Artificial Intelligencei

How to effectively construct a knowledge base?
How should axioms look like?

* Representing objects

— objects, categories, and ontologies

* Representing time and actions

— situation calculus
— frame problem

Let us notice that
— agents manipulate with real objects
— but reasoning is done at the level of categories

— An agent uses observations to find properties of
objects that are used to assign objects to categories.
Reasoning on category then reveals useful
information about the object itself.

Category
= a set of its members

= a complex object with relations

 MemberOf
» SubsetOf

How to represent a category in FOL?

an object is a member of a category
— MemberOf(BB,,,Basketballs)

a category is subset of another category
— SubsetOf(Basketballs,Balls)

all members of the category have some property
— VX (MemberOf(x,Basketballs) = Round(x))

all members of the category can be recognized using

common properties

— VX (Orange(x) A Round(x) A Diameter(x)=9.5in A
MemberOf(x,Balls) = MemberOf(x,BasketBalls))

category may also have some property
— MemberOf(Dogs,DomesticatedSpecies)

Categories organize and simplify knowledge base
by using inheritance of properties.

— properties are defined for a category, but they are
Inherited to all members of the category

— food is eatable, fruits are food, apples are fruits, and
hence apples are eatable

Subclasses organize categories to a taxonomy

— a hierarchical structure that is used to categorize
objects
— originally proposed for classifying living organisms
(alpha taxonomy)
— categories for all knowledge
» Used in libraries
» Dewey Decimal Classification
« 330.94 European economy

So far we modelled a static world only.
How to reason about actions and their effects in time?

In propositional logic we need a copy of each action for
each time (situation):
— L%, A FacingRight' A Forward! = L%, |

— We need an upper bound for the number of steps to reach a
goal but this will lead to a huge number of formulas.

Can we do it better in first order logic?

— We do not need copies of axioms describing state changes;

this can be implemented using a universal quantifier for time
(situation)

— Yt Pis the result of action A in time t+1

Situation calculus

* actions are represented by terms

— Go(x,y)

— Grab(g) 9

— Release(g) /
e situation is also a term T

— initial situation: S, s

— situation after applying action a to state s: Result(a,s)

* fluent is a predicate changing with time
— the situation is in the last argument of that term
— Holding(G, Sy)
* rigid (eternal) predicates
— Gold(G)
— Adjacent(x,y)

Result(Turn (Right),
Result(Forward, S,))

(Right)

Situation calculus: plans

We need to reason about sequences of actions — about
plans.

— Result([],s) = s

— Result([a|seq],s) = Result(seq, Result(a,s))

What are typical tasks related to plans?

— projection task — what is the state/situation after applying a
given sequence of actions?
e At(Agent, [1,1], So) A At(G, [1,2], Sp) A —Holding(o, Sp)
* At(G, [1,1], Result([Go([1,1],[1,2]),Grab(G),Go([1,2],[1,1])], So))

— planning task — which sequence of actions reaches a given
state/situation?

» dseq At(G, [1,1], Result(seq, Sy))

Al 5 o =20 o

|| = = =

location 1 location 2 location 1 location 2 location 1 location 2 location 1 location 2

Situation calculus: actions

Each action can be described using two axioms:

— possibility axiom: Preconditions << Poss(a,s)
* At(Agent,x,s) A Adjacent(x,y) << Poss(Go(x,y),s)
e Gold(g) A At(Agent,x,s) A At(g,x,s) <> Poss(Grab(g),s)
* Holding(g,s) < Poss(Release(g),s)

— effect axiom: Poss(a,s) = Changes
e Poss(Go(x,y),s) = At(Agent,y,Result(Go(x,y),s))
* Poss(Grab(g),s) = Holding(g,Result(Grab(g),s))
e Poss(Release(g),s) = —Holding(g,Result(Release(g),s))

Beware! This is not enough to deduce that a plan reaches a given
goal.

We can deduce At(Agent, [1,2], Result(Go([1,1],[1,2]), Sy))
but we cannot deduce At(G, [1,2], Result(Go([1,1],[1,2]), Sy))

Effect axioms describe what has been changed in the world but they
say nothing about the property that everything else is not changed!

This is a so called frame problem.

We need to represent properties that are not
changed by actions.

A simple frame axiom says what is not changed:

At(o,x,s) A ozAgent A —Holding(o,s) =
At(o,x,Result(Gol(y,z),s))

— for F fluents and A actions we need O(FA) frame
axioms

— This is a lot especially taking in account that most
predicates are not changed.

Frame problem: better axioms

Can we use less axioms to model the frame problem?

* successor-state axiom

Poss(a,s) =
(fluent holds in Result(a,s) <
fluent is effect of a v (fluent holds in s A a does not change fluent))

— We get F axioms (F is the number of fluents) with O(AE) literals in total (A is
the number of actions, E is the number of effects).
Examples:
Poss(a,s) =
(At(Agent,y,Result(a,s)) <> a=Go(x,y) v (At(Agent,y,s) A a=Go(y,z)))
Poss(a,s) =
(Holding(g,Result(a,s)) <> a=Grab(g) v (Holding(g,s) A a=Release(g)))
Beware of implicit effects!

* If an agent holds some object and the agent moves then the object also
moves.

* This is called a ramification problem.
Poss(a,s) =
(At(o,y,Result(a,s)) <
(a=Go(x,y) A (o=Agent v Holding(o,s))) v
(At(o,y,s) A =3z (y#z A a=Go(y,z) A (o=Agent v Holding(o,s)))))

Successor-state axiom is still too big with O(AE/F) literals in average.

— To solve the projection task with t actions, the time complexity depends on
the total number of actions — O(AEt) — rather than on the actions in plan.

— If we know each action, cannot we do it better, say O(Et)?

classical successor-state axiom:

7 7

actions having F; among effects actions having —F; among effects

We can introduce positive and negative effects of actions:
— PosEffect(a, F,;) action a causes F, to become true
— NegEffect(a, F;) action a causes F, to become false

modified successor-state axiom:
Poss(a,s) = (F,(Result(a,s)) < PosEffect(a, F,) v (F(s) A —NegEffect(a,F))))
PosEffect(A,, F)
PosEffect(A,, F))
NegEffect(A;, F)
NegEffect(A,, F)

© 2020 Roman Bartak
Department of Theoretical Computer Science and Mathematical Logic
bartak@ktiml.mff.cuni.cz

