Exploiting the principles of constraint satisfaction, but
programming them ad-hoc for a given problem.

— flexibility (complete customisation to a given problem)
— speed (for a given problem)
— expensive in terms of initial development and maintenance

Constraint Programming Exploiting an existing constraint solver.

Practical Exercises - Prolog - usually integrated to ? host .Iangu'age asa 'Ilbrary
— contains core constraint satisfaction algorithms

. — the user can focus on problem modelling
Roman Bartak
Department of Theoretical Computer Science and Mathematical Logic - lt IS ha rd tO mOdlfV IOW'IeVel Imp|ementat'|0n (domalnsr"')
— Sometimes possible to implement own constraints
— frequently possible to implement own search strategies

http://ktiml.mf£f.cuni.cz/~bartak/constraints/systems.html http://sicstus.sics.se/

. . * A commercial product with students licence
* Available Services:

— Implementation of data structures for modelling variable domains and ¢ Features

constraints
. . — ISO standard Prolog
— core framework for constraint propagation

— filtering algorithms for many constraints (including global constraints) — support for many computer platforms (Win, MacOS X,
— core search strategies including variable and value ordering heuristics Linux, Solaris)
— Interface for writing own constraints — development environment GNU Emacs/SPIDER(Eclipse)
— many libraries including clpfd
* Classification of solvers: — possibility to build stand-alone and embedded applications
st?n'\(jiri!)c:‘ne solvers "G L of . Why Prolog?

— own programming/modelling language
* Mozart, OPL, Comet, CHR
— host programming languge
* Prolog: ECLiPSe, SICStus Prolog -9
¢ C/C++: ILOG Solver, Gecode
* Java: Choco, JaCoP

— simple syntax

— compact - short programs can do a lot of things
natural integration of constraints

search alagorithm is core solving framework

sicsZ;

Prolog is a deductive system that finds answers R
to queries using a knowledge base consisting * Prolog source files et
of facts and rules. —*.pl e e
l /4
Where is the programming? * Prolog database @j

— writing the database of facts and rules SICstus 3.11.0 (x86-win32-nt-4):

Mon Oct 20 00:38:10 WEDT 2003

Licensed to visopt.com

— Prolog interpreter deduces the answer | -

automatically E>

* Queries
% declarative programming Q
Prolog facts describe basic information Itis possible to ask queries about the facts
about the problem. stored in the knowledge base:
u’ilo/g prompt ‘ ;lery ‘
node (a) . arc(a,b). ?-node (a)”, 223: g;
node (b) . 0O, arc(a,c). es node (c) .
@ la)—(e) Y node (d) .
node (c) . arc(b,c). ?-node (bla) . node () .
node (d) . (c] arc(b,d). no
node (e) . arc(c,d) . ?-arc(a,c). :;ZEZ'Z; .
’—/\T M arc(d,e). yes arc(b:c)
name argument ?-arc(a,d) . arc(b,d) .
more arguments no arc(z'd) .
separated by commas ?-path (a,d) . arc(d,e). »

no

The query may contain variables whose values
will be found using stored facts:

?-node (X) . node (a) .
X=a ; a request for an node (b) .
X=b ; alternative answer node (c) .
X=c ; node (d) .
X=d ; node (e) .
X=e :’ Nno more answers arc(a,b).
no arc(a,c) .
arc(b,c) .
?-arc(a,X). arc(b.d) .
X=b ; arc(c,d) .
X=c ; arc(d,e) .
no ;7

Data (and programs) are expressed using terms

* Atoms
— words consisting of letters, numbers and underscores that
start with a non-capital letter
* a, arc, john 123, ..
— words enclosed in single quotas
* "Edinburgh’, ..

* Variables
— words consisting of letters, numbers and underscores that
start with a capital letter or underscore
* X, Node, _noname, ..
— _isan anonymous variable
* two occurences of _ are assumed to be different variables
* contents is not reported to the user

* List of facts is nothing more than a simple database.

* Is it possible to generate an answer that is not stored
directly as a fact but that can be combined from several

facts?

Yes. It is possible to query over a combination of facts from

the knowledge base:

?-arc(a,Y) ,arc(Y¥,2).
Y=b

Z=c ; variables can be
Y=b shared between

simple open queries
Z=d ; P penq

Y=c
Z=d ;
no

node (a) .
node (b) .
node (c) .
node (d) .
node (e) .

arc(a,b).
arc(a,c) .
arc(b,c) .
arc(b,d) .
arc(c,d) .
arc(d,e) .

I

Compound terms express structured information

— atoms and variables are terms

— functor(argl,...,argn) is a (compound) term, where
functor is an atom and argl, ..., argn are terms

* arc(a,c) f\

* path(a,path(b,path(d,e)))
* tree(tree(a,tree(b,c)),tree(d,e))

* arc(a,X)

* We can give a name to the query so it can be used ?-doubleArc (b,W) .

repeatedly — find a rule whose head matches the goal and substitute
doubleArc(X,2) :-arc(X,Y) ,arc(¥,Z). variables accordingly.
I leA JW) i ,Y), Y,W).
— This is called a rule. d;u; i re (b t: t:rf)u:j)fta:c(|)
.. - — substitute quer e body of the rule
» After defining the rule, we can query it like the facts: query by y
?-arc(b,Y) ,arc(Y,W).
?-doubleArc(b,W) . node (a) . — find a matching fact (arc (b, c)), substitute variables,
W=d only variables from “°§e zb; ° and remove the fact from the query
— node (c) .
=e the rule head are node (d) . ?-arc(c,W) . R
no returned to user node (e) . . node (c) .
— do the same with the rest (arc (c,d)) node (d) .
?-doubleArc(a,W) . arc(a,b). noda(a) .
W=c arc(a,c). W=d 7 (a.b)
arc(a, .
W=d are Ez':; : — Try alternative facts (arc (b,d) ,arc(d,e)) el) .
w=d arc(c,d). W=e ; :: EEIS;
arc(d,e) . (c,d).
no - no arc(die).
L 7
e Itis possible to define alternative rules Just like before, but more alternative rules matches the query.
. . . ?-edge (W,b) .
(d ISju nctlon) — find a rule whose head matches the goal, substitute variables accordingly,
edge (X , Y) -—arc (x , Y) . and substitute query by the body of the rule
edge (W,b) : —arc(W,b) .
edge (X,Y) :—arc (Y ,X) . node (a) . ?-arc(W,b) . node (a) .
node (b) . — find all solutions to a query using facts node (b) .
node (c) . W=a : node (c) .
o_ node (d) . - ’ node (d) .
?-edge (W,Db) . : node (e) . — try an alternative rule for the original query node (e) .
W=a deduced using the edge (W,b) :-arc(b,W) .
first rule arc(a,b) . 2-arc (b, W) arc(a,b) .
— ? ,W) .
W=c :iz E;:Z; — find all solutions to a query using facts :;z E;:Z;
W=d deduced using the arc(b,d). W=c ; arc(b,d) .
second rule arc(c,d). W=d : arc(c,d) .
no arc(d,e) . = arc(d,e) .
L 7 ne L 7

¢ Just like before, but the
. . . . _?— ath (c,W)
* Itis possible to use the rule head in its body, rule may be used (,H% ; ot e, - e, 1) path 21,

. . several times.
I.e., to use recursion

* Thisis OK because each 2-arc(c,w | [2-aree,z1) pata(z1m |

path(X,Y) :-arc(X,Y). time a rule is used, its srete,d. —
copy with ,fresh” = 2path (W)
ath(X,Y) :-arc (X, Z ath(z,Y). .) ?-p .
p (X,¥) (X,2),p (z,Y) variables is generated e (4,) s -aze(d,). —dom:-
node (a) (like calling a procedure axc (e 52) path(22/W).
. th(c,W) node (b) . with local variables). 2-arc(a,m | | 2-arc(d,z2) path(z2,w |
’—-pa c, . node (c) . arc(d,e) | arc(de).
— deduced using the first node (d) . ~
W=d rule and arC(t?d) node(e) . path(X,¥) :-arc(X,¥) . Wee ?-path (e, W)
W ’ path (X,Y) :-arc(X,Z) ,path(Z,Y) . path (e, W) :-azc (e, i) . path (e,) :-
=e arc(a,b) . atc(e,z3) ,path (Z3,W) .
deduced using the arc(a,c) . :::: ::; . :izi:':;‘ ‘ ?-arc (e, W) ‘ ‘ ?-arc(e,z3) ,path(Z3,W) ‘
no second rule through d = EZ'Z;) node (c) . arc(b,c) -
T node (d) . arc(b,d) .
arc(c,d) . node (e) . arc(c,d) .
arc(d,e) . arc(d,e) . fail fail

Prolog ,, program” consists of rules and facts.
Each rule has the structure Head:-Body. Prolog = Unification + Backtracking
— Head is a (compound) term
— Body is a query (a conjunction of terms)
* typically Body contains all variables from Head
— rule semantics: if Body is true then Head can be deduced

Fact can be seen as a rule with an empty (true) body. — to select an appropriate rule
— to compose an answer substitution

* Unification (matching)

Query is a conjunction of terms: Q = Q1,Q2,...,Qn.
* Find a rule whose head matches goal Q1.
— If there are more rules then introduce a choice point and use the

— How?
* make the terms syntactically identical by applying a substitution

first rule. B : :
acktracking (depth-first search
— If no rule exists then backtrack to the last choice point and use an g (P)
alternative rule there. — to explore alternatives

* Use the rule body to substitute Q1.
— For facts (Body=true), the goal Q1 disappears.

* Repeat until empty query is obtained.

— How?
* resolve the first goal (from left) in a query
* apply the first applicable rule (from top)

* a basic mechanism for information passing

* syntactic equality of terms via substitution of terms to « Unification is used for rule selection

variables o th (£ G
e ?-X=f (a). -> X/f(a) f-pa (£(a) ,G).
. 2-£(X,a)=£ (g (b) ,¥) > X/g(b), Y/a — rule: path(X,Y):-arc(X,Y).
: ra)=tig rele ’ — do unification: X=f (a) , Y=G
« ?-f(X,b,g(a))=£f(a,¥Y,g(X)). —>X/aY/b ?-arc(£f(a),G).
* ?-X=f(X) . -> infinite term * rule (fact): arc(a,b).
— occurs check can forbid such structures * do unification: f(a)=a, G=b ->fail
— but cyclic structures might be very useful for modeling pointer * rule (fact): arc(a,c).

structures @] * do unification: f(a)=a, G=c -> fail

« Unification is used for answer composition. * How to obtain the result?

path (X,Y,path(X,Y)) : - '3’0 o « Accumulator
arc(X,Y). @ .

— Accumulate partial results in a parameter of the
path(X,Y,path(X,PathZY)) : -

procedure.
arc(X,2), node (a) .) . e e
path(Z,Y,PathZY). B Eb; — Requires additional parameter with initialization.
nodeld). * Composition of substitutions
n_ node (e) .
?-path(a,d,P). azc(a,b) — Compute the result from partial results to be
P=path(a,path(b,d)) arc(a,c). computed later
P=path (a,path(b,path(c,d))) arc:g;;- - ' o
P=path (a,path(c,d)) arc(c.d) . — Specific to Prolog and substitutions.
arc(d,e) .
no
Y

Symbolic addition of unary represented numbers
(0, s(0), s(s(0)), ..)
Result is accumulated in a parameter of the procedure.

Symbolic addition of unary represented numbers.
Result is a composition of substitutions that will be computed later.

plus2(0,X,X).

plus(0,X,X).
plus2(s(X) ,Y¥,s(2)) :-plus2(X,Y,Z).

Plus(s(X) ,Y,Z) :-plus(X,s(Y) ,2).

’ argument for composing the result ‘

?-plus(s(s(s(0))), s (0) ,Sum) . ?-plus2(s(s(s(0))),s(0),S1). %Sl=s(S2)
?-plus(s(s(0)) , s(s(0)) ,Sum). ?-plus2(s(s(0)) ,s(0),S2). %S2=s(S3)
?-plus (s(0) , s(s(s(0))) ,Sum). ?-plus2 (s(0) ,s(0),S3). %S3=s(S4)
?-plus (0 ,s(s(s(s(0)))),Sum). ?-plus2(0 ,s(0),S4) . %54=s(0)

How to represent a list of elements?

* Propose a simple genealogy database: « Using terms:
—facts — a pointer-like structure H . H . H nil
| man, woman, parent, .. — list(a, list(b,list(c,nil)))
—rules][] [

* father, mother, son, daughter,
grandparent, uncle, aunt, siblings,

Prolog provides this structure directly:

descendant, .. — [Head|Tail]
—[a,b,c] =[al[bl[c|[]1]1]]
* For example solution look at — Elements can be anything, e.g. a list again
http://ktiml.mff.cuni.cz/bartak/prolog/genealogy.html * [[q,2], 12, £(a,b), [[11]

This is a syntactic sugar only!

- How to check membership in a list? * Delete the first occurrence of X from the list.

delete (List,X,ListWithoutX)
* Explore the list from start until the element is

found. delete([]1,_,I[1]).
member (X, [X]| 1) . delete ([X|T] ,X,T).

- delete ([Y|T],X, [Y|NewT]) : -
member (X, [|T]) : - member (X,T) .

X\=Y, delete(T,X,NewT).

X and Y cannot be unified

* The part of the list before X is duplicated!
originallist—~[°|°}—~[°|°}—>[r‘-|- I-I-}—-[-Inill

?-member (a, [a,b,a]) . -> yes

?-member (X, [a,b,a]) . > %X=a; X=b; X=a

?-member (a,L) . -> L=lal_l; L=[_,al_1, - delet ?> =
elete([a,b,c,d,e],c,L]) E] E] E]
5t
new list after deleting c —-[. Io }—.[. I.
* Insert X before the list insert (L, X,LStartWithX): concatenate two ists
. — concat(Ll,L2,L)
insert(L,X, [X|L]) .

— L1=[a,b,c], L2=[d,e] -> L=[a,b,c,d,e]
* Add X to the end of the list add (L., X, LEndWi thX) :

add([],X, [X]). concat([],L,L).
concat([H|T],L2, [H|NewT]) : -
add ([Y|T],X, [Y|NewT]) : - concat (T,L2,NewT) .
add (T,X,NewT) .

— Again, the list is completely duplicated! * Time and space complexity depends on the size of

— The procedure can also remove the last element from the list! the first list!
?-add (NewList,X, [a,b,c,d]).
NewList=[a,b,c]

X=d

* The procedure can also be used to split the list.
?-concat(Listl,List2, [a,b,c,d]).
Listl=[], List2=[a,b,c,d] ;
Listl=[a], List2=[b,c,d]

4

* Revert the list

— revert (L,Rev)
— L=[a,b,c] ->
Rev=[c,b,a]
revert([],[]).

revert ([H|T],Rev) : -
revert(T,RT),
add (RT,H,Rev) .

Slow and memory consuming!

Try to omit add (concat) in your

code.

?-X=14+2. -> X=1+2
?-3=1+2. -> no

Much better solution is using
accumulator!

revertl (List,Rev) : -
rev (List,[],Rev).
rev([],L,L).

rev([H|T] ,Acc,Rev) : -
rev (T, [H|Acc] ,Rev) .

list length | revert |revertl

50000 39s. 0s.

e Term 1+2 is different from the term 3.
— No semantics is associated with terms!

* We need a special procedure to evaluate the numerical

os_n

expression: “is
?-X is 1+2.
X=3

* X is Expr works as arithmetic evaluator:
— evaluate Expr and compare (unify) the result with X

* Be careful: “is” is not an assignhment command!

?-X is 142, X is 7.

* writing everything as a term is not always
comfortable
— compare '='(X,'+'(2,3)) and X=2+3
* a more human readable form of terms would be
appropriate
— e.g. infix notation of “standard” operations (provided by
Prolog)

®* moreover, user may define own operators via
:— op(precedence, type, name).

* this is only a “syntactic sugar”

* If we have numbers, can we compare them?

* Prolog provides standard comparison of
numbers:

-X<Y
* The numeric value of X is less than the numeric value of Y
?-1<2. -> yes
?-141<3. -> yes
?-3<1+2. -> no

—X>Y, X=<Y, X>Y

testl (X,Y) : -

member (Y, [[1,2],[3,4]]) ,member (X,Y) . 5
* Prolog uses depth-first search to cover non- testl(0,[]). g
ini i test2(X,Y):- £
determinism of alternative rules. L member 12, [[1,2], [3,4]]) ,membez (X,¥) .) :
— use choice point when there is an alternative test2(0,[]) . 5
* Can we prune alternatives explicitly? test3(X,Y) :- 22
member (Y, [[1,2]1,[3,4]1]),!,member (X,Y) . >§3
— Cut removes the choice point so no alternative test3(0,[1]). 53
rules will be tried. testd (X,Y) :- ég
backtrack allowed! backtrack not allowed! member (Y, [[1,2],[3,4]]) ,member(X,Y),!. E g
r testd (0, []) . :
Head:-Bodyl, ! ,Body2. 3
X 1 2 3 4 0 o
:
* Prune branches that will not be visited (cut). * Prune branches that will not be visited (cut).
Example: Example:
split the list into a list with elements smaller than X and split the list into a list with elements smaller than X and
a list with elements not smaller than X a list with elements not smaller than X
Split([],_,[],[]):—!. Spllt([],_,[],[]).
split([H|T],X, [H|T1],T2):- split([H|T],X, [H|T1],T2):-
H<X,!, H<X,
split(T,X,T1,T2). split(T,X,T1,T2).
split([H|T],X,T1, [H|T2]) :- split([H|T],X,T1, [H|T2]) :-
split(T,X,T1,T2). H>=X,

split(T,X,T1,T2).

* Prune branches that will not be visited (cut).

Example:
split the list into a list with elements smaller than X and
a list with elements not smaller than X

Cut can be sometimes substituted by if-then-else

split ([1,_,[1,[1).
split([H|T],X,Ll1,L2) : -
(H<X ->
L1=[H|T1l], L2=T2
L1=T1, L2=[H|T2]
),
split(T,X,T1,T2). 7

* Negation in Prolog is negation-as-failure
— Itis not a full logical negation!

p(a).

p(b) .

q(a).
?2- \+ (p(X),q(X)), X=b. -> fail
?- X=b, \+ (p(X),q(X)). -> X=b

* Be especially careful when negation is applied to non-ground goal
(contains variables)!

How to prove non-existence of the solution?

Useful for complex tests like non-member.
\+ :Goal

* no variable binding!

META-PREDICATE

Inside negaﬁon: Prolog goal is a term so any
term can be used as a query

not (Query) : -
call (Query) , !, fail.
not (_Query):- 90O
true.

If Query succeeds then fail
(cut forbids using the
alternative rule), otherwise
succeed using the alternative
rule.

* How to find all answers to a Query?

findall (?Template, :Query, ?List)

Collects all answers to Query in the form of Template in a
List.

Example:
Find all neighboring nodes of “a”. /[b,c]
?-findall (X, edge (a,X) ,Neigborhood) : [(b)A()]

?-findall (f (X) ,edge (a,X) ,Neigborhood) :
?-findall (dzzz,edge (a,X) ,Neigborhood) :

[dzzz,dzzz]

How to pass information back when
backtracking?

How to pass information between search

* Each information stored in the blackboard
is identified by a unique atom called a key (an
atom defined by the user).

branches?
* We can use the Prolog database!
— assert the information in one branch * bb_put(:Key, +Term)
— access it in the other branch * bb get(:Key, ?Term)
* |t is better to use blackboard! * bb delete(:Key, ?Term)
— clear and efficient * bb_update (:Key, ?0ldTerm, ?NewTerm)
=, 4
SICS:.s
o . o . * Count the number of answers to Query
* Test satisfiability of Query without binding variables. sat num(:Query, -NumAnswers)
sat_num(Query, NumAnswers) :- (a,b)
sat (Query, _Answer):- bb_put (counter,0) , :iZ(:c)
bb_put(sat,no),))) call (Query), arc(a:d) .
once (Query) , % finds one solution (if any) bb_get (counter,N),
bb_put(sat,yes), N1 is N+1, ?-sat_num(arc(a,X) ,N) .
fail. bb_put (counter,N1), N=3;
sat(_Query,Answer) : - fail. ne
bb delete(sat,Answer). sat_num(_Query,NumAnswers) : -
- bb_delete (counter,NumAnswers) .
Another solution using negation and if-then-else: * Another solution using £indall:
sat2 (Query,Answer) : - sat_num(Query,NumAnswers) : -
(\+ call(Query) -> Answer=no ; Answer=yes). findall (x,Query,List),

length (List,NumAnswers) .

* Blackboard works as a global ,variable®.
* Be careful of nesting!
— If Query in the previous examples calls sat then the
blackboard data are mishandled.
* Structure of the term is preserved but a
connection to the ,local” variables is lost!!

?-A=term(X,£f (X)), bb_put(test,d), X=a,
bb_get(test,B).
A = term(a,f(a)),

B = term(_A,£f(_A)),
X =a?;
no

* Find all paths in a DFS manner and then select the
shortest.

shortest path(From,To, ShortestPath):-
findall (Path, path(From,To, [],Path) ,AllPaths),
shortest list(AllPaths,ShortestPath).

path (From,From,Visited,Path) :-!, -
revert ([From|Visited],6 Path).
o | oo
©

path (From,To,Visited,Path) : -
arc (From, Through) , $ next
\+ member (Through,Visited), % prey

path (Through,To, [From|Visited] , Pat e

[a,b,e]
[alcldlble]
[alcldle]

Compute (one of) the shortest path between
two nodes (avoid cycling).

* Database (graph): * Expected answers:
arc(a,b).
arc(a,c). ?—sl;hcirt[eas],t_path(a,a,P) .
arc(b,c).
arc(b,e). ?- shortest path(a,e,P).
arc(c,d). P = [a,b,e]
arc(d,b). ?- shortest path(e,b,P).
arc(d,e).

S

* Branch&Bound exploring all paths in a DFS manner
shortest_pathBB (From,To,_ Path) :-

bb_put (best,no_path), can_be_shorter(_) :-
spathBB (From,To, [],0) . LEOEE0E MR R «

can_be_shorter (Length) : -

shortest_pathBB(_From,_ To,Path) :- ‘;‘e’;g:;g:::g:;i‘fesuength'—’)
bb_get(best,path(_,Path)).

spathBB (From,From,Visited, Length) :-!, (b)
revert ([From|Visited] ,h Path), (@"}'@
bb_put (best,path(Length,Path)) ,% save sq
fail. ©

spathBB (From,To,Visited,OldLength) : -

abcde best(5)
NewLength is OldLength+l,

can_be_shorter (NewLength) , % check t 2be best(3)
arc (From, Through) , % find thacd not better
\+ member (Through,Visited), % prevent 4

spathBB (Through, To, [From|Visited] ,NewLength) .

* Breadth-first search with concatenation

shortest_pathBFS (From,To,Path) : -
spathBFS ([[From]],To,Path).

spathBFS ([Visited|Rest],To,Path) : -
Visited = [N|_],

(N=To -> % we found the path
revert (Visited, Path)
; % expand the node N

findall ([N1|Visited],
(arc(N,N1),

\+ member (N1,Visited),

\+ member ([N1l|_],Rest)),
NewNodes) ,

concat (Rest,NewNodes, Nodes),

spathBFS (Nodes, To,Path)

© 2013 Roman Bartak

®)
G ’o@
o

[a]

[ba]l [ca]

[1
C,! (d,c,a

Department of Theoretical Computer Science and Mathematical Logic

bartak@ktiml.mff.cuni.cz

* Write procedures (rules) defining:
— length (List,Length)
— shortest_list(ListOfLists,ShortestList)

* Write a Prolog program solving the water pouring
problem.

— We have three (N) cups, each with a given capacity and a
given level of water. It is possible to pour completely a cup
into another cup (if capacity is not exceeded) or pour part
of a cup to fill another cup. Find a shortest plan for
reaching a given level of water in each cup.

— Tip: use the shortest path algorithms!

ad
2

