal Network with Alternatives [2].

Definition 4: A directed graph G = ({s,e}, {(s,e)}) is a (base) nested graph. Let
G = (V, E) be a graph, (x,y) ∈ E be one of its arcs, and z1,…, zk (k > 0) be nodes such
that no zi is in V. If G is a nested graph (and I = {1,…,k}) then graph
G’ = (V ∪ {zi | i∈I}, E ∪ {(x,zi), (zi,y) | i∈I} – {(x,y)}) is also a nested graph.

According to Definition 4, any nested graph can be obtained from the base graph
with a single arc by repeated substitution of any arc (x,y) by a special sub-graph with

A

A

A

A

k nodes (see Figure 3). Notice that a single decomposition rule covers both the serial
process decomposition (k = 1) and the parallel/alternative process decomposition
(k > 1). Though this definition is constructive rather than fully declarative, it is practi-
cally very useful. Namely, interactive process editors can be based on this definition
so the users can construct only valid nested graphs by decomposing the base nested
graph.

Fig. 3. Arc decomposition in nested graphs.

The directed nested graph defines topology of the nested P/A graph but we also
need to annotate all fan-in and fan-out sub-graphs as either alternative or parallel sub-
graphs. Moreover, we need to do the annotation carefully so the assignment problem
can be solved easily for nested graphs and no node is inherently invalid. The idea is
to annotate each node by input and output label which defines the type of branching
(fan-in or fan-out sub-graph).
Definition 5: Labeled nested graph is a nested graph where each node has (possibly
empty) input and output labels defined in the following way. Nodes s and e in the
base nested graph and nodes zi introduced during decomposition have empty initial
labels. Let k be the number of nodes introduced when decomposing arc (x,y). If k > 1
then the output label of x and the input label of y are unified and set either to PAR or
to ALT (if one of the labels is non-empty then this label is used for both nodes).

Figure 2 demonstrates how the labeled nested graph is constructed for the motiva-
tion example from Figure 1. In particular, notice how the labels of nodes are intro-
duced (a semicircle for PAR label and A for ALT label). When a label is introduced
for a node, it never changes in the generation process. If an arc (x, y) is being decom-
posed into a sub-graph with k new nodes where k > 1, then we require that the output
label of x is unified with the input label of y. This can be done only if either both la-
bels are identical or at least one of the labels is empty. It is easy to show that the sec-
ond case always holds [2]. Now, we can formally introduce a nested P/A graph.
Definition 6: A nested P/A graph is obtained from a labeled nested graph by remov-
ing the labels and defining the fan-in and fan-out sub-graphs in the following way. If
the input label of node x is non-empty then all arcs (y, x) form a fan-in sub-graph
which is parallel for label PAR or alternative for label ALT. Similarly, nodes with a
non-empty output label define fan-out sub-graphs. Each arc (x, y) such that both out-
put label of x and input label of y are empty forms a parallel fan-in sub-graph.

Note, that requesting a single arc to form a parallel fan-in sub-graph is a bit artifi-
cial. We use this requirement to formally ensure that each arc is a part of some sub-
graph which is required to show that a nested P/A graph is a P/A graph [2]. What is
more interesting is that for Nested P/A Graphs the following proposition holds.

z z z

x x

y y

x

y

z z

x

y

z

k = 1 k = 2 k = 3

Proposition 2: The assignment problem for a nested P/A graph is tractable (can be
solved in a polynomial time).
The formal proof in [2] is based on constructing a constraint model for nested P/A
graphs where local (namely, arc) consistency, which is achievable in polynomial
time, implies global consistency. If global consistency is achieved then the solution
can be found using a backtrack-free depth-first search (provided that the problem is
globally consistent, otherwise no solution exists). This constraint model is basically a
(Berge acyclic) reformulation of the following straightforward model for the P/A
graph assignment problem. Each node x is represented using a Boolean validity vari-
able vx, that is a variable with domain {0,1}. If the arc between nodes x and y is a part
of some parallel sub-graph then we define the following constraint:

vx = vy. (1)
If x is a principal node and y1,…, yk for some k are all branching nodes in some al-

ternative sub-graph then the logical relation defining the alternative branching can be
described using the following arithmetic constraint:

vx = Σj=1,…,k vyj
. (2)

Notice that if k = 1 then the constraints for parallel and alternative branching are
identical (hence, it is not necessary to distinguish between them). Notice also that the
arithmetic constraint for alternative branching together with the use of {0,1} domains
defines exactly the logical relation between the nodes – vx is assigned to 1 if and only
if exactly one of vyj

 is assigned to 1.

4 Temporal Constraints

So far, we focused merely on logical relations imposed by the branching constraints
to show that logical reasoning is easy for nested P/A graphs (while it is hard for gen-
eral P/A graphs). Now we return to the temporal constraints. Notice that the selected
feasible set of nodes together with arcs between them forms a sub-graph of the origi-
nal P/A graph. We require this sub-graph to be also temporally feasible, which means
that all the temporal constraints between the valid nodes are satisfied in the sense of
temporal networks [5]. Naturally, the logical and temporal reasoning is intercon-
nected – if a temporal constraint between nodes x and y cannot be satisfied then (at
least) one of the nodes must be invalid (it is assigned to 0). Before we go into techni-
cal details notice that if the temporal constraints are in the form of precedence rela-
tions or in general only minimal distances are specified in arcs (Figure 1) then tempo-
ral feasibility is trivially guaranteed thanks to acyclicity of TNAs (any node can be
postponed in time). However, if deadlines are present (Figure 4) then temporal feasi-
bility is not obvious similarly to situations when maximal distance between nodes is
requested (for example, when cooling down restricts delays between operations).

Formally, we can extend the above logical constraint model by annotating each
node i by temporal variable ti indicating the position of the node in time. For simplic-
ity reasons we assume that the domain of such variables is an interval 〈0, MaxTime〉
of integers, where MaxTime is a large enough constant given by the user. Recall that

the temporal relation between nodes i and j is described by a pair [ai,j, bi,j]. This rela-
tion can now be naturally represented using the following constraint:

vi * vj * (ti + ai,j) ≤ tj ∧ vi * vj * (tj – bi,j) ≤ ti. (3)
If bi,j = ∞ then the second part of the conjunction is omitted and similarly if

ai,j = – ∞ then the first part of conjunction is omitted. Notice that if any vi or vj equals
zero (some involved node is invalid) then the constraint is trivially satisfied (we get
0 ≤ tj ∧ 0 ≤ ti). If both vi and vj equal 1 then we get (ti + ai,j ≤ tj ∧ tj – bi,j ≤ ti), which
is exactly the simple temporal relation between nodes i and j. Figure 4 shows how the
domains from the previous example (Figure 1) will look after filtering out the infeasi-
ble values by making the above constraint model arc consistent. We assume that
shipPiston (the bottom node) is a valid node and MaxTime = 70. Black nodes are
valid; validity of white nodes is not decided yet. Notice weak domain pruning of time
variables in the white nodes caused by a disjunctive character of the problem. Actu-
ally, the left most path (with buyTube) cannot be selected due to time constraints but
this is not discovered by making the constraints arc consistent.

Fig. 4. Domain filtering using the constraint model.

To improve domain filtering we propose to always propagate the temporal con-
straint even if the validity status of the node is not yet decided. If the temporal con-
straint is violated then we set some validity variable to 0 (if possible, otherwise a fail-
ure is detected). We will describe now the filtering rules that propagate changes of
domains between the constrained variables, namely, the values that violate the con-
straint are removed from the domains. Let d(x) be the domain of variable x, that is, a
set of values, and for sets A and B, A • B = {a • b | a ∈ A ∧ b ∈ B} for any binary
operation • such as + or –.

Assume that arc (i, j) is a part of a parallel branching, so in the solution either both
nodes i and j are valid and the temporal relation must hold, or both nodes are invalid

〈0,37〉

〈0,70〉

〈0,50〉

〈0,70〉

〈0,70〉

〈1,38〉

〈11,48〉

〈1,45〉

〈13,50〉

〈28,65〉

ALT

ALT

[1,∞]

[0,0]

[0,0]

[10,∞]
[10,∞]

[50,∞]

[2,∞] [2,∞]

[1,∞]

[5,∞]

[15,∞][15,∞]

[5,∞]

〈33,70〉

〈1,70〉
[1,∞]

weldTube

buyTube
clearTube

shipPiston

and the temporal relation does not play any role (the domains of temporal variables
are irrelevant provided that they are non-empty). Hence, we can always propagate the
temporal relation provided that we properly handle its violation. Let
UP = d(tj) ∩ (d(ti) + 〈ai,j, bi,j〉). The following filtering rule is applied whenever d(ti)
changes:

 d(tj) ← UP if UP ≠ ∅
 d(vj) ← d(vj) ∩ {0} if UP = ∅. (4)
Note that UP = ∅ means violation of the temporal relation which is accepted only

if the nodes are invalid. If the nodes are valid then a failure is generated because the
above rule makes the domain of the validity variable empty. Symmetrically, let
DOWN = d(ti) ∩ (d(tj) – 〈ai,j, bi,j〉). The following filtering rule is applied whenever
d(tj) changes:

 d(ti) ← DOWN if DOWN ≠ ∅
 d(vi) ← d(vi) ∩ {0} if DOWN = ∅. (5)
The following example demonstrates the effect of above filtering rules. Assume

that the initial domain of temporal variables is 〈0, 70〉, the validity of nodes is not yet
decided, and there are arcs (i, j) and (j, k) with temporal constraints [10, 30] and [20,
20] respectively. The original constraints do not prune any domain, while our ex-
tended filtering rules set the domains of temporal variables ti, tj, and tk to 〈0, 40〉,
〈10, 50〉, and 〈30, 70〉 respectively. If the initial domain is 〈0, 20〉 then the original
constraints again prune nothing, while our extended filtering rules deduce that the
participating nodes are invalid (we assume that logical constraints in the form vx = vy
are also present).

The propagation of temporal constraints in the alternative branching is more com-
plicated because we do not know which arc is used in the solution. Therefore, the
filtering rule uses a union of pruned domains proposed by individual arcs (from non-
invalid nodes) which is similar to constructive disjunction of constraints. Let x be the
principal node of a fan-in alternative sub-graph and y1,…, yk be all branching nodes.
We first show how domains of the branching nodes are propagated to the principal
node. Let UP = d(tx) ∩ ∪j = 1,…,k{(d(tyj)+〈ayj,x, byj,x〉) | d(vyj) ≠ {0}}. The following fil-
tering rule is applied whenever any d(tyj) or d(vyj) changes:

 d(tx) ← UP if UP ≠ ∅
 d(vx) ← d(vx) ∩ {0} if UP = ∅. (6)
It may happen that set UP is not an interval but a set of intervals. Then we may

use an interval hull which makes filtering less time and space consuming but a
smaller number of inconsistent values is filtered out.

The propagation from d(x) to d(yj) is done exactly like the DOWN propagation de-
scribed above (rule (5)) and similar filtering rules can be designed for fan-out alterna-
tive sub-graphs. Again, the main advantage of these rules is stronger pruning in com-
parison with the original constraints as we shall show using the example from Figure
4. In particular, if we propagate from weldTube to buyTube and clearTube, we obtain
〈0, 0〉 and 〈0, 48〉 as new domains of corresponding temporal variables. Now, if we
propagate through the other alternative branching going to buyTube from top, we
deduce that this node is invalid because the corresponding temporal constraint is vio-

lated and hence d(vbuyTube) ← {0}. Consequently, all remaining nodes are valid and
we achieved global consistency for both validity and temporal variables. Unfortu-
nately, the proposed filtering rules do not guarantee global consistency in general.
Figure 5 shows a nested TNA which is arc consistent, that is, the proposed filtering
rules do not remove any inconsistent value from the current domains. However, there
does not exist any solution to the problem.

Fig. 5. Locally consistent nested TNA with no solution.

As we shall show below, weak domain filtering of polynomial consistency tech-
niques such as arc consistency is inevitable for (nested) TNAs because the problem of
deciding existence of feasible assignment is in fact NP-complete.

Proposition 3: The problem of deciding whether there exists an assignment of times
and 0/1 values to all nodes of the (nested) TNA in such a way that all temporal and
branching constraints are satisfied is NP-complete.

Proof: The problem is obviously in NP, because it suffices to guess the assignment
and test its feasibility, which can be done in linear time in the number of arcs. For the
NP-hardness, we shall show that the subset sum problem, which is known to be NP-
complete [6], can be reduced (in the polynomial time) to our assignment problem.
The subset sum problem is this: given a set of positive integers Zi and integer K, does
the sum of some subset of {Zi | i = 1,…,n} equal to K? We can construct the
following nested TNA, where the validity status of the black node is set to 1 and
temporal annotation of arcs is [0,0] with the exception of n arcs annotated by [Zi, Zi]
and one arc annotated by [K,K] (Figure 6). Visibly, the subset sum problem has a
solution if and only if there exists a feasible assignment of temporal and validity
variables of the constructed nested TNA. The selection of the subset of integers is
identical to the choice of alternative branches in the graph. The temporal constraints
guarantee that the sum of selected integers equals K (the distance between the
leftmost and rightmost node according to the top path). ■

Fig. 6. Subset sum problem formulated as a Nested TNA.

…

[0,0] [K,K]

[Z1, Z1] [Z2, Z2] [Zn, Zn]

ALT ALT ALT ALT ALT ALT

[7,7]

[0,0]
[0,0]

[0,0]

[0,0]

[5,5]

[10,10]

〈0, 20〉

〈0, 20〉
〈7, 27〉

〈10, 27〉

〈7, 25〉

ALT ALT

〈7, 27〉

Nested TNAs can be seen from the point of view of disjunctive temporal networks
[13] so a similar solving approach can be applied to obtain a consistent network.
First, we find all solutions to the nested P/A assignment problem. Each solution
defines a sub-graph of the Nested TNA which is a simple temporal network (STN)
for which a consistency can be achieved in polynomial time [5] via path consistency
or using all-pairs-shortest-path algorithms. So, in the second step we make all
obtained STNs temporally consistent (if possible) or mark inconsistent STNs. Finally,
we restrict the domains of temporal and validity variables in the following way. If a
node is not present in any of consistent STNs then the node is made invalid. If a node
is present in all consistent STNs then the node is made valid. Finally, the temporal
domain for a non-invalid node is obtained by union of temporal domains of this node
in all consistent STNs where the node is present. This constructive approach has been
used in [8] for Temporal Planning Networks, but it has a problem if the number of
generated STNs is too large. For example the problem from Figure 6 requires 2n
STNs to be explored. Hence, the worst case time of the method is exponential in the
number of nodes.

We shall describe now a different algorithm which will compute the temporal do-
mains of all vertices in such a way, that every value in every temporal domain is con-
tained in some feasible solution. Let each edge (i, j) in a Nested TNA be labelled by
set Sij ⊆ 〈0, MaxTime〉 of admissible values for the distance between nodes i and j.
Initially, this set corresponds to interval [ai,j, bi,j] specifying the temporal constraint.
The proposed algorithm runs in two stages. In the first stage the sequence of decom-
position steps used to construct the Nested TNA is followed in the reverse order (this
sequence can be found algorithmically in polynomial time for any Nested TNA as
shown in [2]). In each composition step in which a parallel or alternative sub-graph
with principal vertices x and y and (not invalid) branching vertices z1, … , zk (if k = 1
then the type of branching is irrelevant) is replaced by a single edge (x, y), the set Sxy
is computed in the following way:

• Sxy = ∩ i=1,..,k (Sxzi + Sziy) if the replaced sub-graph contains parallel branching,
• Sxy = ∪ i=1,..,k (Sxzi + Sziy) if the replaced sub-graph contains alternative branching.

We shall show later that the input TNA has a feasible solution if and only if the final
base graph with only nodes s and e (into which the input TNA is composed in the end
of the first stage) has a feasible solution. If there is no feasible solution, the algorithm
terminates.

In the second stage of the algorithm, we compute restricted temporal constraints Tij
and restricted domains of temporal variables ti containing only globally consistent
values starting with the temporal domains in the base graph in the following way:

d(ts) ← 〈0, MaxTime〉 ∩ (〈0, MaxTime〉 – Sse)
d(te) ← 〈0, MaxTime〉 ∩ (〈0, MaxTime〉 + Sse)
Tse ← Sse.

After that the base graph is decomposed again into the input graph. During each de-

composition step in which a parallel or alternative sub-graph with principal vertices x
and y and branching vertices z1, … ,zk replaces a single edge (x, y), the sets Txzi and
Tziy and the domains d(zi) for all 1 ≤ i ≤ k are computed in the following way:

• Txzi = {u ∈ Sxzi | ∃v ∈ Sziy : u + v ∈ Txy}
• Tziy = {v ∈ Sziy | ∃u ∈ Sxzi : u + v ∈ Txy}
• d(tzi) = {b ∈ 〈0, MaxTime〉 | ∃a ∈ d(x) ∃c ∈ d(y) : (b – a) ∈ Txzi ∧ (c – b) ∈ Tziy }

If d(tzi) is empty then vertex zi is invalid so we can set d(vzi) ← {0} and remove the
vertex from the graph. This may happen only for alternative branching due to the way
how Sxy is computed from Sxzi and Sziy. Moreover, because Sxy is non-empty, at least
one node zi can still be valid so if any node is made invalid this is not propagated
elsewhere in the graph. Notice also that Txzi ⊆ Sxzi, Tziy ⊆ Sziy,and Txzi and Tziy contain
only those pairs of values which sum up to some value in Txy. We shall show now
that only values participating in at least one feasible solution are ever inserted into the
temporal domain of any vertex. First, let us define the notion of a feasible solution.

Definition 7: Let G = (V, E) be a nested TNA where each edge (i, j) ∈ E is labelled
by set Sij ⊆ 〈0, MaxTime〉 of admissible values. An assignment t : V → 〈0, MaxTime〉
of temporal values (natural numbers) to vertices and t : V → {0, 1}〉 of validity vari-
ables is called a feasible solution if for every edge (i, j) ∈ E we have

(vi * vj = 1) ⇒ (tj – ti ∈ Sij).

Remark: In the input TNA we assume that all sets Sij are intervals, however for aux-
iliary TNA’s constructed by the algorithm general sets will appear on newly intro-
duced edges. Moreover, without lost of generality we can assume these sets to be
within the interval 〈0, MaxTime〉.

Lemma 1: Let G = (V, E) be a TNA and let G’ = (V’, E’) be a TNA which originates
from G by replacing a parallel/alternative sub-graph with principal vertices x and y
and branching vertices z1, … , zk by edge (x, y). Then

a) if t : V → 〈0, MaxTime〉 is a feasible solution for G then t’ : V’ → 〈0, MaxTime〉
obtained by restricting t to V’ (which is a subset of V) is a feasible solution for
G’, and

b) if t’ : V’ → 〈0, MaxTime〉 is a feasible solution for G’ then there is a feasible so-
lution t : V → 〈0, MaxTime〉 for G which is an extension of t’ from V’ to V.

Proof: (part a) The only edge that has to be checked is the newly introduced edge (x,
y) originating from the composition operation. If vx = 0 or vy = 0 then the temporal
constraint is satisfied trivially. So let us assume vx = vy = 1.

• If the replaced sub-graph contains parallel branching then vzi = 1 for all 1 ≤ i ≤ k
and thus the feasibility of t implies tzi – tx ∈ Sxzi and ty – tzi ∈ Sziy for all 1 ≤ i ≤ k.
Summing up these two relations gives us ty – tx ∈ Sxzi + Sziy (for every 1 ≤ i ≤ k)

and thus ty – tx ∈ ∩ (Sxzi + Sziy) which is by definition Sxy and so the temporal
constraint on (x, y) is satisfied.

• If the replaced sub-graph contains alternative branching then vzi = 1 for exactly
one index i, 1 ≤ i ≤ k, and thus the feasibility of t implies tzi – tx ∈ Sxzi and
ty – tzi ∈ Sziy for this particular i. Summing up these two relations gives us
ty – tx ∈ Sxzi + Sziy (for the chosen i) and thus ty – tx ∈ ∪ (Sxzi + Sziy) which is by
definition Sxy and so the temporal constraint on (x, y) is satisfied.

(part b) The edges that have to be checked in this case are the deleted edges (x, zi) and
(zi, y). If vx = 0 or vy = 0 then also vzi = 0 for all 1 ≤ i ≤ k and all temporal constraints
on the deleted edges are satisfied trivially. So let us again assume vx = vy = 1.

• If the replaced sub-graph contains parallel branching then vzi = 1 for all 1 ≤ i ≤ k.
The feasibility of t’ implies t’y – t’x ∈ ∩ (Sxzi + Sziy). Let us pick an arbitrary in-
dex i, 1 ≤ i ≤ k. The fact that t’y – t’x ∈ Sxzi + Sziy means that there exist u ∈ Sxzi
and v ∈ Sziy such that t’y – t’x = u + v. Now setting tzi = t’x + u = t’y – v proves the
desired result because tzi – t’x = u ∈ Sxzi and ty – tzi = y ∈ Sziy and so the temporal
constraints on (x, zi) and (zi, y) are satisfied.

• If the replaced sub-graph contains alternative branching then vzi = 1 for exactly
one index i, 1 ≤ i ≤ k, and we have a freedom of choice to determine which one
(there must be at least one such vertex). The feasibility of t’ implies
t’y – t’x ∈ ∪ (Sxzi + Sziy). Let us fix an arbitrary index i, 1 ≤ i ≤ k, such that
t’y – t’x ∈ Sxzi + Sziy (at least one such i clearly exists) and set vzi = 1 and vzj = 0
for all j ≠ i. This means that there exist u ∈ Sxzi and v ∈ Sziy such that
t’y – t’x = u + v. Now setting tzi = t’x + u = t’y – v satisfies, in a similar fashion as
above, the temporal constraints on (x, zi) and (zi, y). The temporal constraints on
(x, zj) and (zj, y) for j ≠ i are satisfied trivially since vzj = 0. ■

Corollary: The input TNA has a feasible solution if and only if the final base graph
with only nodes s and e (into which the input TNA is composed in the end of the first
stage) has a feasible solution.

Now let us state (and prove) the properties of the second stage of the algorithm.

Lemma 2: Let G = (V, E) be a TNA and let G’ = (V’, E’) be a TNA which originates
from G by replacing edge (x, y) by a parallel/alternative sub-graph with principal ver-
tices x and y and branching vertices z1, … , zk. Then if every pair of values a ∈ d(tx),
c ∈ d(ty) such that (c – a) ∈ Txy participates in at least one feasible solution for G then
also every pair of values a ∈ d(tx), b ∈ d(tzi) such that (b – a) ∈ Txzi (and every pair of
values b ∈ d(tzi), c ∈ d(ty) such that (c – b) ∈ Tziy) participates in at least one feasible
solution for G’.

Proof: Let us consider an arbitrary a ∈ d(tx), b ∈ d(tzi) such that (b – a) = u ∈ Txzi. By
the definition of Txzi, there exists (at least one) v ∈ Tziy such that (u + v) ∈ Txy. Let us
define W = {v ∈ Tziy | u + v ∈ Txy} and C = {a + u + v | v ∈ W}. By the definition of
d(tzi) there must be at least one c ∈ C such that c ∈ d(ty). However, now (c – a) =
(u + v) ∈ Txy and so, by the assumption, the pair of values a, c participates in at least
one feasible solution for G. Clearly, this solution can be extended by value b ∈ d(tzi)
without violating the temporal constraints on edges (x, zi) and (zi, y). ■

Proposition 4: After the second stage of the algorithm terminates, the temporal do-
mains in the input graph fulfil global consistency.

Proof: The base graph clearly satisfies the assumptions of Lemma 2, namely every
pair of values x ∈ d(ts) and y ∈ d(te) such that (y – x) ∈ Tse participate in at least one
feasible solution for the base graph. Thus, due to Lemma 2, also every graph obtained
by a single decomposition step satisfies the statement of Lemma 2. Moreover, every
value b newly introduced into the domain d(tzi) has at least one value a in d(tx) and
one value c in d(ty) such that (b – a) ∈ Txzi and (c – b) ∈ Tziy. Thus every such value b
participates in at least one feasible solution. ■

Since we give no implementation details here, it is not possible to determine the
exact time complexity of the presented algorithm. However, it should be clear, that
any reasonable implementation will work in time polynomial in the size of the input
TNA and the upper bound MaxTime, thus providing a pseudo-polynomial algorithm
with respect to the size of input data (the constant MaxTime is part of the input but
coded in binary and thus taking log MaxTime bits).

5 Conclusions

The paper studies temporal reasoning in Temporal Networks with Alternatives which
are useful to model alternative process in production scheduling. We showed that
adding simple temporal constraints to Nested TNAs makes the problem of deciding
existence of logically and temporally feasible solution NP-complete. We presented a
straightforward constraint model and stronger filtering rules that can remove, via arc
consistency, some infeasible values from variables’ domains, but still cannot guaran-
tee global consistency. We also presented an algorithm for achieving global consis-
tency with pseudo-polynomial time complexity. Note that this algorithm is applicable
only to Nested TNAs while the proposed filtering rules work for any TNA. This pa-
per focuses on theoretical aspects of reasoning with Nested TNAs, the next step is
empirical evaluation of the presented techniques.

Acknowledgments. The research is supported by the Czech Science Foundation un-
der the contract no. 201/07/0205. We would like to thank anonymous reviewers for
their valuable comments.

References

1. R. Barták, O. Čepek, “Temporal Networks with Alternatives: Complexity and Model”,
Proceedings of the Twentieth International Florida AI Research Society Conference
(FLAIRS), AAAI Press, 2007, 641–646.

2. R. Barták, O. Čepek, “Nested Temporal Networks with Alternatives”, Papers from the
2007 AAAI Workshop on Spatial and Temporal Reasoning, Technical Report WS-07-12,
AAAI Press, 2007, 1-8.

3. J. Ch. Beck, M. S. Fox, “Scheduling Alternative Activities” Proceedings of AAAI-99,
AAAI Press, 1999, 680–687.

4. J. Blythe, “An Overview of Planning Under Uncertainty”, AI Magazine 20(2), 1999, 37–
54.

5. R. Dechter, I. Meiri, J. Pearl, “Temporal Constraint Networks”, Artificial Intelligence 49,
1991, 61–95.

6. M. R. Garey, D. S. Johnson, “Computers and Intractability: A Guide to the Theory of NP-
Completeness”, W. H. Freeman and Company, San Francisco, 1979.

7. Y. Hamadi, “Cycle-cut decomposition and log-based reconciliation”, ICAPS Workshop on
Connecting Planning Theory with Practice, 2004, 30–35.

8. P. Kim, B. Williams, M. Abramson, “Executing Reactive, Model-based Programs through
Graph-based Temporal Planning”, Proceedings of International Joint Conference on Artifi-
cial Intelligence (IJCAI), 2001.

9. J. Kuster, D. Jannach, G. Friedrich, “Handling Alternative Activities in Resource-
Constrained Project Scheduling Problems”, Proceedings of Twentieth International Joint
Conference on Artificial Intelligence (IJCAI-07), 2007, 1960–1965.

10. P. Laborie, “Resource temporal networks: Definition and complexity”, Proceedings of the
18th International Joint Conference on Artificial Intelligence, 2003, 948–953.

11. M. D. Moffitt, B. Peintner, M. E. Pollack, “Augmenting Disjunctive Temporal Problems
with Finite-Domain Constraints” Proceedings of the 20th National Conference on Artificial
Intelligence (AAAI-2005), AAAI Press, 2005, 1187–1192.

12. W. Nuijten, T. Bousonville, F. Focacci, D. Godard, C. Le Pape, “MaScLib: Problem de-
scription and test bed design”, 2003, http://www2.ilog.com/masclib

13. K. Stergiou, M. Koubarakis, “Backtracking algorithms for disjunctions of temporal con-
straints”, Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-
98), AAAI Press, 1998, 248–253.

14. Tsamardinos, T. Vidal, M. E. Pollack, “CTP: A New Constraint-Based Formalism for Con-
ditional Temporal Planning”, Constraints, 8(4), 2003, 365–388.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B103C503C403AD03C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003C003C103BF03B503BA03C403CD03C003C903C303B7002003C503C803B703BB03AE03C2002003C003BF03B903CC03C403B703C403B103C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002C0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E00290020039F03B9002003C103C503B803BC03AF03C303B503B903C2002003B103C503C403AD03C2002003B103C003B103B903C403BF03CD03BD002003B503BD03C303C903BC03AC03C403C903C303B7002003B303C103B103BC03BC03B103C403BF03C303B503B903C103AC03C2002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B062706260642002000500044004600200628062F0642062900200635064806310020063906270644064A062900200645064600200623062C06440020062C0648062F06290020063906270644064A062900200644064406370628062706390629002006330627062806420629002006270644064606340631002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E0020062A062A06370644062800200647063006470020062706440636064806270628063700200625062F06310627062C002006440644062E0637002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000700072006F0020006B00760061006C00690074006E00ED002000700072006500700072006500730073002000610020007400690073006B002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E0020005400610074006F0020006E006100730074006100760065006E00ED002000760079017E006100640075006A00ED00200076006C006F017E0065006E00ED0020007000ED00730065006D002E000D000AFEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000700072006F0020006B00760061006C00690074006E00ED002000700072006500700072006500730073002000610020007400690073006B002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E0020005400610074006F0020006E006100730074006100760065006E00ED002000760079017E006100640075006A00ED00200076006C006F017E0065006E00ED0020007000ED00730065006D002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E90074007200650020006B0069007600E1006C00F30020006D0069006E0151007300E9006701710020006E0079006F006D00640061006900200065006C0151006B00E90073007A00ED007400E900730072006500200073007A00E1006E00740020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E00200045007A0065006B00680065007A0020006100200062006500E1006C006C00ED007400E10073006F006B0068006F007A00200062006500740171007400ED007000750073002D0062006500E1006700790061007A00E1007300200073007A00FC006B007300E9006700650073002E000D000AFEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E90074007200650020006B0069007600E1006C00F30020006D0069006E0151007300E9006701710020006E0079006F006D00640061006900200065006C0151006B00E90073007A00ED007400E900730072006500200073007A00E1006E00740020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E00200045007A0065006B00680065007A0020006100200062006500E1006C006C00ED007400E10073006F006B0068006F007A00200062006500740171007400ED007000750073002D0062006500E1006700790061007A00E1007300200073007A00FC006B007300E9006700650073002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A0020007700690119006B0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F3007700200064006C00610020006E0061015B0077006900650074006C0061006E006900610020007700790073006F006B00690065006A0020006A0061006B006F015B00630069002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E00200055007300740061007700690065006E00690061002000740065002000770079006D006100670061006A01050020006F007300610064007A0061006E0069006100200063007A00630069006F006E0065006B002E000D000AFEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A0020007700690119006B0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F3007700200064006C00610020006E0061015B0077006900650074006C0061006E006900610020007700790073006F006B00690065006A0020006A0061006B006F015B00630069002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E00200055007300740061007700690065006E00690061002000740065002000770079006D006100670061006A01050020006F007300610064007A0061006E0069006100200063007A00630069006F006E0065006B002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F00200432044B0441043E043A043E0433043E0020043A04300447043504410442043204300020043F044004350434043204300440043804420435043B044C043D044B04450020043E0442043F0435044704300442043A043E0432002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E000D000AFEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F00200432044B0441043E043A043E0433043E0020043A04300447043504410442043204300020043F044004350434043204300440043804420435043B044C043D044B04450020043E0442043F0435044704300442043A043E0432002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF005900FC006B00730065006B0020006B0061006C006900740065006C00690020006200610073006B0131002000F6006E0063006500730069002000E70131006B0131015F006C006100720020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E002900200042007500200061007900610072006C0061007200200066006F006E00740020006B006100740131015F007401310072006D00610073013100200067006500720065006B00740069007200690072002E000D000AFEFF005900FC006B00730065006B0020006B0061006C006900740065006C00690020006200610073006B0131002000F6006E0063006500730069002000E70131006B0131015F006C006100720020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E002900200042007500200061007900610072006C0061007200200066006F006E00740020006B006100740131015F007401310072006D00610073013100200067006500720065006B00740069007200690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

