
Artificial	Intelligence

Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

Today	program

Agent	in	partially	observable	environment	maintains	a	belief	
state	from	the	percepts	observed	and	a	sensor	model	and	
using	a	transition	model	the	agent	can	predict	how	the	world	
might	evolve	in	the	next	time	step.

– a belief	state	represents	which	states	of	the	world	are	currently	
possible	(by	explicit	enumeration	of	states	or	by	logical	
formulas)

– the	probability	theory	allows	to	quantify	the	degree	of	belief	 in	
elements	of	the	believe	 state

– we	can	also	describe	probability	of	state	transitions

Probabilistic	 reasoning	over	time
– representation	of	state	transitions
– basic	inference	tasks
– inference	algorithms	for	temporal	models
– specific	kinds	of	models	(hidden	Markov	models,	

dynamic	Bayesian	networks)

Time	and	uncertainty

In	situation	calculus,		we	view	the	world
as	a	series	of	snapshots	(time	slices).
A	similar	approach	can	be	applied	in
probabilistic	reasoning.

Each	time	slice	(state)	is	described	as	a	set	of	
random	variables:
– hidden (not	observable)	 random	variables Xt

– observable	random	variables Et (with	observed	values	
et)

t	is	an	identification	 of	the	time	slice	(we	assume	
discrete	time with	uniform	time	steps)

Notation:
– Xa:b denotes	a	set	of	variables	 from	Xa to	Xb

A	model	example	(umbrella	world)

You	are	the	security	guard	stationed	at	a	secret	
underground	installation	and	you	want	to	know	
whether	it	is	raining	today:
– hidden	random	variable	Rt

But	your	only	access	to	the	outside	world	occurs	
each	morning	when	you	see	the	the	director	
coming	in	with,	or	without,	an	umbrella.
– observable	random	variable	Ut

Transition	model

The transition	model	specifies	the	probability	distribution	over	the	latest	state	
variables	given	the	previous	values.

This	is	given	by	P(Xt | X0:t-1).

Problem	#1:	the	set	X0:t-1 is	unbounded	in	size	as	t	increases
– we	can	make	a	Markov	assumption	– the	current	state	depends	only	on	a	finite	

fixed	number	of	previous	states;	processes	satisfying	this	assumption	are	called	
Markov	processes	or	Markov	chains

– first-order	Markov	chain	– the	current	state	depends	only	on	the	previous	state
P(Xt | X0:t-1)	=	P(Xt | Xt-1)

Problem	#2:	there	are	infinitely	many	possible	values	of	t
– We	assume	that	changes	in	the	world	state	are	caused	by	a	stationary	process	(a	

process	of	change	is	governed	by	laws	that	do	not	themselves	 change	very	time)
– the	conditional	probability	tables	P(Xt | Xt-1)	are	identical	 for	all	t

Sensor	model

A	sensor	(observation)	model	describes	how	
the	evidence	(observed)	variables	Et depend	
on	other	variables.

They	could	depend	on	previous	variables	as	
wells	as	the	current	state	variables.

We	make	a	sensor	Markov	assumption	– the	
evidence	variables	depend	only	on	the	hidden	
state	variables	Xt from	the	same	time.
P(Et	| X0:t,	E1:t-1)	=	P(Et	| Xt)

Improving	model	accuracy

The	first-order	Markov	assumption	says	that	the	state	
variables	contain	all	the	information	needed	to	
characterize	the	probability	distribution	for	the	
next	time	slice.

What	if	this	assumption	is	only	approximate?
– increase	the	order	of	the	Markov	process	model

– increase	the	set	of	state	variables
• For	example	we	could	add	Seasont to	incorporate	historical	
records	or	we	could	add	Temperaturet,	Humidityt,	Pressuret
to	use	a	physical	model	of	rainy	conditions.

• The	first	solution	(increasing	the	order)	can	always	be	
reformulated	as	an	increase	in	set	of	state	variables.

A	Bayesian	network	view

The	transition	and	sensor	models	can	be	described	using	a	
Bayesian	network.
In	addition	to	P(Xt | Xt-1)	and	P(Et	| Xt)	we	need	to	say	how	
everything	gets	started	P(X0).

We	have	a	specification	of	the	complete	joint	distribution:
P(X0:t, E1:t)	=	P(X0)	Πi P(Xi	| Xi-1)	P(Ei | Xi)	

Basic	inference	tasks

• Filtering:	 the	task	of	computing	the	posterior	distribution	
over	themost	recent	state,	given	all	evidence	to	date
P(Xt | e1:t)	

• Prediction:	the	task	of	computing	the	posterior	distribution	
over	the future	state,	given	all	evidence	to	date
P(Xt+k | e1:t)	for	k>0

• Smoothing:	 the	task	of	computing	posterior	distribution	
over	a	past	state,	given	all	evidence	up	to	the	present
P(Xk | e1:t)	for	k:	0	≤ k	<	t

• Most	likely	explanation:	the	task	to	find	the	sequence	of	
states	that	is	most	likely	generated	a	given	sequence	of	
observations
argmaxx1:t P(x1:t | e1:t)	

Filtering

The	task	of	computing	the	posterior	distribution	over	themost	recent	
state,	given	all	evidence	 to	date	– P(Xt|e1:t).
A	useful	filtering	algorithm	needs	to	maintain	a	current	state	estimate	
and	update	it,	rather	than	going	back	over	(recursive	estimation):

P(Xt+1|e1:t+1)	=	f(et+1,P(Xt|e1:t))

How	to	define	the	function	f?

P(Xt+1|e1:t+1)	=	P(Xt+1|e1:t,et+1)
=	α P(et+1|Xt+1,e1:t)	P(Xt+1|e1:t)
=	α P(et+1|Xt+1)	P(Xt+1|e1:t)	
=	α P(et+1|Xt+1)	Σxt P(Xt+1|xt,e1:t)	P(xt|e1:t)
=	α P(et+1|Xt+1)	Σxt P(Xt+1|xt)	P(xt|e1:t)

A	message	f1:t is	propagated	forward	over	the	sequence:

P(Xt|e1:t)	=	f1:t	
f1:t+1 =	α FORWARD(f1:t,et+1)
f1:0 =	P(X0)

Bayes rule

sensor Markov assumption

conditioning
P(Y) = Σz P(Y|z) P(z)

Filtering	(example)

P(Rt+1|u1:t+1)
=	α P(ut+1|Rt+1)	P(Rt+1|u1:t)	=	α P(ut+1|Rt+1)	Σrt P(Rt+1|rt)	P(rt|u1:t)

P(R0)	=	〈0.5,	0.5〉

P(R1)
=	Σr0 P(R1|r0)	P(r0)
=	〈0.5,	0.5〉

P(R1|u1)
=	α P(u1|R1)	P(R1)
=	α 〈0.9,	0.2〉 〈0.5,	0.5〉
≈ 〈0.818,	0.182〉

P(R2|u1)
=	Σr1 P(R2|r1)	P(r1|u1)
=	〈0.7,	0.3〉×0.818
+	〈0.3,	0.7〉×0.182
≈ 〈0.627,	0.372〉

P(R2| u1,u2)
=	α P(u2|R2)	P(R2 |u1)
=	α 〈0.9,	0.2〉 〈0.627,	0.372〉
=	〈0.883,	0.117〉

Prediction

The	task	of	computing	the	posterior	distribution	
over	the future	state,	given	all	evidence	to	date	–
P(Xt+k | e1:t)	for	some	k>0.
We	can	see	this	task	as	filtering	without	the	
addition	of	new	evidence:

P(Xt+k+1|e1:t)	=	Σxt+k
P(Xt+k+1|xt+k)	P(xt+k|e1:t)

After	some	time	(mixing	time)	the	predicted	
distribution	converges	to	the	stationary	distribution	
of	the	Markov	process	and	remains	constant.

Smoothing

The	task	of	computing	posterior	distribution	over	a	past	state,	given	all	
evidence	up	to	the	present	– P(Xk|e1:t)	for	k:	0	≤ k	<	t.
We	again	exploit	a	recursive	message-passing	approach,	now	in	two	
parts.

P(Xk|e1:t)	=	P(Xk|e1:k,ek+1:t)
=	α P(Xk|e1:k)	P(ek+1:t|Xk,e1:k)
=	α P(Xk|e1:k)	P(ek+1:t|Xk)
=	α f1:k × bk+1:t

P(ek+1:t|Xk)	=	Σxk+1 P(ek+1:t|Xk,xk+1)	P(xk+1|Xk)
=	Σxk+1 P(ek+1:t|xk+1)	P(xk+1|Xk)
=	Σxk+1 P(ek+1,ek+2:t|xk+1)	P(xk+1|Xk)
=	Σxk+1 P(ek+1|xk+1)	P(ek+2:t|xk+1)	P(xk+1|Xk)

Using	the	backward	message-passing	notation:

P(ek+1:t|Xk)	=	bk+1:t	
bk+1:t =	BACKWARD(bk+2:t,ek+1)
bt+1:t =	P(et+1:t|Xt)	=	P(|Xt)	=	1

Bayes rule

conditional independence

conditioning

conditional independence

conditional independence

Smoothing	(example)

P(Rk|u1:t+1)	=	α P(Rk|u1:k)	P(uk+1:t|Rk)

P(uk+1:t|Rk)	=	Σrk+1 P(uk+1|rk+1)	P(uk+2:t|rk+1)	P(rk+1|Rk)

P(|R2)	=	1

P(u2|R1)	= Σr2 P(u2|r2)	P(|r2)	P(r2|R1)
=	0.9×1×〈0.7,0.3〉+	0.2×1×〈0.3,0.7〉=	〈0.69,0.41〉

Most	likely	explanation/sequence

The	task	to	find	the	sequence	of	states	that	is	most	likely	
generated	a	given	sequence	of	observations
argmaxx1:t P(x1:t | e1:t).

This	is	different	from	smoothing	for	each	past	state	and	taking	
the	sequence	of	most	probable	states!

We	can	see	each	sequence	as	a	path	through	a	graph	whose	nodes	
are	possible	states	at	each	time	step:

Because	of	the	Markov	property	the	most	likely	path	to	a	given	state	
consists	of	the	most	likely	path	to	some	previous	state	followed	by	a	
transition	to	that	state.
This	can	be	described	using	a	recursive	formula.

Viterbi	algorithm

The	most	likely	path	to	a	given	state	consists	of	the	most	likely	
path	to	some	previous	state	followed	by	a	transition	to	that	
state.
maxx1,…,xt P(x1,…,xt,Xt+1|e1:t+1)

=	α P(et+1|Xt+1)	maxxt (P(Xt+1|xt)	maxx1,…,xt-1 P(x1,…,xt|e1:t))
Again,	we	use	an	approach	of	forward	message	passing:

m1:t =	maxx1,…,xt-1 P(x1,…,xt-1,Xt|e1:t)
m1:t+1 =	P(et+1|Xt+1)	maxxt (P(Xt+1|xt)	m1:t)

Hidden	Markov	models

Assume	that	the	state	of	process	is	described	by	a	single	discrete	
random	variable	Xt (there	is	also	a	single	evidence	variable	Et).
This	is	called	a	hidden	Markov	model	(HMM).

This	restricted	model	allows	for	a	simple	and	elegant	matrix	
implementation	of	all	the	basic	algorithms.
Assume	that	variable	Xt takes	values	from	the	set	{1,…S},	where	S	
is	the	number	of	possible	states.
The	transition	model	P(Xt | Xt-1)	becomes	an	S×S	matrix	T,	where:

T(i,j) =	P(Xt=	j	| Xt-1=i)

We	also	put	the	sensor	model	 in	matrix	form.	Now	we	know	the	
value	of	the	evidence	variable	et	so	we	describe P(Et	=	et | Xt=i),	
using	a	diagonal	matrix	Ot,	where:

Ot (i,i) =	P(Et	=	et | Xt=i)

Matrix	formulation	of	algorithms

The	forward	message	propagation	(from	filtering)
P(Xt|e1:t)	=	f1:t
f1:t+1 =	α P(et+1|Xt+1)	Σxt P(Xt+1|xt)	P(xt|e1:t)

can	be	reformulated	using	matrix	operations	(message	f1:t
is	modelled	as	a	one-column	matrix)	as	follows:

T(i,j) =	P(Xt =	j	| Xt-1=i)
Ot (i,i) =	P(Et	=	et | Xt=i)

f1:t+1 =	α Ot+1 TT f1:t
The	backward	message	propagation	(from	smoothing)

P(ek+1:t|Xk)	=	bk+1:t	
bk+1:t =	Σxk+1 P(ek+1|xk+1)	P(ek+2:t|xk+1)	P(xk+1|Xk)

can	be	reformulated	using	matrix	operations	(message	bk:t
is	modelled	as	a	one-column	matrix)	as	follows:

bk+1:t =	T	Ok+1 bk+2:t

Full	smoothing

What	if	we	need	to	smooth	the	whole	sequence	of	
states?
P(Xk|e1:t)	=	α f1:k × bk+1:t
The	time	complexity	of	smoothing	with	respect	 to	evidence	
e1:t	is	O(t)
One	obvious	method	to	smooth	the	whole	sequence	 is	to	
run	the	smoothing	algorithm	for	each	time	step	– this	
results	in	time	complexity	O(t2).
A	better	approach	uses	dynamic	programming	(reuse	
already	computed	information)	 reducing	 the	time	
complexity	 to	O(t).

• forward-backward	 algorithm
• the	practical	drawback	of	this	approach	is	that	its	space	
complexity	can	be	too	high	– it	is	O(|f|t).

Forward-backward	algorithm

1 to t do

Full	smoothing	efficiently

Can	be	smoothing	the	whole	sequence	of	states	done	with	
smaller	memory	consumption	while	keeping	the	time	
complexity	O(t)?

Ideas:
– For	message-passing	 in	one	direction	we	need	constant	space	

independent	of	t.
– Can	the	message	f1:t be	obtained	from	the	message	f1:t+1?
– Then	we	can	pass	the	forward	message	in	the	reverse	

(backward)	direction	together	with	the	backward	message.

Let	us	exploit	matrix	operations:

f1:t+1 =	α Ot+1 TT f1:t → f1:t =	α‘(TT)-1 (Ot+1)-1 f1:t+1
Algorithm:

– first,	run	the	forward-message	propagation	to	get	f1:t
– then	during	the	backward	stage	compute	both	f1:k and	bk+1:t

Smoothing	with	a	fixed	time	lag

Assume	smoothing	in	an	on-line	setting	where	smoothed	
estimates	must	be	computed	for	a	fixed	number	d	of	back	time	
steps	– P(Xt-d|e1:t).	This	is	called	fixed-lag	 smoothing.

In	the	ideal	case,	we	want	incremental	computation	in	a	
constant	time	per	update.

we	have	P(Xt-d|e1:t)	=	α f1:t-d × bt-d+1:t
we	need	P(Xt-d+1|e1:t+1)	=	α f1:t-d+1 × bt-d+2:t+1

An	incremental	approach:
• we	can	use	f1:t-d+1 =	αOt-d+2 TT f1:t-d
• we	need	incremental	computation	of	bt-d+2:t+1 from		bt-d+1:t

bt-d+1:t =	T	Ot-d+1 bt-d+2:t =	(Πi=t-d+1,…,tT	Oi)	bt+1:t =	Bt-d+1:t 1

bt-d+2:t+1 =	(Πi=t-d+2,…,t+1T	Oi)	bt+2:t+1 =	Bt-d+2:t+1 1

Bt-d+2:t+1 = (Ot-d+1)-1 T-1 Bt-d+1:t T	Ot+1

Smoothing	with	a	fixed	time	lag

© 2016 Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

bartak@ktiml.mff.cuni.cz

