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Abstract. Though there exist some rules of thumb for design of good models 
for solving constraint satisfaction problems, the modeling process still belongs 
more to art than to science. Moreover, as new global constraints and search 
techniques are being developed, the modeling process is becoming even more 
complicated and a lot of effort and experience is required from the user. Hence 
(semi-) automated tools for improving efficiency of constraint models are 
highly desirable. The paper presents a low-information technique for 
discovering implied Boolean constraints in the form of equivalences, 
exclusions, and dependencies for any constraint model with (some) Boolean 
variables. The technique is not only completely independent of the constraint 
model (therefore a low-information technique), but it is also easy to implement 
because it is based on ideas of singleton consistency. Despite its simplicity, the 
proposed technique proved itself to be surprisingly efficient in our experiments. 

Keywords: implied constraints, reformulation, singleton consistency, SAT. 

1   Introduction 

Problem formulation is critical for efficient problem solving in formalisms like SAT 
(satisfiability testing), LP (linear programming), or CS (constraint satisfaction). LP 
and SAT formalisms are quite restricted, to linear inequalities in LP and logical 
formulas in SAT. Hence problem formulation is studied for a long time in LP and 
SAT because it is not always easy to express real-life constraints using linear 
inequalities or logical formulas. We cay say that the problem formulation is the core 
of courses for normal users of LP and SAT, while the solving techniques are studied 
primarily by experts and researchers contributing to improving the solving techniques. 
Opposite to SAT and LP, the CS formalism is very rich concerning its expressivity 
(any constraint can be directly modeled there). Hence the users get a big freedom in 
expressing their problems as constraint satisfaction problems which has some 
negative consequences. First, because the solvers need to cover the generality of the 
problem formulation, it is hard to improve their efficiency, and, actually, we have not 
observed the dramatic increase of speed of constraint solvers similar to SAT and LP 
solvers. Second, the main burden on efficient problem solving is on the user who 
must understand the details of the solving process to formulate the problem in an 



efficient way. Note that sometimes a small change in the model, such as adding a 
single constraint, may dramatically influence efficiency of problem solving which 
makes the modeling task even more complicated. There exist some rules of thumb 
how to design efficient constraint models [10,13], but constraint modeling is still 
assumed to be more art than science. There exist some automated techniques for on-
fly problem re-formulation such as detecting and breaking symmetries during search 
(for a short survey see [13]) or no-good recording (introduced in [14] and formally 
described in [6]). Usually the problem (re-)formulation is up to the user by using 
techniques such as adding symmetry breaking or implied constraints, encoding parts 
of the problem using specialized global constraints, or adding dominance rules. 

In this paper, we address the problem of fully automated generation of useful 
implied constraints in constraint satisfaction problems. Informally speaking, by a 
useful implied constraint we mean a constraint than is deduced from the existing 
model (hence implied) and that positively contributes to faster problem solving (hence 
useful). A fully automated technique means that the implied constraints are generated 
for any given constraint model without any user intervention. According to the 
principle that the best constraint model will be the one in which information is 
propagated first [10] we are trying to generate implied constraints that propagate more 
than the existing constraints (remove more inconsistencies from the model). Recall 
that more inconsistencies can be easily removed from any constraint model by 
applying a stronger consistency technique, for example by using path consistency 
instead of arc consistency. However, the main problem with stronger consistency 
techniques is their time and space complexity which disqualifies these techniques 
from being used repeatedly in the nodes of the search tree. Naturally, stronger 
consistency techniques can be applied once before the search starts but then their 
effect is limited to removing initially inconsistent values from variables’ domains. We 
propose to exploit information from these stronger consistency techniques in the form 
of implied constraints that are deduced during the initial consistency process and 
added to the constraint model. In particular, we propose to use singleton arc 
consistency [5] to deduce new constraints between Boolean variables in the problem. 
The rationale for using singleton arc consistency (SAC) is that this meta-technique is 
easy to implement on top of any constraint model (singleton consistency is a meta-
technique because it works on top of other “plain” consistency techniques such as arc 
consistency or path consistency). The reasons for restricting to Boolean variables are 
twofold. First, singleton consistency is an expensive technique especially when 
applied to variables with large domains so Boolean variables seem to be a good 
compromise. Second, we need to specify the particular form of constraints that we are 
learning, which is easier for Boolean variables. To be more specific, at this stage we 
are learning only the equivalence, implication, and exclusion constraints. In [1] we 
already showed that SAC over Boolean variables contributes a lot to removing initial 
inconsistencies so our hope is that the constraints derived from SAC can further help 
in problem solving. 

The paper is organized as follows. After giving the initial motivation for our work, 
we will define more formally the used notions and techniques. Then we will present 
the core of the proposed technique and the paper will be concluded by an 
experimental section showing the benefits and detriments of the proposed method. 



For now, we can reveal that despite the simplicity of the proposed method, the 
experiments showed surprising speed-ups for some problems. 

2   Motivation 

In [2] we proposed a novel constraint model for description of temporal networks 
with alternative routes similar to [4]. Briefly speaking, this model consists of a 
directed acyclic graph or in general a Simple Temporal Network [7], where the nodes 
are annotated by Boolean validity variables. There are special constraints between the 
validity variables describing logical relations between the nodes (we call them parallel 
and alternative branching). These constraints specify which nodes should be selected 
together to form one of the possible alternative routes through the network. Figure 1 
shows an example of alternative branching together with a constraint model 
describing the relations between the validity variables 

 
Fig. 1. A simple graph with alternative branching (left) and its formulation as a constraint 
satisfaction problem (left) over the validity variables. 

The above model is useful for description of manufacturing scheduling problems, but 
it suffers from several drawbacks. The main issue is that the problem of deciding 
which nodes are valid in the network is NP-complete in general [2]. Hence, opposite 
to Simple Temporal Networks [7] we cannot expect a complete polynomial constraint 
propagation technique that removes all inconsistencies from the constraint model. For 
example, the constraint model in Figure 1 cannot discover, using standard 
(generalized) arc consistency, that VA = 1 if VD is set to 1 (and vice versa). In [3] we 
proposed some pre-processing rules that can deduce implied constraints improving 
the filtering power of the constraint model. In particular, we focused on discovering 
(some) equivalent nodes, that is, the nodes whose validity status is identical in all 
feasible solutions (such as nodes A and D in Figure 1). Unfortunately, we also 
showed there that the problem whether two nodes are equivalent is also NP-hard. Our 
pre-processing rules from [3] are based on contracting the graph describing the 
problem and it is not easy to implement them and to extend them to other problems. 
Moreover, this method is looking only for equivalent nodes and ignores other useful 
relations such as dependencies and exclusions. 

The above problem is not the only problem combining Boolean and temporal 
variables. Fages [8] studies a constraint model for describing and solving min-cutset 
problems and log-based reconciliation problems. Again, there are Boolean validity 
variables, which can be connected by dependency constraints in case of log-based 
reconciliation problems, and ordering variables describing the order of the nodes in a 
linear sequence of nodes (to model acyclicity of the selected sub-graph). We believe 
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that there are many other real-life problems where Boolean variables are combined 
with numerical variables. Our learning method might be useful for such problems to 
discover implied constraints between the Boolean variables that also take in account 
the other constraints. Naturally, we can learn implied constraints in problems with 
Boolean variables only, such as SAT problems.  

3   Preliminaries 

A constraint satisfaction problem (CSP) P is a triple (X, D, C), where X is a finite set 
of decision variables, for each xi ∈ X, Di ∈ D is a finite set of possible values for the 
variable xi (the domain), and C is a finite set of constraints. A constraint is a relation 
over a subset of variables that restricts possible combinations of values to be assigned 
to the variables. Formally, a constraint is a subset of the Cartesian product of the 
domains of the constrained variables. We call the variable Boolean if its domain 
consists of two values {0, 1} (or similarly {false, true}). A solution to a CSP is a 
complete assignment of values to the variables such that the values are taken from 
respective domains and all the constraints are satisfied. We say that a constraint C is 
(generalized) arc consistent if for any value in the domain of any constrained 
variable, there exist values in the domains of the remaining constrained variables in 
such a way that the value tuple satisfies the constraint. This value tuple is called a 
support for the value. Note that the notion arc consistency is usually used for binary 
constraints only, while generalized arc consistency is used for n-ary constraints. For 
simplicity reasons we will use the term arc consistency independently of constraint’s 
arity. The CSP is arc consistent (AC) if all the constraints are arc consistent and no 
domain is empty. To make the problem arc consistent, it is enough to remove values 
that have no support (in some constraint) until only values with a support (in each 
constraint) remain in the domains. If any domain becomes empty then the problem 
has no solution. We say that a value a in the domain of some variable xi is singleton 
arc consistent if the problem P|xi=a can be made arc consistent, where P|xi=a is a CSP 
derived from P by reducing the domain of variable xi to {a}. The CSP is singleton arc 
consistent (SAC) if all values in variables’ domains are singleton arc consistent. 
Again, the problem can be made SAC by removing all SAC inconsistent values from 
the domains. Figure 2 shows an example of a CSP and its AC and SAC forms. 

 

 
Fig. 2. A graph representation of a CSP, an arc consistent problem, and a singleton arc 
consistent problem (from left to right). 
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Assume now the constraint satisfaction problem with Boolean variables A, B, C, and 
D and with constraints A = B + C and D = B + C (like in Figure 1).  This problem is 
both AC and SAC. Now assume that we assign value 1 to variable A. The problem 
remains AC but it is not SAC because value 0 cannot be assigned to variable D. This 
is an example of weak domain pruning in our temporal networks with alternatives. If 
we now include constraint A = D and make the extended problem AC then value 0 is 
removed from the domain of D by AC. Clearly, any assignment satisfying the original 
constraints also satisfies this added constraint. Hence we call this constraint implied, 
because the constraint is logically implied by the original constraints (sometimes, 
these constraints are also called redundant). Our goal is to find such implied 
constraints that contribute to stronger domain filtering. 

4   Learning via SAC 

As we already mentioned in the introduction and motivation, our original research 
goal was to easily identify some equivalent nodes in the temporal networks with 
alternatives. Recall, that finding all equivalent nodes is an NP-hard problem [3] so we 
focused only on finding equivalences similar to those presented in Figure 1 (nodes A 
and D). An easy way, how to identify such equivalences, is a trial-and-error method 
similar to shallow backtracking or SAC. Basically, we will try to assign values to 
pairs of variables and if we find that only identical values can be assigned to the 
variables then we deduce that the variables are equivalent (they must be assigned to 
the same value in any solution). As a side effect, we can also discover some 
dependencies between the variables (if 1 is assigned to B then 1 must be assigned to 
A) and exclusions between the variables (either B or C must be assigned to 0 or in 
other words it is not possible to assign 1 to both variables B and C). 

We will now present the learning method for an arbitrary constraint satisfaction 
problem P. Recall, that we will only learn specific logical relations between the 
Boolean variables of P. We will gradually try to assign values to variables and each 
time we try the assignment, this assignment is propagated to other variables (the 
problem is made AC). If the assignment leads to a failure then we know that the other 
value in the domain must be assigned to the variable (recall that we are working with 
Boolean variables). The whole learning process consists of two stages. 

First, we collect information about which variables are instantiated after assigning 
value 1 to some variable A. We distinguish between directly instantiated variables, 
that is, those variables that are instantiated by making the problem P|A=1 arc consistent 
(one value in the variable domain is refuted by AC so the other value is used), and 
indirectly instantiated variables, that is, those variables where we found their value 
by refuting the other value in a SAC-like style (AC did not prune the domain, but 
when we try to assign a particular value to the variable it leads to a failure so the other 
value is used). Informally speaking, if we assign value 1 to variable A and make the 
problem arc consistent then all variables that are newly instantiated are directly 
instantiated variables. Indirectly instantiated variables are those variables B that are 
not instantiated by AC in P|A=1 but for which only one value is compatible with A = 1 
because if the other value is assigned to B, it leads to a failure after making the 



problem AC (see procedure Learn below). More formally, let B be a non-
instantiated (free) Boolean variable in AC(P|A=1), where AC(P) is the arc consistent 
form of problem P (inconsistent values are removed from the domains of variables). If 
P|A=1,B=0 is not arc consistent then value 0 cannot be assigned to B, hence value 1 must 
be used for B. Symmetrically, we can deduce that value 0 must be assigned to B if 
P|A=1,B=1 is not arc consistent. Together, we can deduce which value must be used for 
B if value 1 is assigned to A. If both values for B are feasible then no information is 
deduced. If no value for B is feasible then value 1 cannot be used for A and hence A 
must be instantiated to 0. Note that information about indirectly instantiated variables 
is very important because it will help us to deduce implied constraints that improve 
propagation of the original constraint model. More formally, we are looking for 
implied constraints C such that AC(P|C) ⊂ AC(P), where P|C is a problem P with 
added constraint C and the subset relation means that all domains in AC(P|C) are 
subsets of relevant domains in AC(P) and at least one domain in AC(P|C) is a strict 
subset of the relevant domain in AC(P). In other words, constraint C helps in 
removing more inconsistencies from problem P. 

The learning stage deduces three types of implied constraints. If B = 0 is indirectly 
deduced from the assignment A = 1 and A = 0 is indirectly deduced from the 
assignment B = 1 then the pair {A, B} forms an exclusion, which is an implied 
exclusion constraint (A = 0 ∨ B = 0). Notice that this constraint really improves 
propagation because for example if 1 is assigned to A then the constraint immediately 
deduces B = 0, while the original set of constraints deduced no pruning for B. 
Similarly, if B = 1 is indirectly deduced from the assignment A = 1 then B depends on 
A, which is an implied dependency constraint (A = 1 ⇒ B = 1). Again, this constraint 
improves propagation. Note that we introduce this constraint only if variables A and 
B are not found to be equivalent. The equivalent variables are found using the 
following procedure. We construct a directed acyclic graph where the nodes 
correspond to the variables and the arcs correspond to the dependencies between the 
variables. These dependencies are found in the first stage, we assume both direct 
dependencies discovered by the AC propagation and indirect dependencies discovered 
by the SAC-like propagation. Strongly connected components of this graph form 
equivalence classes of variables. Note that if A and B are in a strongly connected 
component then (A = 1 ⇒* B = 1) and (B = 1 ⇒* A = 1), where ⇒* is a transitive 
closure of relation ⇒. All equivalent variables must be assigned to the same value in 
any solution so we can put equality constraint between these variables. 

The following code of procedure Learn shows both the data collecting stage and 
the learning stage of our method. BoolVars(P) is a set of not-yet instantiated Boolean 
variables in P, doms(P) are domains of P, DX = {V} means that the domain of 
variable X consists of one element V, and AC(P) is the arc consistent form of problem 
P (AC(P) = fail if problem P cannot be made arc consistent). 

The main advantage of the proposed method is simplicity and generality. Thanks to 
meta-nature of singleton consistency it can be implemented easily in any constraint 
solver and it works with any constraint satisfaction problem (even if global 
constraints and non-Boolean variables are included). The time complexity of the data 
collection stage is O(n2.|AC|), where n is the number of Boolean variables and |AC| is 
the complexity to make the problem arc consistent. Strongly connected components 
of the dependency graph can be found in time not greater than O(n2) and exclusions 



and dependencies are generated in time O(n2). Clearly, majority of time to learn 
implied constraints by the above method is spent by collection information using the 
SAC-like method. 

 
procedure Learn (P: CSP) 
  for each A in BoolVars(P) do // data collecting stage 
    Q ← AC(P|A=1) 
    Direct(A) ← { X/V | DX = {V} in doms(Q)} 
    for each B in BoolVars(Q) s.t. A ≠ B & Q ≠ fail do 
      if AC(Q|B=0) = fail then 
        Q ← AC(Q|B=1) 
      else if AC(Q|B=1) = fail then 
        Q ← AC(Q|B=0) 
    end for 
    Indirect(A) ← { X/V | DX = {V} in doms(Q)} – Direct(A) 
    if Q = fail then 
      P ← AC(P|A=0) 
      if P = fail then stop with failure 
  end for 
  // learning stage 
  G ← (BoolVars(P), {(A,B) | B/1 ∈ Direct(A) ∪ Indirect(A)}) 
  Equiv ← StronglyConnectedComponents(G) 
  Excl ← { {A,B} | B/0 ∈ Indirect(A) & A/0 ∈ Indirect(B)} 
  Deps ← { (A,B) | B/1 ∈ Indirect(A) & ¬ {A,B} ⊆ X ∈ Equiv} 
  return (Equiv, Excl, Deps) 
end Learn 

5   Implementation and Experiments 

To evaluate whether our learning technique is useful for problem solving we 
implemented the learning technique in SICStus Prolog 3.12.3 and tested it on 1.8 GHz 
Pentium 4 machine running under Windows XP. Note that we used a naïve (non-
optimal) implementation of the SAC algorithm that is called SAC-1 [5]. This 
algorithm simply assigns a value to the variable and propagates this assignment via 
standard arc-consistency algorithm. The algorithm does not pass any data structures 
between several runs which makes it non-optimal. Nevertheless, its greatest 
advantage is that the implementation is very easy and can be realized in virtually any 
constraint solver. For the experiments we used existing benchmarks for min-cutset 
problems [11] and a dozen of benchmarks for SAT problems [9]. 

5.1   Learning for CSP 

In our first experiment, we compared efficiency of the original constraint model for 
min-cutset problems from [8] with the same constraint model enhanced by the learned 
implied constraints. Note that these constraint models contain both Boolean variables 



(validity) and integer variables (ordering of nodes). Recall that the min-cutset 
problem consists of finding the largest subset of nodes such that the sub-graph 
induced by these nodes does not contain a cycle. So it is an optimization problem. We 
used the data set from [11] with 50 activities and a variable number of precedence 
relations. Figure 3 shows the comparison of above models both in the runtime 
(milliseconds) and in the number of backtracks. It is important to say that the runtime 
for the enhanced model consists of the time to learn the implied constraints and the 
time to solve the problem to optimality (using the branch-and-bound method). The 
time to learn the implied constraints is negligible there (from 80 to 841 milliseconds) 
and hence we do not show that time separately in the graphs. We used the well-known 
Brélaz variable ordering heuristic also known as dom+deg heuristic (the variables 
with the smallest domain are instantiated first, ties broken by preferring the most 
constrained variables). 
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Fig. 3. Comparison of runtimes (milliseconds) and the number of backtracks for the original 
model of min-cutset problems and the model enhanced by the learned implied constraints with 
the Brélaz variable ordering heuristic. 

The graphs in Figure 3 show a significant decrease of the runtime and of the number 
of backtracks, which is a promising result especially taking in account that the time to 
learn is included in the overall time. This decrease is mainly due to the learned 
exclusion constraints which capture cycles in the graph (one node in the exclusion 
must be invalid to make the graph acyclic). Clearly, the Brélaz heuristic is also 
influenced by adding constraints to the model so the implied constraints may change 
the ordering of variables during search and hence influence efficiency. As we want to 
see also the effect of implied constraints on pruning the search space, we need to use 
exactly the same search procedure for both models. The straightforward approach is 
to use a static variable ordering. Figure 4 shows the comparison of both models using 
the static variable ordering heuristic. Again, we used the branch-and-bound method to 
solve the problem to optimality. Due to time reasons, we used a cut-off limit 
300 000 000 milliseconds (>83 hours) for a single run so the most complex problems 
(200 - 300, and 600 precedences) were not solved to optimality for the original model 
and hence information about the number of backtracks is missing. 
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Fig. 4. Comparison of runtimes (milliseconds) and the number of backtracks for the original 
model of min-cutset problems and the model enhanced by the learned implied constraints with 
the static variable ordering heuristic (a logarithmic scale). 

Again, the enhanced model beats the original model and shows a significant speedup. 
Moreover, by comparing both experiments, we can see that the learned constraints not 
only pruned more the search space by stronger domain filtering (which was our 
original goal) but in combination with the Brélaz heuristic they also make the search 
faster by focusing the search algorithm to critical (the most constrained) variables.  

5.2   Learning for SAT Problems 

Because our method works primarily with Boolean variables, the natural benchmark 
to test efficiency of the method was using SAT problems. We take several problem 
classes from [9], namely logistics problems from AI planning, all-interval problems, 
and quasigroup (Latin square) problems and encoded the problems in a 
straightforward way as CSPs. The choice of problem classes was driven by the idea 
that structured problems may lead to more and stronger implied constraints. It would 
be surely better to do more extensive tests with other problem classes, but a limited 
computation time forced us to select only few most promising classes. Again we used 
the Brélaz variable ordering heuristic in the search procedure which was backtracking 
search with maintaining arc consistency. Table 1 summarizes the results, it shows the 
problem size (the number of Boolean variables), the number of backtracks and the 
time to solve the problems (for the enhanced model the time includes both the time to 
learn as well as the time solve the problem), and the time for learning. 



Table 1.  Comparison of solving efficiency of the original and enhanced constraint models for 
selected SAT problems (the smallest #backtracks / runtime is in bold). 

original enhanced instance size 
backtracks runtime 

(ms) 
backtracks overall time 

(ms) 
time to learn 

(ms) 
logistics.a 828 >159827502 >60000000 4 53677 53657 
logistics.b 843 >107546059 >60000000 38494 91622 65955 
logistics.c 1141 >95990563 >60000000 26195 165537 150776 
logistics.d 4713 >38809049 >60000000 5738102 28866167 16116604 
ais6 61 16 10 3 400 390 
ais8 113 178 120 523 3435 3155 
ais10 181 3008 2914 118 14911 14811 
ais12 265 66119 80386 140 49091 48921 
qg1-07  343 26 811 0 146371 146291 
qg1-08  512 331474 12445947 1791551 59608683 886605 
qg2-07  343 34 1061 0 178987 178906 
qg2-08  512 213992 8005862 213992 7980054 1053394 
qg3-08  512 26 170 22 68018 67908 
qg3-09  729 357521 2216758 25246 343845 233917 
qg4-08  512 2956 12839 367 68088 66556 
qg4-09  729 614 3925 86 225324 224934 
qg5-09  729 1525 22573 0 1933 1933 
qg5-10  1000 119894 2647697 0 61318 61318 
qg5-11  1331 >1741008 >60000000 0 855000 854880 
qg5-12  1728 >1195753 >60000000 0 6467810 6467810 
qg5-13  2197 >802393 >60000000 41641 23622817 21695532 
qg6-09  729 177 2304 0 51143 51113 
qg6-10  1000 12234 238493 0 63732 63732 
qg6-11  1331 1668478 34617658 4545 3233200 3153716 
qg6-12  1728 >2512643 >60000000 586472 22669216 7159264 
qg7-09  729 0 40 0 53337 53297 
qg7-10  1000 348 6930 0 46557 46557 
qg7-11  1331 27777 674701 0 429658 429658 
qg7-12  1728 >2239230 >60000000 148648 10344354 6560683 
qg7-13  2197 261 14101 525428 31893597 13893597 
 
The experimental results show some interesting features of the method. First, the 
model enhanced by the learned implied constraints was frequently solved faster and 
using a smaller number of backtracks than the original model. The smaller number of 
backtracks is not that surprising, because the implied constraints contribute to pruning 
the search space. However, a shorter overall runtime for the enhanced model is a nice 
result, especially taking in account that the overall runtime includes the time to learn 
the implied constraints. The speed-up is especially interesting in the logistics 
problems, where the learning method deduced many exclusion constraints (probably 
thanks to the nature of the problem) which contributed a lot to decreasing the search 
space. The few examples when solving required more backtracks for the enhanced 
model (ais8, qg1-08, and qg7-13) can be explained by “confusing” the variable 
ordering heuristic by the implied constraints. Figure 3 and 4 showed that adding 
implied constraints influenced significantly the Brélaz variable ordering heuristic 
which is clear – the labeled variables have Boolean domains so the not-yet 
instantiated variables are ordered primarily by using the number of constraints in 



which they are involved. It may happen that in some problems this may lead to a 
wrong decision as no heuristic is perfect for all problems. It will be interesting to 
study further how the added implied constraints influence structure-guided variable 
ordering heuristics. 

A second interesting feature is that for several quasigroup problems which have no 
feasible solution, the learning method proved infeasibility (in italics in Table 1) so no 
subsequent search was necessary to solve the problem. Again in most problems it was 
still faster than using the original constraint model. Finally, though we almost always 
improved the solving time, the overhead added by the learning method (the additional 
time to learn) was not negligible and the total time to solve the problem was 
sometimes worse than using the original model. This is especially visible in simple 
problems, where we spent a lot of time by learning, while in the meantime the 
backtracking search found easily the solution in the original model. This leads to a 
straightforward conclusion that if the original constraint model is easy to solve, it is 
useless to spent time by improving the model, for example by adding the implied 
constraints. Of course, the open question is how to find if the model is easy to solve. 

5.3   Reformulation for SAT Solvers 

In the previous section, we used SAT problems to demonstrate how the proposed 
learning method improves the solving time for these problems. However, we modeled 
the SAT problems using constraints and we used constraint satisfaction techniques to 
solve such models (combination of backtrack search and constraint propagation), 
which is surely not the best way to solve SAT problems. In the era of very fast SAT 
solvers, it might be interesting to find out if the implied constraints, that we learned 
using a constraint model, can also improve efficiency of the SAT solvers. We used 
one of the winning solvers in the SAT-RACE 2006 competition, RSat [12], to validate 
our hypothesis, that the learned constraints may also improve efficiency of SAT 
solvers. Table 2 shows the comparison of the number of backtracks, the number of 
decision (choice) points, and runtime for the original SAT problem and for the SAT 
problem with the added implied constraints. Again, we used the problem classes from 
[9].  

There is clear evidence that the implied constraints decrease significantly the 
number of choice points of the RSat solver (and in most cases also the number of 
backtracks). This is an interesting result, because the RSat solver is using different 
solving techniques than the CSP solvers, to which our learning algorithm is targeted. 
Nevertheless, regarding the runtime the situation is different. Thought the difference 
is not big, the model enhanced by the implied constraints is slower in most cases. This 
may be explained by the additional overhead for processing a larger number of 
clauses. Note that for some models, the percent of the implied constraints is 20-30% 
of the original number of constraints so if the solver is fast, this increase of the model 
size will surely influence the runtime. Still, it is interesting to see that the learned 
implied constraints are generally useful to prune the search space and perhaps, for 
more complicated problems, their detection may pay-off even if we assume time to 
learn these constraints (Table 1).  
 



Table 2.  Comparison of solving efficiency of the original model and the model with learned 
constraints solved by RSAT solver (the smallest #backtracks / #decisions / runtime is in bold). 

original enhanced instance 
backtracks decisions runtime 

(ms) 
backtracks decisions runtime 

(ms) 
logistics.a 137 1394 40 31 176 50 
logistics.b 251 2019 60 119 558 90 
logistics.c 238 2999 75 126 617 80 
logistics.d 33 547 130 42 377 1022 
ais6 14 46 5 0 11 0 
ais8 20 74 10 0 22 10 
ais10 1142 1877 90 0 37 20 
ais12 19 152 25 0 56 30 
qg1-07  105 134 140 44 72 130 
qg1-08  4732 5608 1542 18288 20528 8142 
qg2-07  35 54 130 37 53 130 
qg2-08  14017 16270 6228 45678 52308 31320 
qg3-08  122 175 40 122 153 50 
qg3-09  57294 65736 26137 38434 44384 19027 
qg4-08  638 737 100 586 667 110 
qg4-09  8 30 60 6 23 60 
qg5-11 44 78 230 0 4 370 
qg5-13  38617 48396 36111 32971 38733 39046 
qg6-09  0 15 70 0 3 130 
qg6-12  12386 14426 7731 11171 13230 7761 
qg7-09  1 7 70 0 3 130 
qg7-12  4052 5042 1862 3360 4104 1912 
qg7-13  2716 4139 1592 1375 1935 1131 

 
 

5.4   Learning Efficiency 

The critical feature of the proposed method is efficiency of learning, that is, how 
much time we need to learn the implied constraints. In our current implementation, 
this time is given be the repeated calls to the SAC algorithm so the time depends a lot 
on the number of involved Boolean variables and also on the complexity of 
propagation (the number of constraints). The following figure shows the time for 
learning as a function of the number of involved Boolean variables for experiments 
from the previous sections (plus some additional SAT problems). 

Clearly, due to the complexity of SAC, the proposed method is not appropriate for 
problems with a large number of Boolean variables. Based on our experiments, as a 
rough guideline, we can say that the method is reasonably applicable to problems with 
less than a thousand of Boolean variables. This seems small for SAT problems, but 
we believe it is a reasonable number of Boolean variables in CSP problems where 
non-Boolean variables are also included. 
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Fig. 5. Time to learn (in milliseconds) as a function of the number of involved Boolean 
variables (a logarithmic scale). 

4   Conclusions 

In the paper we proposed an easy to implement method for learning implied 
constraints over the Boolean variables in constraint satisfaction problems and we 
presented some preliminary experiments showing a surprisingly good behavior of this 
method. In the experiments we used naïve hand-crafted constraint models, that is, the 
models that a “standard” user would use to describe the problem as a CSP, so the nice 
speed-up is probably partly thanks to weak propagation in these models. Nevertheless, 
recall the holly grail of constraint processing – the user states the constraints and the 
solver provides a solution. For most users, it is natural to use the simplest constraint 
model to describe their problem and we showed that for such models, we can improve 
the speed of problem of solving. 

To summarize the main advantages of the proposed method: it is easy to 
implement, it is independent of the input constraint model, and it contributes to speed-
up of problem solving. The experiments also showed the significant drawback of the 
method – a long time to learn (an expected feature due to using SAC techniques). 
Clearly, the method is not appropriate for easy-to-solve problems where the time to 
learn is much larger than the time to solve the original constraint model. On the other 
hand, we did the majority of experiments with the SAT problems where all variables 
are Boolean, while the method is targeted to problem where only a fraction of 
variables is Boolean, such as the min-cutset problem. We believe that the method is 
appropriate to learn implied constraints for the base constraint model which is then 
extended by additional constraints to define a particular problem instance. So learning 
is done just once while solving is repeated many times. Then the time to learn is 
amortized by the repeated attempts to solve the problem. The time to learn can also be 



decreased by identifying the pairs of variables that could be logically dependent. This 
may decrease the number of SAC checks. We did some preliminary experiments with 
the SAT problems, where we tried to check only the pairs of variables that are not “far 
each from other”, but the results were disappointing – the system learned fewer 
implied constraints. Still, restricting the number of checked pairs of variables may be 
useful for some particular problems. 

Note finally that the ideas presented in this paper for learning Boolean constraints 
using SAC can be extended to learning other type of constraints using other 
consistency techniques. However, as our experiments showed, it is necessary to find a 
trade-off between the time complexity and the benefit of learning. 
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