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k-consistency

Is there a common formalism for AC and PC?
– AC: a value is extended to another variable
– PC: a pair of values is extended to another variable
– … we can continue

Definition:
CSP is k-consistent if and only if any consistent assignment of 
(k-1) different variables can be extended to a consistent 
assignment of one additional variable.
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Strong k-consistency

Definition:
A CSP is strongly k-consistent iff it is j-consistent for every j £ k.

Features:
• strong k-consistency Þ k-consistency
• strong k-consistency Þ j-consistency "j£k
• k-consistency Þ strong k-consistency  does not hold in general

Naming scheme
• NC = strong 1-consistency = 1-consistency 
• AC = (strong ) 2-consistency 
• PC = (strong ) 3-consistency 

– sometimes we call NC+AC+PC together strong path consistency
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but not 2-consistent graph!



What k-consistency is enough?

• Assume that the number of vertices is n. What level of 
consistency do we need to find out the solution?

• Strong n-consistency for graphs with n vertices!
– n-consistency is not enough - see the previous example
– strong k-consistency where k<n is not enough as well
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graph with n vertices
domains 1..(n-1)

It is strongly k-consistent for k<n
but it has no solution!
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And what about this graph?

AC is enough!
Because this a tree..



Backtrack-free search

Definition:
CSP is solved using backtrack-free search if for some order of variables we can 
find a value for each variable compatible with the values of already assigned 
variables.

How to find out a sufficient consistency level for a given graph?

Some observations:
– variable must be compatible with all the “previous” variables

i.e., across the „backward“ edges
– for k „backward“ edges we need (k+1)-consistency
– let m be the maximum number of backward edges for all the vertices,

then strong (m+1)-consistency is enough
– the number of backward edges is different for different orders of variables
– of course, the order minimising m is looked for
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Graph width

• Ordered graph is a graph with some total ordering of nodes.
• Node width in the ordered graph is the number of backward edges 

from this node.
• Width of the ordered graph is the maximal width of its nodes.
• Graph width is the minimal width among all possible node orders.
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procedure MinWidthOrdering((V,E))
Q ¬ {} 
while V not empty do

N ¬ select and delete node with the smallest #edges from (V,E)
enqueue N to Q

return Q
end MinWidthOrdering



Consistency level based on graph width
Theorem:

If the constraint graph is strongly k-consistent for some k>w, where w is 
the graph width, then there exists an order of variables giving a 
backtrack-free search solution. 

Proof:
– there exists an ordering of nodes with the graph width w,
– in particular, the number of backward edges for each node is at most w,
– we will assign the variables in the order given by the above ordered graph
– now, when assigning a value to the variable:

• we need to find a value consistent with the existing assignment, i.e., 
consistent with previous variables connected via arcs with the variable,

• let m by the number of such variables, then m £ w
• the graph is (m+1)-consistent, so the value must exist
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at most w



Directional consistency

AC (strong 2-consistency) is enough for trees (the width equals 1).
What about PC and stronger consistencies?

– PC modifies the graph structure – it adds edges!
– So, if we start with a graph of width 2 and make it PC then we 

may increase graph width!

How to resolve this problem?
Observation 1:

– DAC is enough for trees (we do not need full AC)
Definition:

CSP is directional k-consistent for some order of variables, 
if any consistent (k-1) tuple of values can be consistently 
extended to any variable k, that is positioned after all the 
variables in the tuple.

New added arc after PC



Adaptive consistency

Observation2:
– we do not need the same consistency level in the whole graph

Adaptive consistency
– we can ensure directional i-consistency where i depends on the node 

width
– nodes are processed upstream the order of nodes in the graph
– new arcs can appear only in the not-yet processed part of the graph
– the final width of the graph can be estimated before running the 

algorithm

AC is enough
PC is enough
AC is enough

new arc



(i,j)-consistency
k-consistency extends instantiation of (k-1) variables to a new variable,

we remove (k-1)- tuples that cannot be extended to another variable.

Definition: CSP is (i,j)-consistent iff every consistent instantiation
of i variables can be extended to a consistent instantiation
of any j additional variables.

CSP is strongly (i,j)-consistent, iff it is (k,j)-consistent for every k £ i.

k-consistency = (k-1,1) consistency
AC = (1,1) consistency
PC = (2,1) consistency

We can do even more!

…

… …



Inverse consistency

Let i >1 in (i,j)-consistency, then we need to work with i-tuples
which require a lot of memory (see PC).

What about keeping i=1 and increasing j??
We already did something similar in RPC:

RPC is (1,1)-consistency and sometimes (1,2)-consistency

Definition:
• (1,k)-consistency is called inverse consistency.

For a given value we are looking for support in other variables.
If there is no support, we can filter the value out of the domain.

• arc inverse consistency = arc consistency
• path inverse consistency (PIC) = (1,2)-consistency
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We cannot find a support
in other variables 



Neighbourhood inverse consistency
Observation:

Ensuring inverse consistency is useful when at least one of the variables is 
connected to the core variable.

We can make the neighbourhood of variable consistent.
Definition:

CSP is neighbourhood inverse consistent (NIC) if and only if for each 
value h of any variable X there exists an assignment of variables in the 
neighbourhood of X satisfying all the constraints.

procedure NIC((V,E))
Q ¬ V
while Q not empty do

V ¬ select and delete a variable from Q
deleted ¬ false
for each H in DV do

if no solution for Neighbourhood(X) compatible with H then
remove H from DV
deleted ¬ true
if DV empty then return fail

if deleted then Q ¬ Q È Neighbourhood(X)
return true

end NIC
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Singleton consistencies

Can we strengthen any consistency technique?
YES! Let us assign a value and make the rest of the problem consistent.

Definition:
CSP P is singleton A-consistent for some notion of A-consistency iff for 
every value h of any variable X the problem P|X=h| is A-consistent.

Features:
+ we remove only values from variable’s domain - like NIC and RPC
+ easy implementation (meta-programming)
- not so good time complexity (be careful when using SC)
1) singleton A-consistency ³ A-consistency
2) A-consistency ³ B-consistency Þ

singleton A-consistency ³ singleton B-consistency 
3) singleton (i,j)-consistency > (i,j+1)-consistency (SAC>PIC)
4) strong (i+1,j)-consistency > singleton (i,j)-consistency (PC>SAC)



Consistency techniques at glance

#

• NC = 1- consistency
• AC = 2- consistency = (1,1)- consistency
• PC = 3- consistency = (2,1)- consistency
• PIC = (1,2)- consistency

a stronger technique

# incomparable techniques

NIC

##

SRPC
#

strong PC

SAC PIC RPC AC



Non-binary constraints

So far we assumed mainly binary constraints.
We can use binary constraints, because every CSP can be 

converted to a binary CSP!
Is this really done in practice?

– in many applications, non-binary constraints are naturally 
used, for example, a+b+c £ 5

– for such constraints we can do some local inference / 
propagation
for example, if we know that a,b ³ 2, we can deduce that 
c £ 1

– Within a single constraint, we can restrict the domains of 
variables to the values satisfying the constraint
Ä generalized arc consistency



– The value x of variable V is generalized arc consistent with 
respect to constraint P if and only if there exist values for the other 
variables in P such that together with x they satisfy the constraint P

Example: A+B£C, A in {1,2,3}, B in {1,2,3}, C in {1,2,3}
Value 1 for C is not GAC (it has no support), 2 and 3 are GAC.

– The variable V is generalized arc consistent with respect to 
constraint P, if and only if all values from the current domain of V are 
GAC with respect to P.

Example: A+B£C, A in {1,2,3}, B in {1,2,3}, C in {2,3}
C is GAC, A and B are not GAC

– The constraint C is generalized arc consistent, if and only if all 
variables in C are GAC.

Example: for A in {1,2}, B in {1,2}, C in {2,3} A+B£C is GAC

– The constraint satisfaction problem P is generalized arc 
consistent, if and only if all the constraints in P are GAC.

Generalized arc consistency



We will modify AC-3 for non-binary constraints.
– We can see a constraint as a set of propagation 

methods – each method makes one variable GAC:
A + B = C: A + B ® C, C – A ® B, C – B ® A

– By executing all the methods we make the constraint 
GAC.

– We repeat revisions until any domain changes.

procedure GAC-3(G)
Q ¬ {Xs ®Y | Xs ®Y is a method for some constraint in G}
while Q non empty do

select and delete (As®B) from Q
if REVISE(As®B) then

if DB=Æ then stop with fail
Q ¬ Q È {Xs ®Y | Xs ®Y is a method s.t. BÎXs}

end if
end while

end GAC-3

How to make a CSP GAC?



GAC can be computationally expensive, for example for large 
domains.
Note:

Directional GAC is of no help there, if applying a single method is 
expensive.

In such cases we can use a weaker version of GAC: the GAC property 
is required only for the boundary values of the domains.

Definition: 
The variable V is bounds consistent with respect to constraint P, if 
and only if the bounds of the domain of V are GAC with respect to P.

Notes:
– we assume the values to be ordered
– each variable domain can then be represented as an interval, that 

is, using two bounds
– this is a frequently used technique in practice (ILOG Solver)

Bounds consistency
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