Constraint Programming

Arc consistency:

— The arc (V;V)) is arc consistent iff for each value x from the domain D; there exists a value
y in the domain D; such that the assignment V; =x a V; = y satisfies all the binary
constraints on V;, V.

Note: The concept of arc consistency is directional, i.e., arc consistency of (V,V;) does not
guarantee consistency of (V,V)).

— CSP is arc consistent iff every arc (V,V)) is arc consistent (in both directions).

Example:

{1,2}
X=Z CSP is arc consistent
but there is no solution!

XzY

{1,2} Y#Z {1,2}

Sometimes AC directly provides a solution.
any domain is empty — no solution exists
all domains are singleton — this is a solution
In general, AC decreases the search space.

How to strengthen the consistency level?
More constraints are assumed together!

Definition:
— The path (V,,V4,..., V,,) is path consistent iff for every pair of
values xeDg a yeD,, satisfying all the binary constraints on
VoV, there exists an assignment of variables V4,...,V,,,.; such

that all the binary constraints between the neighbouring
variables V,V.,, are satisfied.

— CSP is path consistent iff every path is consistent.

Beware:

— only the constraints between
the neighboring variables must Vo
be satisfied

It is not very practical to make all paths consistent.
Fortunately, it is enough to make path of length 2 consistent!

Theorem: CSP is PC if and only if all paths of length 2 are PC.
Proof:
1) PC = paths of length 2 are PC
2) All paths of length 2 are PC = VN paths of length N are PC = PC
induction using the path length
a) N=2 trivially true
b) N+1 (assuming that the theorem holds for N)
1) take any N+2 nodes V,Vy,..., Vi1
ii) take any two consistent values xyeDg @ X;+1€Dp41
lii) using a) find the value x,eD, st. Py , and P, ., holds
Iv) using induction find the other values V,Vj,..., V,

0

Does PC cover AC (if CSP PC, then is it also AC)?
— arc (i, j) is consistent (AC), if the path (i,j,i) is consistent
(PC)
— PC implies AC
Is PC stronger than AC (is there any CSP whish is AC but
not PC)?

Example: X in{1,2}, Yin{1,2}, Zin{1,2}, XzZ, X£Y, Y=Z
« Itis AC, but not PC (X=1, Z=2 is not consistent over X,Y,Z)

AC removes inconsistent values from the domains.

What is done by PC algorithms?
— PC removes pairs of inconsistent values
— PC makes all relations explicit (A<B,B<C = A+1<(C)

— unary constraint = domain of the variable

PC algorithms will remove pairs of values

U we need to represent the constraints explicitly

Binary constraints = {0,1}-matrix

0 — pair of values is inconsistent
1 — pair of values is consistent

Example (5-queens problem)
constraint between queens 7and J: r(i) = r(j) & |i-j| # |r(i)-r(j)]

Matrix representation for
constraint A(1) - B(2)

00111
00011
10001
11000
11100

a OB =

XIXIX

A B CDE

X

Wy

X

Matrix representation for
constraint A(1) - C(3)

01011
10101
01010
10101
11010

Constraint intersection R; & R';

Constraint join Ry * R; — R;

bitwise AND Binary matrix multiplication
A<B & A>B-1 - B-1<A<B A<B * B<C— A<C-1
011 110 010 011 011 001
001 & 111 = 001 001 * 001 = 000
000 111 000 000 000 000
Induced constraint is intersected with the original constraint
Rij & (Rik * Ryy) = R
Rs & (Ry R1s) — Rs ABCDE
01101 00111 01110 01101 1 X[X iy
10110 00011 10111 10110 2
11011 & 10001 *11011 = 01010 3 |l X
01101 11000 11101 01101 4 XX
10110 11100 01110 10110 5 | X
Notes:

R; = RTj, Ry is a diagonal matrix representing the domain of variable
REVISE((i,j)) from the AC algorithms is R; «<— R; & (R * Ry * Rj)

AB,Cin {1,2,3}, B>1
A<C, A=B, B>C-2

A<C C
A B>C-2
=B
B>1
011] [100] [o00) (110 (000

001| & [010(* [010|* |111 001
o000/ |oo1) (o01) (111] |000

How to make the path (i,k,j) consistent?
Rij <= Rij & (Rix * Ryk * Ry)
How to make a CSP path consistent?

Repeated revisions of paths (of length 2) while any domain changes.

procedure PC-1(Vars,Constraints)
n < |Vars|, Y «~ Constraints
repeat
YO YN
fork=1tondo

If we use
Yhi — YK & (YA * YR * YR,

then we get AC-1
fori=1tondo O
forj=1tondo _O
Yk YeLy & (kL % Yk, * Ykl)
until Yn=Y0
Constraints « Y0

end PC-1 @

Is there any inefficiency in PC-1?
— just a few ,,bits”

* it is not necessary to keep all copies of Yk
one copy and a bit indicating the change is enough

e some operations produce no modification (Y = Y«1,,)

* half of the operations can be removed (Y; = YT;)

— the grand problem

e after domain change all the paths are re-revised
but it is enough to revise just the influenced paths

Algorithm of path revision

procedure REVISE_PATH((i,k,j))
Z < Yii & (Yic * Y * Yyy)
if Z=Y;; then return false
Yij — 7
returntrue « O O
end REVISE_PATH

If the domain is pruned
then the influenced
paths will be revised.

Because Y;; = YT} it is enough to revise only the paths (i,k,j) where i<].
Let the domain of the constraint (i,j) be changed when revising (i,k,j):

Situation a: i<j
all the paths containing (i,j) or (j,i) must be re-revised
but the paths (i,j,j), (i,i,j) are not revised again (no change)

S, = {(i,j,;m) | i <m < n & m#j} i J
O {(m,ij) | 1<m<]j& mzi © 2
O {(im) | j<m <n) pZ N
U {(m,,i) | 1<m<i} / \
| S, | =2n-2

Situation b: i=j
all the paths containing i in the middle of the path are re-revised
but the paths (i,i,i) and (k,i,k) are not revised again
S, = {(p,iim) | 1<mMm<n&1<p<m}-{(iii),(k,ik)}
| Sp | =n*(n-1)/2 -2

Paths in one direction only (attention, this is not DPC!)

After every revision, the affected paths are re-revised
Algorithm PC-2

procedure PC-2(G)
N < |nodes(G)|

Q< {(i,kj)|1<i<j<n&izk & jzk} p
while Q non empty do \' -~
select and delete (i,k,j) from Q “

if REVISE_PATH((i,k,j)) then
Q < Q u RELATED_PATHS((i,k,j))
end while
end PC-2

procedure RELATED_PATHS((i,k,j))
if i<j then return S, else return S,

end RELATED_PATHS @'

* PC-3 (Mohr, Henderson 1986)
— based on computing supports for a value (like AC-4)

e If pair (a,b) at arc (i,j) is not supported by another variable,
then a is removed from D; and b is removed from D;.

— this algorithm is not sound!

* PC-4 (Han, Lee 1988)
— correction of the PC-3 algorithm
— based on computing supports of pairs (b,c) at arc (i,))

 PC-5(Singh 1995)
— uses the ideas behind AC-6

— only one support is kept and a new support is looked for when
the current support is lost

Similarly to AC we can decrease complexity of PC by
assuming paths in one direction only.

Definition:

CSP is directional path consistent for a given order of variables if
and only if all paths (i,k,j) st. i < k and j < k are path consistent.

Notes:

« Notice that requirements i < k and j < k are different from i < j that is
used to break symmetries of paths!

« We can also use the requirement i < j in DPC algorithms.

Similarly to DAC-1 we can explore each path exactly once
(by going in the reverse order).

We can remove some constraint checks via symmetry (i <j).
Algorithm DPC-1

procedure DPC-1(Vars,Constraints)
n « |Vars|, E « { (i,j) | i<j & C;;eConstraints}
fork=nto1lby-1do
fori=1tokdo
forj=itokdo
if (i,k)eE & (j,k)<E then
Cij < Cij & (Ci * Cc * ij)
E« E U {(ij)}
end for
end for
end for O

end DPC-1 @

Clearly PC implies DPC.
What about the other direction (does DPC imply PC)?

Example:

Az {10

CSP is DPC, but not PC!

It is even not AC.

PC and AC network

A<B B<C
((1,2,(39.2%; {(1,2),(1,3),(2,3)}
B::{1,2,3¢ C::{1,2,3}
A<C
{(1,2),(1,3),(2,3)}
B<C
A<B
{(:,2)} {(2,3)}
A{1} B{Z} C{3}
A<C

{(1,3)}

memaory consumption

— because PC eliminates pairs of values, we need to keep all
the compatible pairs extensionally, e.g. using {0,1}-matrix

bad ratio strength/efficiency

— PC removes more (or same) inconsistencies than AC, but the
strength/efficiency ratio is much worse than for AC

modifies the constraint network

é)i

— PC adds redundant arcs (constraints) and thus it changes connectivity of the

constraint network

— this complicates using heuristics derived from the structure of the

constraint network (like density, graph width etc.)

PC is still not a complete technique

— A,B,C,Din{1,2,3}
A#B, A=C, A-D, B#C, B#D, C#D
is PC but has no solution

1,2,3

1,2,3

1,2,3

1,2,3

Can we make an algorithm:

— that is stronger than AC,

— without the drawbacks of PC (memory consumption,
changing the constraint network)?

We can do the PC consistency check only when
there is a chance for filtering some value out!

Example:

PC is checked only when filtering out a value pair means filtering some
of the values out of the domain.

How do we recognize such a situation?
— If a given value pair is the only support for one of the values.

Definition:
Node /is restricted path consistent if any only if:
— each arc going from /is arc consistent

— for each a € D, it holds that
if b is the only support for a in the node jthen for each node &
(connected to both /and j) we can find a value ¢ such that the

pairs (a,¢) and (b,c) are consistent with respective constraints
(PO).

Based on AC-4: a support counter + a queue for PC

procedure INITIALIZE(G)
Quc < {}, Qpec < {},S «{} % preparing data structures
for each (i,j)earcs(G) do
for each aeD; do
total « 0
for each beD; do
iIf (a,b) is consistent according to the constraint C;; then
total «— total + 1, S;p < S5;p U {<i,a>}
end for
counter[(i,j),a] « total
if counter[(i,j),a] = 0 then
Qac < Qac U {<i,a>}, delete a from D;
else if counter|[(i,j),a] = 1 then
for each k such that (i,k)earcs(G) & (k,j)earcs(G) do
QPC <« QPC % {(<ila>ljlk)}
end if
end for
end for

return (Qac, Qpc)
end INITIALIZE

procedure PRUNE(Qac, Qpc)
while Q,c hon empty do
select and delete any pair <j,b> from Qxc
for each <i,a> from S;, do
counter([(i,j),a] <« counter[(i,j),a] - 1
if counter[(i,j),a] = 0 & "a" is still in D, then
delete "a" from D,
Qac < Qac v {<i,a>}
else if counter[(i,j),a] = 1 then
for each k such that (i,k)earcs(G) & (k,j)earcs(G) do

Qpc < Qpc U {(<i,a>,j,k)}
else

for each k such that (i,k)earcs(G) & (k,j)earcs(G) do
if counter[(i,k),a] = 1 then
QPC <~ QPC i {(<ila>lklj)}
end if
end for
end while

return Qpc @ O
end PRUNE ©

52

First, make the problem AC and then test PC for selected
paths and restore AC if necessary.

procedure RPC(G)
(Qacy Qpc) < INITIALIZE(G)
Qpc < PRUNE(Qac, Qpc) % first run of AC
while Qpc non empty do
select and delete any triple (<i,a>,j,k) from Qpc
if acD, then
{<j,b>} < {<jx> € S;, | xeD; } % the only support for a
iIf {<k,c>eS;nS;, | ce Dy} = then
counter[(i,j),a] <« 0
delete "a" from D,
Qpc < PRUNE({<i,a>}, Qpc) % repeat AC
end if
end if

end while Q)
end RPC o

© 2013 Roman Bartak
Department of Theoretical Computer Science and Mathematical Logic
bartak@ktiml.mff.cuni.cz

