
Constraint Programming
Roman Barták

Department of Theoretical Computer Science and Mathematical Logic

Consistency Techniques: Beyond AC and PC

k-consistency

Is there a common formalism for AC and PC?
– AC: a value is extended to another variable
– PC: a pair of values is extended to another variable
– … we can continue

Definition:
CSP is k-consistent if and only if any consistent assignment of
(k-1) different variables can be extended to a consistent
assignment of one additional variable.

1,2,3 1,2,3 1,2,3 4

¹

¹

¹ ¹ ¹

4-consistent graph

Strong k-consistency

Definition:
A CSP is strongly k-consistent iff it is j-consistent for every j £ k.

Features:
• strong k-consistency Þ k-consistency
• strong k-consistency Þ j-consistency "j£k
• k-consistency Þ strong k-consistency does not hold in general

Naming scheme
• NC = strong 1-consistency = 1-consistency
• AC = (strong) 2-consistency
• PC = (strong) 3-consistency

– sometimes we call NC+AC+PC together strong path consistency

1,2 1,2 1,2,3= =

=

3-consistent graph

but not 2-consistent graph!

What k-consistency is enough?

• Assume that the number of vertices is n. What level of
consistency do we need to find out the solution?

• Strong n-consistency for graphs with n vertices!
– n-consistency is not enough - see the previous example
– strong k-consistency where k<n is not enough as well

1,2,..,n-1

1,2,..,n-1

1,2,..,n-1

1,2,..,n-1

¹

¹

¹
¹

¹

¹ ¹

¹

…

…

graph with n vertices
domains 1..(n-1)

It is strongly k-consistent for k<n
but it has no solution!

1,2 1,2,3=

<

<

1,2,31,2,3

And what about this graph?

AC is enough!
Because this a tree..

Backtrack-free search

Definition:
CSP is solved using backtrack-free search if for some order of variables we can
find a value for each variable compatible with the values of already assigned
variables.

How to find out a sufficient consistency level for a given graph?

Some observations:
– variable must be compatible with all the “previous” variables

i.e., across the „backward“ edges
– for k „backward“ edges we need (k+1)-consistency
– let m be the maximum number of backward edges for all the vertices,

then strong (m+1)-consistency is enough
– the number of backward edges is different for different orders of variables
– of course, the order minimising m is looked for

1, 2 1, 2, 3=

<

<

1, 2, 31, 2, 3
1 2 3 4

Graph width

• Ordered graph is a graph with some total ordering of nodes.
• Node width in the ordered graph is the number of backward edges

from this node.
• Width of the ordered graph is the maximal width of its nodes.
• Graph width is the minimal width among all possible node orders.

a

cb

a

c

b

a

b

c

b

c

a

b

a

c

c

b

a

c

a

b

1 1 1 2 1 2Graph width is 1.

procedure MinWidthOrdering((V,E))
Q ¬ {}
while V not empty do

N ¬ select and delete node with the smallest #edges from (V,E)
enqueue N to Q

return Q
end MinWidthOrdering

Consistency level based on graph width
Theorem:

If the constraint graph is strongly k-consistent for some k>w, where w is
the graph width, then there exists an order of variables giving a
backtrack-free search solution.

Proof:
– there exists an ordering of nodes with the graph width w,
– in particular, the number of backward edges for each node is at most w,
– we will assign the variables in the order given by the above ordered graph
– now, when assigning a value to the variable:

• we need to find a value consistent with the existing assignment, i.e.,
consistent with previous variables connected via arcs with the variable,

• let m by the number of such variables, then m £ w
• the graph is (m+1)-consistent, so the value must exist

1 … i j l… … …

at most w

Directional consistency

AC (strong 2-consistency) is enough for trees (the width equals 1).
What about PC and stronger consistencies?

– PC modifies the graph structure – it adds edges!
– So, if we start with a graph of width 2 and make it PC then we

may increase graph width!

How to resolve this problem?
Observation 1:

– DAC is enough for trees (we do not need full AC)
Definition:

CSP is directional k-consistent for some order of variables,
if any consistent (k-1) tuple of values can be consistently
extended to any variable k, that is positioned after all the
variables in the tuple.

New added arc after PC

Adaptive consistency

Observation2:
– we do not need the same consistency level in the whole graph

Adaptive consistency
– we can ensure directional i-consistency where i depends on the node

width
– nodes are processed upstream the order of nodes in the graph
– new arcs can appear only in the not-yet processed part of the graph
– the final width of the graph can be estimated before running the

algorithm

AC is enough
PC is enough
AC is enough

new arc

(i,j)-consistency
k-consistency extends instantiation of (k-1) variables to a new variable,

we remove (k-1)- tuples that cannot be extended to another variable.

Definition: CSP is (i,j)-consistent iff every consistent instantiation
of i variables can be extended to a consistent instantiation
of any j additional variables.

CSP is strongly (i,j)-consistent, iff it is (k,j)-consistent for every k £ i.

k-consistency = (k-1,1) consistency
AC = (1,1) consistency
PC = (2,1) consistency

We can do even more!

…

… …

Inverse consistency

Let i >1 in (i,j)-consistency, then we need to work with i-tuples
which require a lot of memory (see PC).

What about keeping i=1 and increasing j??
We already did something similar in RPC:

RPC is (1,1)-consistency and sometimes (1,2)-consistency

Definition:
• (1,k)-consistency is called inverse consistency.

For a given value we are looking for support in other variables.
If there is no support, we can filter the value out of the domain.

• arc inverse consistency = arc consistency
• path inverse consistency (PIC) = (1,2)-consistency

a c

a c

c

¹
¹´

We cannot find a support
in other variables

Neighbourhood inverse consistency
Observation:

Ensuring inverse consistency is useful when at least one of the variables is
connected to the core variable.

We can make the neighbourhood of variable consistent.
Definition:

CSP is neighbourhood inverse consistent (NIC) if and only if for each
value h of any variable X there exists an assignment of variables in the
neighbourhood of X satisfying all the constraints.

procedure NIC((V,E))
Q ¬ V
while Q not empty do

V ¬ select and delete a variable from Q
deleted ¬ false
for each H in DV do

if no solution for Neighbourhood(X) compatible with H then
remove H from DV
deleted ¬ true
if DV empty then return fail

if deleted then Q ¬ Q È Neighbourhood(X)
return true

end NIC

a c

a b a b c a c

¹ ¹

¹ ¹

¹

´

Singleton consistencies

Can we strengthen any consistency technique?
YES! Let us assign a value and make the rest of the problem consistent.

Definition:
CSP P is singleton A-consistent for some notion of A-consistency iff for
every value h of any variable X the problem P|X=h| is A-consistent.

Features:
+ we remove only values from variable’s domain - like NIC and RPC
+ easy implementation (meta-programming)
- not so good time complexity (be careful when using SC)
1) singleton A-consistency ³ A-consistency
2) A-consistency ³ B-consistency Þ

singleton A-consistency ³ singleton B-consistency
3) singleton (i,j)-consistency > (i,j+1)-consistency (SAC>PIC)
4) strong (i+1,j)-consistency > singleton (i,j)-consistency (PC>SAC)

Consistency techniques at glance

#

• NC = 1- consistency
• AC = 2- consistency = (1,1)- consistency
• PC = 3- consistency = (2,1)- consistency
• PIC = (1,2)- consistency

a stronger technique

incomparable techniques

NIC

##

SRPC
#

strong PC

SAC PIC RPC AC

Non-binary constraints

So far we assumed mainly binary constraints.
We can use binary constraints, because every CSP can be

converted to a binary CSP!
Is this really done in practice?

– in many applications, non-binary constraints are naturally
used, for example, a+b+c £ 5

– for such constraints we can do some local inference /
propagation
for example, if we know that a,b ³ 2, we can deduce that
c £ 1

– Within a single constraint, we can restrict the domains of
variables to the values satisfying the constraint
Ä generalized arc consistency

– The value x of variable V is generalized arc consistent with
respect to constraint P if and only if there exist values for the other
variables in P such that together with x they satisfy the constraint P

Example: A+B£C, A in {1,2,3}, B in {1,2,3}, C in {1,2,3}
Value 1 for C is not GAC (it has no support), 2 and 3 are GAC.

– The variable V is generalized arc consistent with respect to
constraint P, if and only if all values from the current domain of V are
GAC with respect to P.

Example: A+B£C, A in {1,2,3}, B in {1,2,3}, C in {2,3}
C is GAC, A and B are not GAC

– The constraint C is generalized arc consistent, if and only if all
variables in C are GAC.

Example: for A in {1,2}, B in {1,2}, C in {2,3} A+B£C is GAC

– The constraint satisfaction problem P is generalized arc
consistent, if and only if all the constraints in P are GAC.

Generalized arc consistency

We will modify AC-3 for non-binary constraints.
– We can see a constraint as a set of propagation

methods – each method makes one variable GAC:
A + B = C: A + B ® C, C – A ® B, C – B ® A

– By executing all the methods we make the constraint
GAC.

– We repeat revisions until any domain changes.

procedure GAC-3(G)
Q ¬ {Xs ®Y | Xs ®Y is a method for some constraint in G}
while Q non empty do

select and delete (As®B) from Q
if REVISE(As®B) then

if DB=Æ then stop with fail
Q ¬ Q È {Xs ®Y | Xs ®Y is a method s.t. BÎXs}

end if
end while

end GAC-3

How to make a CSP GAC?

GAC can be computationally expensive, for example for large
domains.
Note:

Directional GAC is of no help there, if applying a single method is
expensive.

In such cases we can use a weaker version of GAC: the GAC property
is required only for the boundary values of the domains.

Definition:
The variable V is bounds consistent with respect to constraint P, if
and only if the bounds of the domain of V are GAC with respect to P.

Notes:
– we assume the values to be ordered
– each variable domain can then be represented as an interval, that

is, using two bounds
– this is a frequently used technique in practice (ILOG Solver)

Bounds consistency

© 2013 Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

bartak@ktiml.mff.cuni.cz

