Constraint Programming

Constraint Satisfaction Problem (CSP) consists of:
— a finite set of variables
— domains — finite sets of possible values for variables

— a finite set of constraints
 constraint arity = the number of constrained variables

A feasible solution of a constraint satisfaction
problem is a complete consistent assignment of
values to variables.

— complete = each variable has assigned a value
— consistent = all constraints are satisfied

The goal: find a complete and consistent instantiation of variables

Two core solving approaches:

— exploring complete but possibly inconsistent assignments
until a consistent assignment is found Y Y Y Y Y Y Y
Q0000000

» generate and test, local search
A A @

— extending a partial consistent assignment
Q0000000

until a complete assignment is reached
» backtracking and its extensions

We can explore assignments in two ways:
— systematically (explore all possible assignments systematically)
« a complete method, but could be too slow

— non-systematically (some assignments can be skipped)
« an incomplete method, but can found solution much faster

Note:
We will use constraints in a passive way, just to verify whether the given
assignment (even partial) satisfies the constraint.

Work plan:
— start simple (with a trivial algorithm)
— find weaknesses of the algorithm
— repair the weaknesses to get better algorithms

In particular:
— start with generate and test method
— improve the generator
* local search methods (HC, RW, TS, GSAT, GENET, SA)
— merge the generator with the tester
 backtracking methods

« improvements of chronological backtracking
— backjumping, dynamic backtracking, backmarking

Probably the most general problem solving method 2

1) generate a candidate for solution
2) test if the candidate is really a solution

How to apply GT to CSP? j&ﬁ(
1) assign values to all variables

2) test whether all the constraints are satisfied

GT explores complete but inconsistent assignments until a
(complete) consistent assignment is found.

procedure GT(X:variables, C:constraints)
V « construct a first complete assignment of X
while V does not satisfy all the constraints C do
V « construct systematically a complete assignment next to V

end while 2
return V {éﬁ
O

The greatest weakness of GT is exploring too many
“visibly” wrong assignments.

Example:
X::{1,2}, Y::{1,2}, Z::{1,2} X=Y,X=2ZY>Z
X 1 1 1 1 2 2 2
Y 1 1 2 2 1 1 2
Z 1 2 1 2 1 2 1

How to improve GT?

— smart generator
 the next assignment improves over the current assignment
 the core idea of local search techniques

— merged generate and test stage (earlier detection of clash)
 constraints are tested as soon as all involved variables are instantiated
 backtracking

Generate and test explores complete but inconsistent
assignments until a complete consistent assignment is found.

Weakness of GT — the generator does not exploit fully the result
of testing

The next assignment can be constructed in such a way that
constraint violation is smaller.
— only “small” (local) changes of the assignment are allowed
— the next assignment should be “better” than the current one
* better = more constraints are satisfied
— assignments are not necessarily generated systematically
* we lost completeness, but o /

 we (hopefully) get better efficiency an

evaluation

state - a complete assignment of values to variables
evaluation - a value of the objective function (# violated constraints)

neighbourhood - a set of states locally different from the current state
(the states differ from the current state in the value of one variable)

local optimum - a state that is not optimal and there is no state with better
evaluation in its neighbourhood

strict local optimum - a state that is not optimal and there are only states with
worse evaluation in its neighbourhood

non-strict local optimum - local optimum that is not strict
plateau - a set of neighbouring states with the same evaluation
global optimum - the state with the best evaluation

local | plateau glf)t?al
minimum minimum

> ;‘ non-strict local
states .
minimum

Hill climbing is perhaps the most known technique of local search.
— start at randomly generated state
— look for the best state in the neighbourhood of the current state

* neighbourhood = differs in the value of any variable
* neighbourhood size = 2;.; ,(D;-1) (= n*(d-1))
— “escape” from the local optimum via restart
Algorithm Hill Climbing

procedure hill-climbing(Max_Steps)
restart: s «- random assignment of variables;
for j:=1 to Max_Steps do % restricted number of steps
if eval(s)=0 then return s
if s is a strict local minimum then
go to restart
else
S < neighbourhood with the smallest evaluation value
end if
end for

go to restart @)
end hill-climbing o

Observation:

— the hill climbing neighbourhood is pretty large (n*(d-1))

— only change of a conflicting variable may improve the evaluation
Min-conflicts method

— select randomly a variable in conflict and try to improve it

* neighbourhood = different values for the selected variable i

* neighbourhood size = (D;-1) (= (d-1))
Algorithm Min-Conflicts

procedure MC(Max_Moves)

s < random assignment of variables
nb_moves « 0
while eval(s)>0 and nb_moves<Max_Moves do
choose randomly a variable V in conflict
choose a value V' that minimises the number of conflicts for V
if V' # current value of V then
assign v' to V
nb_moves <« nb_moves+1
end if
end while
return s
end MC

It cannot leave
a local optimum

How to leave a local optimum without restarting '
(i.e. via a local step)? ‘

— By adding some “noise” to the algorithm! ¢ o/ K N

Random walk

— a state from the neighbourhood is selected randomly
(e.g., the value is chosen randomly)

— such technique can hardly find a solution
— S0 it needs some guide
« Random walk can be combined
with the heuristic guiding the search process
via probability distribution:
— p - probability of using a random step
— (1-p) - probability of using the heuristic guide

MC guides the search (i.e. satisfaction of all the constraints) and RW allows us
to leave the local optima.

Algorithm Min-Conflicts-Random-Walk

procedure MCRW(Max_Moves,p)

s < random assignment of variables
nb_moves « 0
while eval(s)>0 and nb_moves<Max_Moves do
if probability p verified then
choose randomly a variable V in conflict
choose randomly a value V' for V
else
choose randomly a variable V in conflict
choose a value V' that minimises the number of conflicts for V
end if
if V' # current value of V then
assign v' to V
nb_moves « nb_moves+1
end if — =
end while

i 0.02<p<0.1
end MCRW

Random walk can be combined with the hill climbing heuristic too.
Then, no restart is necessary.

Algorithm Steepest-Descent-Random-Walk

procedure SDRW(Max_Moves,p)

s < random assignment of variables
nb_moves « 0
while eval(s)>0 and nb_moves<Max_Moves do
if probability p verified then
choose randomly a variable V in conflict
choose randomly a value V' for V
else
choose a move <V,v'> with the best performance
end if
if V' # current value of V then
assign v' to V
nb_moves « nb_moves+1
end if
end while
return s
end SDRW

Observation:
Being trapped in a local optimum is a special case of cycling.
How to avoid cycles in general?
— remember already visited states and do not visit them again
* memory consuming (too many states)
— it is possible to remember just a few last states
* prevents ,short” cycles
* Tabu list = a list of forbidden states
— a state can be represented by a selected attribute
 (variable, value) - describes the change of a state (the
previous value)
— the tabu list has a fix length k (tabu tenure)
e ~old”states are removed from the list when a new state is
added
— a state included in the tabu list is forbidden (it is tabu)
* Aspiration criterion = re-enabling states that are tabu
— i.e., it is possible to visit a state even if the state is tabu
— example: the state is better than any state visited so far

The tabu list prevents short cycles.

It allows only the moves out of the tabu list or the moves satisfying the
aspiration criterion.

Algorithm Tabu Search

procedure tabu-search(Max_lter)

s < random assignment of variables

nb iter < 0

initialise randomly the tabu list

while eval(s)>0 and nb_iter<Max_Iter do

choose a move <V,v'> with the best performance among the non-tabu
moves and the moves satisfying the aspiration criteria

introduce <V,v> in the tabu list, where v is the current value of V
remove the oldest move from the tabu list
assign v' to V
nb_iter « nb_iter+1
end while
return s
end tabu-search

LS methods explore complete but possible inconsistent
assignments until a consistent assigned is found

— opposite to GT, they generate a new assignment based on the current
assignment with the goal to increase the number of satisfied constraints

Local search algorithm is defined by:

- neighbourhood of the current assignment (state) and
a method to select the next assignment from the neighbourhood

(intensification)

— HC heuristic — select the best assignment different at one variable from the
current assignment

« sometimes, the first better assignment from the neighbourhood is taken

— MC heuristic — select the best assignment different at one selected conflict
variable from the current assignment

- a method for escaping from a local optimum (diversification)
— restart — start in a completely new assignment /
— RW - select the next assignment randomly ST
— Tabu — forbid some assignments o

Many problems can be formulated as problems of Boolean SATisfiability
= satisfying a logical formula in a conjunctive normal form (CNF)

— CNF = conjunction of clauses
— clause = disjunction of literals (constraint)
— literal = atomic variable or its negation

Example:
(AvB)A(=BvC) A (-Cv -A)

« Similarly to a CSP, SAT is also an NP-complete problem so no fast
(polynomial) solving algorithm can be expected.

« Local search can find a solution to pretty large formulas.

Notes:
— satisfaction formula in a disjunctive normal form can be decided fast

— SAT is a special case of a CSP and vice-versa, any CSP can be translated
to a SAT problem

The GSAT method solves SAT problems by flipping the values of variables.
The goal is to maximize the (weighted) number of satisfied clauses.

Algorithm GSAT

procedure GSAT(A,Max_Tries,Max_Moves)
A: is a CNF formula
for i:=1 to Max_Tries do
S « random assignment of variables
for ;=1 to Max_Moves do
if A satisfiable by S then return S
V « the variable whose flip yield the most important raise
in the number of satisfied clauses
S « S with V flipped
end for
end for

return the best assignment found
end GSAT ioif O }

GSAT can be combined with various heuristics improving its practical
performance (especially for so called structured problems) :

 Random-Walk
— can be used exactly as in MCRW

- Clause weights

— some clauses remain unsatisfied even after several iterations of the inner
Ioopfof GSAT = different clauses have different importance in formula
satisfaction

— satisfaction of “hard” clauses can be preferred by increasing their weights
in the clause selection process

— the algorithm can learn the weights itself
« all clauses have identical weight at the beginning
« after each iteration, the weights of unsatisfied clauses are increased

- Solution averages

— in the GSAT algorithm each iteration starts from a random assignment of
variables — hence the last reached assignment is “forgotten”

— we can reuse the common parts of found assignments

- the new assignment after restart is taken from the last assignments of
previous two iterations by keeping the same parts and setting the remaining
variables randomly

« Based on idea of representing the problem
as a network of connected simple processors. /%

!
— processors have several states) \/g /_\
(usually only two — on/off).

— The next state of the processor is derived from the states of
connected processors (the connection strengths may be different).

« The goal is to find a stable state of the network, i.e., the processors are
no more changing their states.

« This stable state represents a solution to the problem.

Features:
— massive parallelism (problems can be solved faster)
— blackbox (not clear what is happening inside)

« Probably the most known representative is an artificial neural
network (NN)

« A similar principle is used in celular automata.

Connectionistic approach

Based on idea of renresentina the nroblem . A

Each variable is modelled as a cluster of “neurons”
(each value models a single neuron)

Two neurons are connected by the inhibition link with negative weight
if the corresponding values are incompatible.

Example:

(variables)

D+E is even (P L §

B+C is even

Ca1232

C+D is even

O
O

O\\
O><O
X

X
X
X

QO

Q
Q
Q
Q
O

\
)
[
\\

(values)

At the beginning, one active neuron is selected in each cluster.

Neurons change states in a synchronous way (all together)
— based on the inputs (X w*s — weighed sum of states of connected neurons)
— For each cluster, the neuron with the largest input is activated

The computation stops in a stable state.

A B C A B C D E

\

ﬂi Os2 Oz O O:2 02 O
é‘é - 0?<0?< < See e
-

-

g
O

X

O

C 0N

&

><><><><

@)
LS
O
0

{2

(
(

@ = ,active” neuron; the numbers indicate inputs to neurons

What if we reach a stable state that is not a solution?

— So far we used either restart or “noise”.
— We can try to modify the space of state evaluations.
« How? By modifying the evaluation function!
— dynamic local search

- g

This can be done by modifying the weight of connections in
GENET!

« If there is a connection between two active neurons (= constraint
violation), increase the weight of the connection.
— new_weight, = old_weight, , — s,* s,
« This also changes the evaluation function (Guided Local Search).

In local optimum we strengthen weights of violated connections (which makes the

state Iinstable).

[01(2)01 (‘1 @ O O @12
(-2)

f >< >< >< > <2<

@®-1(-2) 2 02 O-

(S ([B3

O- 0 @0 @&

S S \

%
%,

O

X
><~

Q

X
\&

W arvervwra

O1 @1200 Qo Oo

P o o fxxxxy
\Xxxx \xxxx
il

O O1 @ K\

procedure GENET(connectionist network)
one arbitrary node per cluster is switched on;
repeat
repeat % network convergence
modified <« false;
for each cluster C do in parallel
on_node « currently switched on node in cluster C;
label_set « the set of nodes in C which input are maximum;
if on_node is not in label_set then
“switch off on_node;
modified < true;
switch on arbitrary node in label set;
end if
end for
until not modified
if sum of input to all switched-on nodes < 0 then
for each connection ¢ connecting nodes x & y do in parallel
if both x and y are switched on then
decrease the weight of c by 1;
end for
end if
until input to all switched-on nodes are 0
end GENET O

Based on the idea of simulating the process of metal cooling.

— Higher temperature means faster movement of atoms so the
probability of changing position is higher.

— By cooling down, the atoms “try” to find the “best” position — the
position with the smallest energy.

A very similar process can be modelled in optimisation algorithms:
— so called simulated annealing:

o start with a random state
* a local change is accepted if:
— improves the current state

— makes the state worse,
but such a state is accepted only with
some probability dependent on “temperature”
Lemperature® is continuously decreased
so the probability of accepting a worsening step

is also decreasing — a cooling scheme is used
to define how the temperature decreases

procedure SA(InitT, MinT, MaxMoves)
S « random assignment of variables
best «— s
T « InitT
while MinT<T do

evaluation

/ \ cooling curve

num_errors < 0
while num_errors<MaxMoves do
next «<— a random local change of s
if eval(next) < eval(s) then
S < hext
if eval(s) < eval(best) then best < s
else
p < random number in [0,1)

time

S < next

1 < el(eval(s)-eval(next))/T . .
ifp<e then ﬁMetropolls heurlstlc]

else
nUM_errors < hum_errors+1
end while
T« 08xT
end while
return best
end SA

o

The local search algorithms have a similar structure that can be encoded in the

common skeleton. This skeleton is filled by procedures implementing a particular
technique.

Local Search Skeleton

procedure local-search(Max_Tries,Max_Moves)
s « random assignment of variables

for i:=1 to Max_Tries while Gcondition do
for j:=1 to Max_Moves while Lcondition do C
if eval(s)=0 then \ <P
. return s /&%5
end if = E‘:
select n in neighbourhood(s) f\)
if acceptable(n) then ws ¥ |
S« n M = ;{
end if
end for
S « restartState(s)
end for \\
return best s / /
end local-search

Local search techniques start from some state and by moving to
neighbouring states they try to reach a goal state.

Each algorithm is specified by:
— state neighbourhood and allowed states in the neighbourhood

— heuiristic to select the next state from the neighbourhood
(intensification)

— meta-heuristic to escape local optima (diversification)

wWww.comet-online.org

@ Localizer was the base of the
e T Comet system (MaxOS X,

Linux, Win), that allows

description of local search

algorithms in a declarative

way.

4

© 2013 Roman Bartak
Department of Theoretical Computer Science and Mathematical Logic
bartak@ktiml.mff.cuni.cz

