Planning & Scheduling

So far, we discussed ad-hoc planning algorithmes, i.e.,
algorithms designed specifically to do (only) planning.
Would it possible to convert the planning problem to a
problem in another formalism and to exploit existing
solving techniques for that formalism?
Yes, we can use for example SAT and CSP.
Why?
Improvement of the SAT/CSP solver will immediately give an
improvement of the planner (without an extra effort).
Problem:
SAT and CSP use static encodings (with a known number of
variables), but we do not know the size of plan!
Solution:
Let us look for plans of a given length
and if no plan exists, then extend the expected plan length.

1. The restricted-length planning problem is encoded
as a propositional formula.

— How to encode the states?
— How to encode state transitions (via actions)?

2. Using a SAT solver we find a model of the formula
(assignment of values to variables).

— Davis-Putnam, GSAT, ...

3. From the model we decode the solution of the
original problem (the plan).

» States in a classical representation are sets (conjunction) of
instantiated atoms.

Example: at(r1,11)

* We can directly encode atoms as propositional variables.
Example: the state above has the following model
{at(r1,I1)<—true, loaded(rl)<—false}
— Isn’t it possible that a robot is at two places at the same time?

For example, if having a propositional variable for at(r1,12), we get two
models of the above formula:

» {at(r1,l1)<true, loaded(rl)<—false, at(r1,12)<true}

* {at(r1,|1)<true, loaded(rl)<—false, at(r1,|2)<—false}

but only the second model corresponds to reality.

— We need to encode the implicit information too!
i.e. at(r1,l1) A —at(r1,12) A —loaded(r1)

Note:
A single formula can encode a set of states together:
((at(r1,11) A —at(r1,12)) v (—at(r1,l1) A at(r1,12))) A —=loaded(r1)

The formula encoding a state does not cover dynamics of the
system (state changes)!

The state transition using action move(rl,l1,l12) can be described
using two formulas:

— at(r1,11) A —at(r1,12) % the state before the transition

— =at(r1,l1) A at(r1,12) % the state after the transition

Different atoms hold at different states!

We extend the attributes of atoms with the name of the state
(fluents) so the transition can be encoded using a single
formula:

— at(r1,11,s1) A —at(r1,12,s1) A —at(rl,l1,s2) A at(r1,|2,s2)

Plus, we add a new propositional variable describing the action
that caused the transition:

— move(rl,l1,12,51) A
at(r1,l1,s1) A —at(r1,12,s1) A —at(r1,l1,s2) A at(rl,l2,s2)

But how do we know that action move is applied to state s17?

We are looking for plans with a given maximal length (n).

For each step i of the plan we have:

variables (fluents) L describing the atoms in the state, such as at(r1,11,i),
variables describing possible actions A, such as move(rl,I1,12,i).

The planning problem is encoded as a conjunction of the following formulas:

Formula encoding the initial state (a compete description of the state):
Mpo | PES AA{-p, | PEL-5y}

Formula encoding the goal (a partial encoding of the state):
Mp | p.€EgtAA{-p, | PEELI

For each action we have a formula describing the state transition caused

by that action in step i of the plan:

— a, = A{p, | pE precond(a)} A Afe,, | e E effects(a)}
Axiom of complete exclusion:

— No two different actions a and b can be applied simultaneously in any
step:

—a; V- b,

Is it enough?

* We need to ensure that atoms, which are not modified by a
selected action, remain the same in the next state.

* Frame axioms:
formulas describing what is not changed between the states
there are several ways how to encode them:

— classical frame axioms

* each action describes which atoms p are not changed by the action
(p&effects(a))

a;= (p; < piy1)
* we also need to ensure that some action is selected in each step
Via, | a€A}

— frame axioms with explanation
* the truth value of the fluent is changed if only if some action changes it
(=p; A Py = V{a, | pEeffects*(a)}) ;; some action added p
A (p; A =Py, = Via, | pEeffects(a)}) ;; some action deleted p

* we need an axiom of complete exclusion there (that leads to linearly ordered
plans only)

* itis enough to use an axiom of conflicting exclusion, i.e., two dependent
actions cannot be selected in a single step (recall the planning graph)

* Let us now try to decrease the number of variables necessary
to encode the actions.
(less number of variables = smaller search space)

e Situation: 3 robots and 3 locations

— To model operator move(r,locl,loc2) we need 3x3x3= 27 variables in
each layer.

— The variable for action move(rl,locl,loc2) can be substituted by a
conjunction of three variables describing the action attributes:

movel(rl) A move2(locl) A move3(loc2)

— Now, several actions of the same operator share variables (for
example move2(locl) is used for move(rl,locl,loc2) as well as for
move(r2,locl,loc3)) so we have 3+3+3= 9 variables in each layer.

* We can even share variables between actions of different
(but similar) operators, for example move and fly.

* The framework for planning as SAT
forn=0,1, 2, ...,
encode the restricted-length planning problem (P,n) as SAT ®
if @ is satisfiable then
from the model of ® extract the solution plan

— Plan extraction

* in each step | there is (exactly) one variable a, with the value true,
that determines the action in a plan

* How does it work?
— not very practical in its core form (time and memory consumption)
— much better in combination with other ideas such as the planning
graph
* system BlackBox encodes the planning graph as SAT using
variables for actions and atoms in the graph
* satisfiability of the formula is used for plan extraction

Planning domain:
— onerobot: rl
— two connected locations: |1, 12
— one operator: move

Encoding of the planning problem (P,n) for plans of lengthn=1

— initial state: {at(r1,11)}
at(r1,11,0) A —at(r1,12,0)
— goal: {at(r1,12)}

at(r1,12,1)

— operator: move(r,l,I') = (precond: at(r,l), effects: at(r,I’), —at(r,l))
move(rl,l1,12,0) = at(r1,11,0) A at(r1,I2,1) A —at(rl,l1,1)
move(rl,|2,11,0) = at(r1,12,0) A at(r1,l1,1) A —at(r1,12,1)

— axiom of complete exclusion:

-move(rl,|1,12,0) v -move(rl,i2,I1,0)
— frame axioms with explanation:
-at(r1,11,0) A at(rl,l1,1) = move(rl,i2,I1,0)
-at(r1,12,0) A at(r1,12,1) = move(rl,i1,12,0)
at(r1,11,0) A —at(r1,l1,1) = move(ri,l1,12,0)
at(r1,12,0) A —at(r1,l2,1) = move(rl,|2,11,0)

Planning as a CSP

— planning problem is encoded fully as a CSP
* SAT is a special case of a CSP

* but we will use a novel representation of planning
problems — a multi-valued state-variable representation

A CSP in planning

— constraint satisfaction techniques can be used in
planning algorithms (for example in Graphplan to
extract a plan)

— this is currently a more common way of exploiting a
CSP in planning

Multi-valued state variables describe the properties of objects that
are changing between the states (by actions).

— rloc: robots x S — locations

— rload: robots x S — containers U {nil}

— ¢pos: containers x S — locations U robots

Rigid relations are (still) represented using relations.
— adjacent(loc1,loc2)
— robots(rl) ;; describes the types of constants

Operators describe changes of state variables.
— move(r,l,m)

;; robot r at location | moves to an adjacent position m
precond: rloc(r)=I, adjacent(l,m)
effects: rloc(r)<-m

— load(c,r,1)

;; robot r loads container c at location |
precond: rloc(r)=I, cpos(c)=I, rload(r)=nil
effects: rload(r)<—c, cpos(c)<—r

— unload(c,r,l)

;» robot r unloads container c at location
precond: rloc(r)=l, rload(r)=c
effects: rload(r)<—nil, cpos(c)<I

e Again, we model a restricted-length planning problem, i.e., we
are looking for plans of maximal length k.

* For each state variable x;, we have CSP variables x,(j) O=j<k with
the domain describing possible values of the state variable.

— Example:

* rloc(rl,j)&{11,12,13}, O<j<4

* rload(rl,j)&{c1,c2,c3,nil}, O<j<4

* cpos(c,j)&{11,12,13,r1}, O<j<4, c&{c1,c2,c3}

* For each layer j, O<j<k-1, we have a single action variable act(j)

with the domain describing possible actions (including no-op).
— Example:

* act(j) €{move(rl,l1,12),move(rl,l1,I3),..., no-op}, O<j<3

* The initial and goal states are encoded using unary constraints
(assignment of states variables):
— if the state variable x; in the initial state s, has a value v,
then add constraint:
* x(0) =,
Example:
rloc(r1,0)=I1, rload(r1,0)=nil, cpos(c1,0)=I1,
cpos(c2,0)=12, cpos(c3,0)=I12
— if the state variable x; in the goal state g has a value v,, then
add constraint:

e x(k) = v,
Example:
cpos(cl,4)=12, cpos(c2,4)=11

Actions are encoded as constraints connecting an action variable
act(j) with neighbouring state variables x(j) and x,(j+1).

Action precondition in the form (x,=v;) is encoded as constraints
act(j)=a = x,(j)=v,, O=j=k-1.

Action precondition in the form (x,€D,) is encoded as constraints
act(j)=a = x,(j)€D,, O=sj=<k-1.

Assignment x,«<—v. from action effects is encoded as constraints
act(j)=a = xi(j+15=vi, O=<j=<k-1.

Example:

— act(j)=move(rl,l|1,12) = rloc(rl,j)=I11 ;; precondition
— act(j)=move(rl,l1,12) = rloc(rl,j+1)=12 ;; effect

Note: another precondition adjacent(l1,12), that is rigid, has been
assumed when grounding the action from the operator
(selecting the action attributes)

Similarly to SAT we need to ensure that state variables, that are
not changed by the selected action, preserve their value between
the states — frame axioms.

We can use ternary constraints connecting the action variable
act(j) with the neighbouring state variables x(j) and x,(j+1).

In particular, if the state variable x; is not among the effects of
action a (x; is invariant with respect to a), then add the following
constraints:

act(j)=a = x(j)=x(j+1), O=j=<k-1.

Example:

— act(j)=move(r1,l1,I12) = rload(rl,j)=rload(rl,j+1)
— act(j)=move(rl,l1,12) = cpos(c,j)=cpos(c,j+1), c&{c1,c2,c3}

* Constraint satisfaction techniques can be used as a
part of planning algorithms.

* plan-space planning
— verifying consistency of a partial plan using constraint
propagation — arc consistency (fast but incomplete)
— complete consistency test when the flaw-less plan is found

* planning-graph planning

— planning graph is a static structure that can be easily
encoded as a CSP

— constraint satisfaction techniques are used to extract the
plan from the planning graph

* We will use variables for atoms, where the values will
identify the actions that make the atoms true.

CSP model:
— variables
* nodes P, . from the state layers (atom p; at layer m)
* we index only the state layers (not the action layers)
— variables’ domains
 actions that have a given atom among its effects
e | for atom that is not true
— constraints
* connect positive effects of actions with preconditions
* mutex relations

Pim=@=>Py =L AP, =l AP3 =l
— action a has preconditions p,, p,, p; and positive effect p,
— this constraint is used for all positive effects of action a

Pim=Ll VP =1
— mutex between atoms p; and p;
Pim™a Vv Pj’m;eb

— actions a, b are mutex and p; is a positive effect of a and p; is a positive
effect of b

P =L
— p;is agoal atom and k is the index of the last layer

no parallel actions
— at most one action different from no-op is assigned to variables in the
same layer

no empty layers
— at least one action different from no-op is assigned to variables in the
same layer

* We will use Boolean variables for atoms and actions,
where value true means valid atom and used action.

Boolean CSP (SAT) model:
— variables
* Boolean variables for actions A, |, and for atoms P, |

* layers are indexed as in the planning graph, state layers
starting with zero, action layers starting with one

— variables’ domains
* value true means that atom is valid and action is selected
— constraints
* connect action variables with preconditions and positive
effects
* mutex constraints

constraints for preconditions
- Ai,m = Pj,m-l
— p;is a precondition of action a,

successor state constraints

- Pi,m < (VpiEeffects+(aj) Aj,m) v (Pi,m—l A (A p; Eeffects™(a j) _'Aj,m)))

— atom p; is active in the layer, if the atom is either added by some action or the
atom was true in the previous layer and no action deleted it

— no-op is not used there!

— Beware! These constraints allow the same atom to be added by one action and
deleted by another action so we need mutex constraints to exclude simultaneous
usage of such actions in the same layer!

mutex constraints
— -A;, vV -A;,, mutexofactions a;and a, at layer m
— =P, v=P,, mutexof atoms p;and p; at layer n

initial state and goal
— P;=true p; is a goal atom and k is the index of the last state layer
— P;o=true p; is an atom from the initial state

other constraints
— no parallel actions — at most one action is active in each layer
— no empty layers — at least one action is active in each layer

Both SAT and CSP-based planning exploit the same
core principle.
CSP encoding is more compact

— a simpler representation of states thanks to multi-valued
state variables (gives less variables in total)

— no action mutex constraints are necessary (for sequential
plans)

Note:
e CSP and SAT problems are NP-c while planning is

PSPACE- or NEXPTIME-c. How is it possible?

* The encoding of planning problems as SAT and a CSP

brings exponential increase of the problem size.
— SAT: exponential number of Boolean variables

— CSP: linear number of variables, but exponential size of a
CSP due to variables’ domains

© 2014 Roman Bartak
Department of Theoretical Computer Science and Mathematical Logic
bartak@ktiml.mff.cuni.cz

