Artificial IntelligenceZ

We are designing knowledge-based
agents — they combine and recombine
information about the world with current
observations to uncover hidden aspects of
the world and use them for action selection.

How to represent knowledge? I
— so far propositional logic iy
— today first-order predicate logic z 1

We are looking for a formal language that can
— represent knowledge
— reason with knowledge

What about programming languages (C++, Java,...)?
— this is the most widely used class of formal languages

— facts are described via data structures
« array world[4,4]
— programs describe how to do computations (changing data
structures)
« world[2,2] < pit

— How to infer new information from existing facts?
 ad-hoc procedures changing data structures — a procedural approach

- a declarative approach separates knowledge and inference mechanism
(moreover, inference is general and problem independent)

— How to represent knowledge such as “pit at [2,2] or [3,1]"?
« variables in computer programs have unique values

Can we use natural languages (English, Czech, ...) to
represent knowledge?

— That would be great but there is no precise formal semantics
for these languages!

— Currently, natural languages are seen as a medium for
communication rather than for pure representation.

 the sentence itself does not code information, it also depends on
context

— "Look!"

« another problem is ambiguity of natural languages
— spring, ...

"... if thought corrupts language, language can
also corrupt thought."

Propositional logic is declarative with compositional
semantic that is context-independent and unambiguous.

However, some properties are cumbersome (not easy to
model).

— Wumpus world: there is breeze next to a pit
* By & (P1,2 4 P2,1)
¢ Bz,1 g (P1,1 Vv Pz,z\/ P3,1)

Let us take inspiration from natural languages:
— we have nouns representing objects (pit, square, ...)
— verbs express relations between the objects (is next to, ...)
— some relations are in fact functions (is a father of)

Instead of pure facts (propositional logic) we will work with
objects, relations, and functions. We will also express facts
about some or all objects (first-order predicate logic —

FOL).

Logical frameworks: a survey

Propositional logic facts that hold or not

First-order predicate logic |facts, objects and
relations that hold
between them

Temporal logic facts, objects, relations,

and times when they
hold

Fuzzy logic facts with degree of truth

constants
predicates
functions
variables
connectives

equality
quantifiers

John, 2, Crown, ...

Brother, >, ...

Sqrt, LeftlLeg, ...

X, V¥, a,b, ..
—, :>, Ny, Vy <=

v, 3

crown

brother on head

person
king

ft leg

« VXY (Brother(x,y) = Brother(y,x))
« 3x,y (Brother(x,Richard) A Brother(y,Richard))
« 3x,y (Brother(x,Richard) A Brother(y,Richard) A —(x=Y))

Equality says that two terms refer to the same object (Father(John) = Henry).

constants (names of objects):

« Richard, John, TheCrown
function symbols:

« Leftleg
terms (another form to name objects)

« LeftLeg(John)
predicate symbols:

« Brother, OnHead, Person, King, Crown
atomic sentences (describe relations
between objects):

« Brother(Richard,John)
complex sentences:

« King(Richard) v King(John)

—King(Richard) = King(John)
quantifiers (help to define sentences over
more objects):

« VX (King(x) = Person(x))

Beware: vx (King(x) A Person(x)) !l

« 3Ix (Crown(x) A OnHead(x,John))

Beware: 3x (Crown(x) = OnHead(x,John)) I!!

Universal quantifier vx P
— P is true for any object x

— corresponds to a conjunction of all formulas P
« P(John) A P(Richard) A P(TheCrown) A P(LeftLeg(John)) A ...

— Typically connected with implication (to select the objects for
which the sentence holds)

« VX King(x) = Person(x)

Existential quantifier 3x P
— there is an object x such that P holds for it

— corresponds to a disjunction of all formulas P
« P(John) v P(Richard) v P(TheCrown) v P(LeftLeg(John)) v ...

Relations between quantifiers

— VX VY is identical to Vy VX
3x 3y is identical to Jy Ix

— 3Ix Vy is not identical to Vy 3Ix (3x vy Loves(x,y) vs.vy 3x Loves(x,y))
— VX P is identical to —3x —P
Ix P is identical to —Vvx —P

Similarly to prc|>_:positional logic we will use
ggeratlons TELL to add a sentence to knowledge
SE.
— TELL(KB, King(John))
— TELL(KB, vx (King(x) = Person(x)))
— We are typically adding axioms (facts as atomic
sentences, definitions using < and other complex

sentences) and sometime even theorems (can be
deduced from axioms, but they “speed up” further

inference).
and operations ASK for querying the sentences
entalled by KB: % a database query

— ASK(KB, King(John)) _
_ AS ((KB, PerSOI’l(JOhn)) % we need some inference here
— AS <(KBI dx Pe I‘SOI’](X)) ﬁ in addition to YES/NO answers we

also ask for the value of x for which
the sentence holds — substitution
{x/John}

The domain of family relationships (kinship).
Objects = people

Unary predicates: Male, Female

Binary predicates (kinship relations): Parent, Sibling, Child, Grandparent, ...
Functions: Mother, Father

Axioms:
Plain facts:
Male(Jim)
Definitions:
v¥m,c Mother(c)=m < Female(m) A Parent(m,c)
Vp,c Parent(p,c) < Child(c,p)
vx,y Sibling(x,y) <> x #y A Jp Parent(p,x) A Parent(p,y)
General information (but not definition)
VX (Person(x) = ...)
vx (... = Person(x))

Theorems:
vx,y Sibling(x,y) <> Sibling(y,x)

The domain for numbers can also be constructed from a tiny
kernel of (Peano) axioms.

Predicate: NatNum

Constant symbol: 0

Function symbol: S (successor)

Natural numbers are defined recursively:
NatNum(0)
vn NatNum(n) = NatNum(S(n))

Axioms constraining the successor function:

vh 0 # S(n)
m,n m#n = S(m)#5(n)

Definition of addition: (m+1)+n = (M+n)+1
vm NatNum(m) = +(0,m) = m L

vm,n NatNum(m) A NatNum(n) = +(S(m),n) = S(+(m,n))

Knowledge engineering deals with the process of
knowledge-base construction.

A knowledge engineer is someone who:

— Investigates a particular domain
« How do the things work?
« This is usually done in co-operation with a problem expert.

— learns what concepts are important in that domain
« Which will be the queries asked and what do we need to find
answers?
— creates a formal representation of the objects and
relations in the domain

 How to encode facts and axioms so the computer can do
inference?

. identify the task

— What is the range of questions?

— Wumpus: action selection or asking about the contents of the environment?
. assemble the relevant knowledge (knowledge acquisition)

— How does the domain actually work?

— Wumpus: what does it mean to feel stench and breeze?

. decide on a vocabulary of predicates, functions, and constants
— How to translate domain-level concepts to logic-level names?

— Wumpus: is a pit an object or a function of the square?

— The result is an ontology of the domain (vocabulary of notions).

. encode general knowledge about the domain

— Which axioms hold in the domain?

— Wumpus: breeze means a pit in the neighbourhood square

. encode a description of the specific problem instance

— What is the current state of the world?

— Wumpus: the agent is at square (1,1) looking to the right

. pose queries to the inference procedure and get answers
— How does the inference procedure operate on our KB?

— Wumpus: is cell (2,2) really safe?

. debug the knowledge base

— What is missing in the knowledge base?

— Wumpus: there is a single wumpus in the cave

Digital circuits

— 1 and 2 are input bits,
3 is a carry bit o

o1

2 is output bit for carry

— 1 is output bit for sum, 2@ ? /E 1 FE

3@

What is important in the domain?

— Does the circuit add properly?

— If the inputs are known, what is the output?

— If desired output is given, what should be the input?
Different queries may require different knowledge!

— What is the cost of the circuit?

— What is the size of the circuit?

— How much energy does the circuit consume?

What do we know about digital circuits?
— circuits are composed from wires and gates
— signals 0 and 1 flow along wires
— signals flow to the input terminals of gates
— each gate produces signal on the output terminal
— there are four types of gates: AND, OR, XOR, NOT
— circuits have input and output terminals
— wires are used just as connections between terminals

— signal delay, energy consumption, shape of gates are
not assumed

L _»
= 2 =2

What constants, predicates, and functions?

« we describe circuits, gates, terminals, signals, and
connections
— gates are denoted by constants X;, X,, A, ...
— the behaviour of each gate is determined by its type
« we will use constants AND, OR, XOR, NOT

 types of gates are described by functions Type(X,;) = XOR

« We can also use predicates Type(X;,XOR) or XOR(X;)
— Beware! We will also need axioms to describe uniqueness of the gate type.

— terminals of gates can also be named by constants (X;In,, ...), but
then we need to connect them to gates

« it is better to use functions In(1, X;), ...

— wires can be described by predicates |
. Connected(Out(1, X,),In(1, X,)), ... T s
« Beware! We connect the terminals not the gates.

— signals at terminals are determined by a function
- Signal(g) =1

If tw? terminals are connected, then they have the same
signal.
— Vt,,t, Connected(t,, t,) = Signal(t;) = Signal(t,)

The signal at every terminal is either 1 or 0.
— Vt Signal(t) = 1 v Signal(t) = 0
- 1+0

The predicate "Connected” is commutative.
— Vty,t, Connected(t;, t;,) = Connected(t,, t;)

The gate behaviour is determined by its type.
— Vvg Type(g) = OR =
Signal(Out(1,9)) = 1 < 3n Signal(In(n,g)) = 1
— Vg Type(g) = AND =
Signal(Out(1,9)) = 0 < 3In Signal(In(n,g)) =0
— Vg Type(g) = XOR =
Signal(Out(1,9)) = 1 < Signal(In(1,g9)) # Signal(In(2,9))
— Vg Type(g) = NOT =
Signal(Out(1,9)) # Signal(In(1,9)) 5 }?

\
A

2

&/
l

Connected(Out(1,X,),In(1,X;))
Connected(Out(1,X,),In(2,A5))
Connected(Out(1,A,),In(1,0,))
Connected(Out(1,A,),In(2,0,))
Connected(Out(1,X5),0ut(1,C,))
Connected(Out(1,0,),0ut(2,C)))

Type(X;) = XOR
Type(X,) = XOR
Type(A;) = AND
Type(A,) = AND
Type(O;) = OR

Connected(In(1,C,),In(1,X,))
Connected(In(1,C,),In(1,A,))
Connected(In(2,C,),In(2,X;))
Connected(In(2,C,),In(2,A,))
Connected(In(3,C,),In(2,X5))
Connected(In(3,C,),In(1,A,))

Query is a logical formula.

« What combination of inputs would cause the sum output

to be 0 and carry-bit output to be 1?

— diy,ly,i5 Signal(In(1,C,)) = i; A Signal(In(2,C,)) = i, A Signal(In(3,C,)) = i3 A
Signal(Out(1,C,)) = 0 A Signal(Out(2,C,)) =1

Answer is obtained as substitutions of variables i;,i,, is.
— {I]./]'I |2/1l |3/O}I {Il/ll IZ/O/ |3/1}I {Il/ol |2/1I |3/1}

Debug the knowledge base

« Some queries may give an unexpected (wrong) answer
that indicates a problem in the knowledge base
(wrong/missing axiom, ...).

— A typical problem is a missing axiom claiming
that constants identify different objects.

-« 1+0

Example:

* Assume the following claim:
— ,In summer we will teach courses C5101, C5102, CS106, and EE101“

so in FOL we have the facts
e Course(CS,101), Course(CS, 102), Course(CS,106), Course(EE,101)

* How many courses will we teach in summer?

Why?

Something between one and infinity!!

We usually assume having a complete information about the world, i.e.,
what is not explicitly said does not hold — this is called a closed world

assumption (CWA).
There is no such assumption in FOL, so we need to complete the
knowledge base:

Course(d,n) <

[d,n] =[CS,101] v [d,n] = [CS,102] v [d,n] = [CS,206] v [d,n] = [EE,101]

We also assumed that different names (constants) denote different objects
— this is called a unique name assumption (UNA)
Again, we need to explicitly describe that objects are different:

* [CS,101] # [CS,102], ...

© 2020 Roman Bartak
Department of Theoretical Computer Science and Mathematical Logic
bartak@ktiml.mff.cuni.cz

