Artificial Intelligence

Roman Bartak

Department of Theoretical Computer Science and Mathematical Logic

Today program

Agent in partially observable environment maintains a belief
state from the percepts observed and a sensor model and
using a transition model the agent can predict how the world
might evolve in the next time step.

— a belief state represents which states of the world are currently
possible (by explicit enumeration of states or by logical
formulas)

— the probability theory allows to quantify the degree of belief in
elements of the believe state

— we can also describe probability of state transitions

Probabilistic reasoning over time
— representation of state transitions
— basic inference tasks
— inference algorithms for temporal models

— specific kinds of models (hidden Markov models,
dynamic Bayesian networks)

Time and uncertainty

In situation calculus, we view the world
as a series of snapshots (time slices).

A similar approach can be applied in
probabilistic reasoning.

Each time slice (state) is described as a set of
random variables:

— hidden (not observable) random variables X;

— observable random variables E, (with observed values
e)

t is an identification of the time slice (we assume
discrete time with uniform time steps)

Notation:
— X,., denotes a set of variables from X, to X,

A model example (umbrella world)

You are the security guard stationed at a secret
underground installation and you want to know
whether it is raining today:

— hiddenrandom variable R,

But your only access to the outside world occurs
each morning when you see the the director
coming in with, or without, an umbrella.

— observable random variable U, /

A

Transition model

The transition model specifies the probability distribution over the latest state
variables given the previous values.

This is given by P(X; | Xo.t.1)-

Problem #1: the set X,.;.; is unbounded in size as t increases

— we can make a Markov assumption — the current state depends only on a finite
fixed number of previous states; processes satisfying this assumption are called
Markov processes or Markov chains

— first-order Markov chain — the current state depends only on the previous state
P(X; | Xo.-1) = P(X; | Xiq)

First-order @ 0 X t @ @
_— .
Second-order @ o X, @ @

Problem #2: there are infinitely many possible values of t

— We assume that changes in the world state are caused by a stationary process (a
process of change is governed by laws that do not themselves change very time)

— the conditional probability tables P(X; | X,,) are identical for all t

A sensor (observation) model describes how
the evidence (observed) variables E, depend
on other variables.

They could depend on previous variables as
wells as the current state variables.

We make a sensor Markov assumption — the

evidence variables depend only on the hidden
state variables X, from the same time.

P(Et | Xo:t El:t—l) = P(Et | Xt)

Improving model accuracy

The first-order Markov assumption says that the state
variables contain all the information needed to
characterize the probability distribution for the
next time slice.

What if this assumptionis only approximate?
— increase the order of the Markov process model

— increase the set of state variables

* For example we could add Season, to incorporate historical
records or we could add Temperature,, Humidity,, Pressure,
to use a physical model of rainy conditions.

* The first solution (increasing the order) can always be
reformulated as an increase in set of state variables.

A Bayesian network view

The transition and sensor models can be described using a
Bayesian network.

In addition to P(X; | X.;) and P(E, | X,) we need to say how
everything gets started P(X,).

R PR,
07

t
f 03
. 4 . .
Rain; _, Rain, Rain; .

R, | P(U,)

t 0.9
yL/ 0.2

Umbrella, -1 Umbrella, Umbrella, +

We have a specification of the complete joint distribution:
P(Xo.1, E1.t) = P(Xo) IL P(X; | X;1) P(E; | X))

Basic inference tasks

Filtering: the task of computing the posterior distribution
over the most recent state, given all evidence to date
P(Xt | e1:t)

Prediction: the task of computing the posterior distribution
over the future state, given all evidence to date
P(X.k | €1.) for k>0

Smoothing: the task of computing posterior distribution
over a past state, given all evidence up to the present
P(X, | e) fork:0=k<t

Most likely explanation: the task to find the sequence of
states that is most likely generated a given sequence of
observations

argmax,, . P(xy | eqy)

Filtering

The task of computing the posterior distribution over the most recent

state, given all evidence to date — P(X;|e;.).

A useful filtering algorithm needs to maintain a current state estimate
and update it, rather than going back over (recursive estimation):

P(Xii1|€1.441) = flew1,P(Xc] €124))

How to define the function f?

P(Xt+1 | e1:t+1) = P(Xt+1 | elzt,em) ! Bayes rule

= o P(ey1| X,e1.0) P(Xiuq | €1) :
: ' sensor Markov assumption
= P(et+1 | Xt+1) P(Xt+1 | elzt) ‘g

=0 P(et+1 | Xt+1) th P(Xt+1 | xt,elt) P(th elt) ﬁ Conditioning
P(Y)=2,P(Y|z)P
= 0L P(eyq [X)) Zy P(Xiiq [%) P(x¢| €14) b2 SR

A message f,., is propagated forward over the sequence:

P(th e1:t) = fl:t
f1.ts1 = 0 FORWARD(fy.;, €4,1)
f.0 = P(Xo)
I [| i

Filtering (example)

P(Ris1|Uy.t41)

= 0L P(Upg |Req) P(Reyg [ugy) = @ P(Ugy [Reyg) 2, P(Ryyq [1) P(re| uyy)

0.500 0.627

0.500 0.373
True 0.500 0.8'1 8 0.8’83

False 0.500 0.182 0.117

Ri_y| PR,

P(R,) =(0.5,0.5)

P(R,)
=2, P(Ry|ro) P(ro)
=(0.5,0.5)

P(R;|u,)
= o P(uy |R;) P(Ry)
=0 (0.9, 0.2)(0.5,0.5)
~(0.818,0.182)

P(R;[uy)
=3, P(R,|r;) P(ry | uy)
=(0.7,0.3)x0.818
+(0.3,0.7)x0.182
~(0.627,0.372)

P(R;| uy,u,)

= a P(uy|R,) P(R; |uy)
=qQ (0.9, 0.2) (0.627, 0.372)
= <0.883, O.117>

Prediction

The task of computing the posteriordistribution
over the future state, given all evidence to date—

P(X.. | e,.;) for some k>O0.

We can see this task as filtering without the

addition of new evidence:

I:’(Xt+k+1 | e1:t) = 2Xt+k P(Xt+k+1 | xt+k) P(Xt+k | e1:t)

After some time (mixing time) the predicted
distribution converges to the stationary dlstrlbutlon

of the Markov process and remains consta‘,’ t

Smoothing

The task of computing posterior distribution over a past state, given all
evidence up to the present — P(X,|e,,) fork: 0 =k <t.

We again exploit a recursive message-passing approach, now in two

parts.

P(Xkl e1:t) = P(Xkl e1:klek+1:t) Bayes rule
= o P(Xi | e1y) Plert] Xiwe1:4) ‘é! condltlonal independence
= a P(X|eq) Plegq.] Xy)

= o fy X by

Pyt Xi) = Zxpiq Plekere | Xio Xice1) P(Xperr | Xil) < conditioning
= 2xk+1 Pleysr:t Xir1) P(Xie1 [Xi) :i conditional independence
= 2xk+1 P(ek+1rek+2:t|xk+1) P(Xk+1 I Xk)
= Zet Pleran | Xia1) Plepinit] Xpar) P(Xiiq [X)) % conditional independence

Using the backward message-passing notation: [

P(ek+1:t| Xk) = bk+1:t

I

\

b.1.: = BACKWARD(by,,.;, €1+1)

b1 = Ple1l X = P(X) =1 ,

Smoothing (example)

P(Ri|uz.ts1) = o P(Re|ug) P(uysr.t|Ry)
P(uk+1:t| Rk) = 2:rk+1 P(uk+1| rlk+1) P(uk+2:t| rlk+1) P(rk+1| Rk)

P(|R)) =1

P(u,|Ry) = 2, P(uz|ry) P(Iry) P(r2|Ry)
= O.9x1x<0.7,0.3>+ O.2x1x(0.3,0.7> = (O.69,0.41>

0.500 0.627
0.500 0. 373
True 0.500 !18 83 onard
False 0.500 0.182 o 17 onwar
0,8’83 0.883
0.117 0.117 smoothed
0.690 1.000
—
0.410 1.000 backward

Ri_;| PR,

D s G s €I
& G

Most likely explanation/sequence

The task to find the sequence of states that is most likely
generated a given sequence of observations
argmax,, . P(x; | eq4).

This is different from smoothing for each past state and taking

the sequence of most probable states!

We can see each sequence as a path through a graph whose nodes

are possible states at each time step:

state
space
paths

Rain,

Rain,

Rain,

Rain,

Raing

mrue

< rue

false

&

mue [I'lIE
false false

mrue
false

false

Because of the Markov property the most likely path to a given state
consists of the most likely path to some previous state followed by a

transition to that state.
This can be described using a recursive formula.

Viterbi algorithm

The most likely path to a given state consists of the most likely
path to some previous state followed by a transition to that

state.

MaXy, ... x P(Xy,.. X X1 | €1:441)

= 0 P(e,q | Xiiq) max,, (P(Xq|x;) max

X1, Xt-1

P(X,-..

Xeleg))

Again, we use an approach of forward message passing:

M. = MaX,,

- Xt-1

P(x,..

X

1,

Xt | e1:t)

Myte1 = P(et+1 | Xt+1) maxxt (P(Xt+1 | xt) ml:t)

state
space
paths

umbrella

most
likely
paths

Rain,

aim

Rain

Rain,

Rain 5

rue

rue

rue

rue

<

false

false

[I'le€
false

false

false

rue

mrue

false

rue

rue

.8182

5155

.0210

<

1818

4
e

.0491

.0361
1237

4
L

.0334
0173

.0024

m,,

m,;

m,;

Hidden Markov models

Assume that the state of process is described by a single discrete
random variable X, (there is also a single evidence variable E,).

This is called a hidden Markov model (HMM).

This restricted model allows for a simple and elegant matrix
implementation of all the basic algorithms.

Assume that variable X, takes values from the set {1,...S}, where S
is the number of possible states.

The transition model P(X; | X, ;) becomes an SxS matrix T, where:
T(i,j)= P(Xt=j | Xt-1=i)

We also put the sensor model in matrix form. Now we know the
value of the evidence variable e, so we describe P(E,= e, | X=i),
using a diagonal matrix O,, where:

O;ii)= P(E.= e, | X;=i)

Matrix formulation of algorithms

The forward message propagation (fromfiltering)

P(Xt | e1:t) = f1:t

f1.01= O P(€pq [Xeia) 2 P(X¢.1 | Xe) P(x;|€1.)
can be reformulated using matrix operations (message f
is modelled as a one-column matrix) as follows:

T(i,j) =P(X;=j | X¢1=i)

O i) = P(E,= e | X;=i)

fl:t+1 =a Ot+1 TT fl:t

The backward message propagation (from smoothing)
P(e1:t| Xi) = Byt
bys1 = 2 P(e1 [Xii1) Pepazit [Xiar) P(Xiar [Xi)
can be reformulated using matrix operations (message b, .,
is modelled as a one-column matrix) as follows:

bk+1:t =T 0k+1 bk+2:t

Full smoothing

What if we need to smooth the whole sequence of
states?

P(X(|ey.)=af, xby .,

The time complexity of smoothing with respect to evidence
el:tiS O(t)
One obvious method to smooth the whole sequence is to

run the smoothing algorithm for each time step — this
results in time complexity O(t?).

A better approach uses dynamic programming (reuse
already computed information) reducing the time
complexity to O(t).

» forward-backward algorithm

* the practical drawback of this approach is that its space
complexity can be too high —it is O(| f|t).

Forward-backward algorithm

function FORWARD-BACKWARD(ev, prior) returns a vector of probability distributions
inputs: ev, a vector of evidence values for steps 1,...,t
prior, the prior distribution on the initial state, P{Xo)

local variables: fv, a vector of forward messages for steps 0, ..., t
b, a representation of the backward message, initially all 1s
sv, a vector of smoothed estimates for steps 1,...,t

fv[0] < prior

fori= 1tozdo

fv[i] «— FORWARD(fv[i — 1], ev][i]}
for i = fdownto 1 do

sv[i] =~ NORMALIZE(fv[i] x b)

b < BACKWARD(b, ev][i]}

return sv

Full smoothing efficiently

Can be smoothing the whole sequence of states done with
smaller memory consumption while keeping the time
complexity O(t)?

Ideas:

— For message-passing in one direction we need constant space
independent of t.

— Can the message f,.. be obtained from the message f;..,;?

— Then we can pass the forward message in the reverse
(backward) direction together with the backward message.

Let us exploit matrix operations:
flmn =00 Ty = fr = (T (Opg) i

Algorithm:
— first, run the forward-message propagation to get f,.,
— then during the backward stage compute both f,, and b,

Smoothing with a fixed time lag

Assume smoothing in an on-line setting where smoothed
estimates must be computed for a fixed number d of back time
steps — P(X. 4] €1.)- This is called fixed-lag smoothing.

In the ideal case, we want incremental computation in a
constant time per update.

we have P(Xg|e1.) = o f1o g X brguay
we need P(Xi g1/ €1:01) = 0 Frpgi1 X Brgioin
An incremental approach:
« wecanuse fi 4= 00y T oy
* we need incremental computation of b_,,.t,1 from b, g1+
Begire = T Orger Prgioi = (Hi=t-d+1,...,tT 0)) b1 = Brgra 1
Bigioie1 = (Hi=t-d+2,...,t+1T0i) Biiote1 = Brgiona 1

Bt-d+2:t+1 = (Ot-d+1)_1 T_l Bt-d+1:t T 0t+1

Smoothing with a fixed time lag

function FIXED-LAG-SMOOTHING(e;, hmm, d) returns a distributionover X;_ 4
inputs: e, the current evidence for time step ¢
hmm, a hidden Markov model with S X S transition matrix T
d. the length of the lag for smoothing
static: £, the current time, initially 1
f, a probability distribution. the forward message P(X|e; .,), initially PRIOR [hmim]
B, the d-step backward transformation matrix, initially the identity matrix
€¢—q4.¢, double-ended list of evidence from # — d to ¢, initially empty
local variables: O; _;, O,, diagonal matrices containing the sensor model information

add e; to theend of €; 4.+
O, « diagonal matrix containing P(ez| X+)
if t > d then
f— FORWARD(f, e;)
remove e;_ 41 from the beginning of €;_4.¢
0,_ ; + diagonal matrix containing P(e;— 4| X;—4)
B+~ 0, ,T 'BTO;
else B+—BTO;
t—t+1
if £ > d then return NORMALIZE(f X B1} else return null

© 2016 Roman Bartak
Department of Theoretical Computer Science and Mathematical Logic
bartak@ktiml.mff.cuni.cz

