
Constraint Programming
Roman Barták

Department of Theoretical Computer Science and Mathematical Logic

Global Constraints

Can we achieve GAC faster than a general
GAC algorithm?
– for example revision of A < B can be done much

faster via bounds consistency.
Can we write a filtering algorithm for a
constraint whose arity varies?
– for example all_different constraint

We can exploit semantics of the constraint
for efficient filtering algorithms that can work
with any number of variables.

F global constraints E

Global constraints

Programování s omezujícími
podmínkami, Roman Barták

Logic-based puzzle, whose
goal is to enter digits 1-9 in
cells of 9´9 table in such a way,
that no digit appears twice
or more in every row, column,
and 3´3 sub-grid.

How to model such a problem?
– variables describe the cells
– inequality constraint connect each pair of

variables in each row, column, and sub-grid
– Such constraints do not propagate well!

• The constraint network is AC, but
• we can still remove some values.

a b

a b
a b c

¹

¹
¹

X1

X2
X3

XX

Recall Sudoku

This constraint models a complete set of binary inequalities.
all_different({X1,…, Xk}) = {(d1,…, dk) | "i diÎDi & "i¹j di ¹ dj}
Domain filtering is based on matching in bipartite graphs
(nodes = variables+values, edges = description of domains)

all-different

a

b

c

X1

X2

X3

Initialization:
1) find a maximum matching
2) remove all edges that do not belong

to any maximum matching

Incremental propagation (X1¹a):
1) remove “deleted” edges
2) find a new maximum matching
3) remove all edges that do not belong

to any maximum matching

´´

X1

X2

X3

a

b

c

´

´

Régin (AAAI 1994)

global cardinality

• A generalization of all-different
– the number of occurrences of a value in a set of variables is

restricted by minimal and maximal numbers of occurrences
• Efficient filtering is based on network flows.

X1

X2

X3

X4

a

b

c

source sink

1-2

2-2

0-2

1. make a value graph
2. add sink and source
3. set upper and lower bounds

and edge capacities (0-1 and
value occurrences)

Min/Max
occurrences

Edges
describe
domains

Régin (AAAI 1996)

A maximal flow corresponds to a feasible assignment of variables!
We will find edges with zero flow in each maximal flow and then we
will remove the corresponding edges.

Existence of symmetrical solutions decreases efficiency of
constraint satisfaction (symmetrical search spaces are
explored).

A classical example with many symmetries – sports
tournament scheduling.

• there are n teams
• each team plays will all other teams, i.e., (n-1) rounds
• each team plays as a home team or a guest team
How to model such a problem?

– Round I is modelled by a sequence of match codes Ki.
• Ki,j is a code of j-th match at at round i

– We can swap matches at each round – match symmetry.
• match symmetry is removed by constraint Ki,j < Ki,j+1

– We can swap complete rounds – round symmetry.
• round symmetry is removed by constraint Ki <lex Ki+1.

Symmetry breaking

lex
this constraint models lexicographic ordering of two vectors
lex({X1,…, Xn}, {Y1,…, Yn}) º (X1 £ Y1) Ù (X1 = Y1 Þ X2 £ Y2) Ù …
… Ù (X1 = Y1 Ù … Ù Xn-1 = Yn-1 Þ Xn < Yn)
Global filtering procedure uses two pointers:

a: the variables before a are all instantiated and pairwise equal
b: vectors starting at b are lexicographically ordered but “oppositely”

floor({Xb,…, Xn}) >lex ceiling({Yb,…, Yn})

X = á {2}, {1,3,4},{1,2,3,4,5},{1,2},{3,4,5} ñ first set the pointers
Y = á {0,1,2}, {1}, {0,1,2,3,4},{0,1},{0,1,2} ñ

a­ ­b

X = á {2}, {1,3,4},{1,2,3,4,5},{1,2},{3,4,5} ñ change Y1, so at least X1 = Y1
Y = á {2}, {1}, {0,1,2,3,4},{0,1},{0,1,2} ñ and shift pointer a

a­ ­b

X = á {2}, {1}, {1,2,3,4,5},{1,2},{3,4,5} ñ change X2 so at least X2 = Y2
Y = á {2}, {1}, {0,1,2,3,4},{0,1},{0,1,2} ñ and again shift pointer a

a­ ­b

X = á {2}, {1}, {1,2,3}, {1,2},{3,4,5} ñ because a = b -1
Y = á {2}, {1}, {2,3,4}, {0,1},{0,1,2} ñ force constraint Xa < Ya

a­ ­b

Frisch et al., (CP 2002)

Rostering
– scheduling of shifts, for example in hospitals
– There are typically specific shift sequencing constraints (given by

trade unions, law etc.)
Example:

– shifts: a, b, c, o (o means a free shift)
– constraints:

• the same shift can repeat each day
• at least one o shift is between a, b, between b, c, and between

c, a
• a-o*-c, b-o*-a, c-o*-b are not allowed (o* is a sequence of o

shifts)
– Any shift can be used the first day, only shifts b, o can be used the

second day, shifts a, c, o for the third day,
shifts a, b, o for the forth day, and
shift a the fifth day.

How to model such a problem?
– variables describe shifts in days
– And what about constraints?

• using a finite state automaton (FSA)
1

2

3

4

5

6

7

o

a o o

o o

o
o

a

a

c

c

cc

a
b

b

bb

Rostering

regular
models a sequence of symbols accepted by a FSA
regular(A, {X1,…, Xk}) = {(d1,…, dk) | "i diÎDi Ù d1…dkÎL(A)}
filtering is based on representing all possible computations of a FSA using a
layered directed graph (layer=states, arc=transitions)

Initialisation
1. add arcs going from the initial state

based on the symbols in the variables’
domains

2. during the backward run, remove the
arcs that are not on paths to the final
states

3. remove the symbols without any arc

Incremental filtering (X4 ¹ o):
1. remove arcs for the deleted symbol
2. propagate the update

in both directions
3. remove the symbols

without any arc

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1

2

3

4

5

6

7

o

a o o

o o

o o

a

a

c

c

cc

a
b b

bb

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
2
3
4
5
6
7

{a,b,c,o} {b,o} {a,c,o} {a,b,o} {a}

{a,b,c,o} {o} {a,c,o} {a,o} {a}

´ ´

´´ ´

Pesant (CP 2004)

grammar

Can we also model a sequence of symbols defined by a context-free
grammar?
grammar(G, {X1,…, Xk}) = {(d1,…, dk) | "i diÎDi Ù d1…dkÎL(G)}
filtering is based on algorithm CYK for a Chomsky NF (A ® BC | x)

idea: Xi,j = {A | A Þ* aiai+1…aj}
start with: Xi,i = {A | (A ® ai) Î P}
continue: Xi,j = {A | $k:i£k<j BÎXi,k Ù CÎXk+1,j Ù (A ® BC)ÎP}
if S Î X1,n, the a1a2…an belongs to the language

{S,A,C}
- {S,A,C}
- {B} {B}
{S,A} {B} {S,C} {S,A}
{B} {A,C} {A,C} {B} {A,C}

b a a b a

S ® AB | BC
A ® BA | a
B ® CC | b
C ® AB | a

X15
X14 X25
X13 X24 X35
X12 X23 X34 X45
X11 X22 X33 X44 X55

a1 a2 a3 a4 a5

Quimper & Walsh, Sellmann (CP 2006)

slide

Let us go back to the regular constraint, which behaves like sliding a
special transition constraint over a sequence of variables.
Such a principle can be generalized!
slidej(C, {X1,…, Xn}) º "i C(Xij+1,…, Xij+k)

– C is a k-ary constraint
– constant j determines the slide length

Some examples:
• regular(A, {X1,…, Xn}) º slide2(C, {Q0,X1,Q1, …, Xn, Qn})

C(P,X,Q) represents a transition d(P,X) = Q, Q0 = {q0}, Qn = F
• lex({X1,…, Xn}, {Y1,…, Yn}) º slide3(C, {B0,X1,Y1,B1, …, Xn, Yn, Bn})

C(B,X,Y,C) º B=C=1 or (B=C=0 and X=Y) or (B=0, C=1 and X<Y)
B0 = 0, Bn = 1 (strict lex), Bn in {0,1} (non lex)

• stretch({X1,…, Xn}, s, l , t) º slide2(C, {X1,S1, …, Xn, Sn})
C(Xi, Si, Xi+1, Si+1) º Xi = Xi+1, Si+1 = 1+Si, Si+1 £ l(Xi),

or Xi ¹ Xi+1, Si ³ s(Xi), Si+1 = 1, (Xi, Xi+1) Î t
S1 = 1

…

Walsh et al., (2006)

A scheduling problem is a problem of allocating a known set
of activities to available resources and time.

We will assume a unary resource now.
Unary resource allows allocation of at most one activity to the
resource at any time.
fixed duration and time window for each activity is given

How to model such a problem?
– variable start(A) describes the start time of activity A
– constraints ensure that no activities overlap in time

start(A) + p(A) £ start(B) Ú start(B) + p(B) £ start(A)
(hence also the name disjunctive resource)

– or other relations such as precedence A « B
start(A) + p(A) £ start(B)

Recall – disjunctions do almost no filtering!

Scheduling

What does happen when A is not processed first?

There is not enough time to process A, B,C and A must be first!

4 16

7 15

6 16

A (2)

C (5)

B (4)

A (2)
4 7

7 15

6 16
B (4)

C (5)

(Baptiste & Le Pape, 1996) edge_finding

edge_finding: filtering rules

Filtering rules:
– p(W È {A}) > lct(W È {A}) - est(W) Þ A«W
– p(W È {A}) > lct(W) - est(W È {A}) Þ W«A
– A«W Þ end(A) £ min{ lct(W') - p(W') | W'ÍW }
– W«A Þ start(A) ³ max{ est(W') + p(W') | W'ÍW }

In practice:
– we need to assume n.2n pairs (A,W) (to many!)
– Instead of sets W we can use task intervals [X,Y]

{C | est(X) £ est(C) Ù lct(C) £ lct(Y)}
Ä time complexity O(n3), a frequently used incremental algorithm

– there are also algorithms with time complexity O(n2) and
O(n.log n)

Baptiste & Le Pape, (1996)

not_first

What does happen if A is processed first?

There is not enough time for B and C and hence A cannot be first

4 16

7 15

6 16
A (2)

C (4)

B (5)

4 16

7 15

8 16
A (2)

C (4)

B (5)

Torres & Lopez (2000)

not_first: filtering rules

Rules for not_first:
p(WÈ{A}) > lct(W) - est(A) Þ ¬ A«W
¬ A«W Þ start(A) ³ min{ ect(B) | BÎW }

Rules for not_last:
p(WÈ{A}) > lct(A) - est(W) Þ ¬ W«A
¬ W«A Þ end(A) £ max{ lst(B) | BÎW }

In practice:
– can be implemented with time complexity O(n2)

and space complexity O(n)

Torres & Lopez (2000)

© 2013 Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

bartak@ktiml.mff.cuni.cz

