
Introduction to
Artificial Intelligence

Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

Problem solving – just to recall

Problem solving agent is a type of goal-based agent
– uses atomic representation of states
– goal is represented by a set of goal states
– actions describe transitions between states

The task is to find a sequence of actions that reaches the
goal state (from the initial/current) state.

Problem solving is realized via search:
– tree search vs graph search
– uniformed search (no additional information beyond

problem formulation)
– informed (heuristic) search (uses problem-specific

knowledge)
• algorithm A*: f(n) = g(n) + h(n)

Introduction to Artificial Intelligence, Roman Barták 2

Working Example: N-queens

Introduction to Artificial Intelligence, Roman Barták 3

find locations of N queens on board
of size N´N such that the queens
do not conflict with each other

conflicts:
• same row
• same column
• same diagonal

How to model the problem?
• What is the goal?
• What are the states?
• What are the actions?

N-queens: Problem formulation

States = locations of queens on board
Initial state = empty board
Goal state = unknown state

but easy to recognize: N queens are on board and no
conflict among them

Action = put a queen to a board (such that the
queen does not conflict with already placed
queens)
Better model:

queens are pre-allocated to columns and we are looking
for rows only (smaller search space: NN vs. (N´N)N)

Alternative model:
all queens are on board and we can just change their
positions (local search)

Introduction to Artificial Intelligence, Roman Barták 4

N-queens: Solving by search

Properties:
– we know the depth where the

solution lies (N)
– each branch leads to a different

set of states (search nodes
contain different states)

Hence, tree search with depth search strategy
(backtracking) is appropriate
there.
Can we do better?

Introduction to Artificial Intelligence, Roman Barták 5

Forward checking

Each time we assign a queen, we remove all conflicting
positions for not-yet assigned queens.
This technique is called forward checking.
How to implement this technique for N-queens and for
other problems?

Introduction to Artificial Intelligence, Roman Barták 6

´
´
´

´

´ ´ ´
´
´
´

´

´
´

´ ´ ´
´
´
´
´ ´

´

´ ´ ´
´
´

´ ´

Forward checking in Sudoku

Logic-based puzzle, whose goal is to enter
digits 1-9 in cells of 9´9 table in such a
way, that no digit appears twice or more in
every row, column, and 3´3 sub-grid.

Introduction to Artificial Intelligence, Roman Barták 7

Each cell is a variable
with possible values
from domain {1,…,9}.

Cells in rows, columns,
and sub-grids should
contain different values.

Constraint Satisfaction Problem

We can formulate N-queens, Sudoku and other problems
using a common formalism with factored state representation.
Constraint satisfaction problem consists of:

– a finite set of variables
• describe some features of the world state that we are looking for, for

example position of queens at a chessboard
– domains – finite sets of values for each variable

• describe “options” that are available, for example the rows for queens
– a finite set of constraints

• a constraint is a relation over a subset of variables;
constraint can be defined in extension (a set of tuples satisfying the
constraint) or using a formula (rowA ¹ rowB)

• constraint arity = the number of constrained variables

A feasible solution of a constraint satisfaction problem is a
complete consistent assignment of values to variables.

complete = each variable has assigned a value
consistent = all constraints are satisfied

Introduction to Artificial Intelligence, Roman Barták 8

Constraint models

First, one needs to formulate the problem as a
constraint satisfaction problem.
This is called constraint modeling.

Example (N-queens problem):
the core decision: each queen is pre-allocated to its

own column and we are looking for its row
variables: N variables r(i) with the domain {1,…,N}
constraints: no two queens attack each other

"i¹j r(i)¹r(j) ∧ |i-j| ¹ |r(i)-r(j)|

Introduction to Artificial Intelligence, Roman Barták 9

How to solve a CSP?

Backtracking search:
– assign a value to a selected (not-yet instantiated) variable
– check constraints over already instantiated variables
– if the constraints are satisfied then continue to the next variable

otherwise try a different value
– if no value can be assigned to a variable then go back to the

previous variable and try an alternative value for that variable
– repeat until all variables are instantiated (and all constraints

satisfied)

Introduction to Artificial Intelligence, Roman Barták 10

Consistency techniques

Can we use the constraints in a more active way,
for example to prune inconsistent values ?
Example:

A in 3..7, B in 1..5 the variables’ domains
A<B the constraint
– many inconsistent values can be removed
– we get A in 3..4, B in 4..5
Note: it does not mean that all the remaining combinations of the values are
consistent (for example A=4, B=4 is not consistent)

How to remove the inconsistent values from the
variables’ domains in the constraint network?

Introduction to Artificial Intelligence, Roman Barták 11

Arc consistency (AC)

For simplicity we will assume binary CSPs only
i.e. each constraint corresponds to an arc (edge) in the
constraint network.

The arc (Vi,Vj) is arc consistent iff for each value x from the domain Di
there exists a value y in the domain Dj such that the assignment Vi =x
a Vj = y satisfies all the binary constraints on Vi, Vj.

Note: The concept of arc consistency is directional, i.e., arc consistency of
(Vi,Vj) does not guarantee consistency of (Vj,Vi).

CSP is arc consistent iff every arc (Vi,Vj) is arc consistent (in both
directions).

Example:

Introduction to Artificial Intelligence, Roman Barták 12

3..7 1..5
A<B

no arc is consistent

A B 3..4 1..5
A<B

(A,B) is consistent

A B 3..4 4..5
A<B

(A,B) and (B,A) are consistent

A B

Algorithm AC-3

Introduction to Artificial Intelligence, Roman Barták

Domain filtering for variable Xi removes values
that have no support in the variable Xj, also, if any
value is deleted this information is passed to the
calling procedure. Knowing constraint semantics can
speedup constraint checking (for example X<Y).

If the domain of variable Xi
changed then verify all arcs
(constraints) leading to the
variable except the arc from
the variable Xj.

The algorithm can be applied
incrementally during search –
when X is instantiated put all
constraints related to X to the
queue.

Time complexity of AC-3 is O(ed3), where e is
the number of constraints and d is the size of
domain – we need to repeatedly (ed) check the
constraints (d2). This is not optimal, we can
remember the result of consistency checks - AC-4,
AC-3.1, AC-2001 with time complexity O(ed2).

´
i j

13

Maintaining Arc Consistency

How to integrate arc consistency with backtracking search?
• make the problem arc consistent.
• after each assignment (during search) arc consistency is

restored (by removing inconsistent values)
This technique is known as look ahead or constraint
propagation or maintaining arc consistency.

What is the difference from forward checking?
• FC only checks constraints

containing currently
instantiate variable

• LA checks all constraints
(and hence removes more
inconsistencies)

Introduction to Artificial Intelligence, Roman Barták 14

Constraint satisfaction techniques

Introduction to Artificial Intelligence, Roman Barták 15

Backtracking is not very good
• 19 attempts

Forward checking is better
3 attempts

And the winner is Look Ahead
2 attempts

Local consistency

Arc consistency is a form of local consistency.
Arc consistency removes values (locally) violating
some constraints but does not guarantee global
consistency.

Example (back to Sudoku):

Introduction to Artificial Intelligence, Roman Barták 16

4 7

4 7
4 5 7

¹

¹
¹

X1,1

X1,2

X2,3

This problem is AC, but not
globally consistent.

5
5

Stronger consistency

We can generally define k-consistency, as the consistency check
where for a consistent assignment of (k-1) variables we require a
consistent value in one more given variable.

– arc consistency (AC) = 2-consistency
– path consistency (PC) = 3-consistency

Theorem: If the problem is i-consistent "i=1,..,n (n is the number of
variables), then we can solve it in a backtrack-free way.

– DFS can always find a value consistent with the assignment of previous
variables

Unfortunately, the time complexity of k-consistency is exponential
in k.

a b

a b
a b c

¹

¹
¹

X1

X2

X3

This problem is AC, but not PC.

Introduction to Artificial Intelligence, Roman Barták 17

Global constraints

Instead of stronger consistency techniques (expensive) usually global
constraints are used – a global constraint encapsulates a sub-problem with a
specific structure that can be exploited in the ad-hoc domain filtering
procedure.
Example:

global constraint all_different({X1,…, Xk})
– encapsulates a set of binary inequalities X1 ¹ X2, X1 ¹ X3, …, Xk-1 ¹ Xk
– all_different({X1,…, Xk}) = {(d1,…, dk) | "i diÎDi & "i¹j di ¹ dj}
– the filtering procedure is based on matching in bipartite graphs

a

b

c

X1

X2

X3

´´
a b

a b

a b c

¹

¹
¹

X1

X2

X3

1. find a maximal matching
2. remove arcs that are not

part of any maximal
matching

3. remove corresponding
values

Bipartite graph
• variables on one side, values on the

other side
• arcs connect a variable with values in

its domain

´ ´

Introduction to Artificial Intelligence, Roman Barták 18

Variable and value ordering

The backtracking search algorithm instantiates variables in
some order and assigns values in some order.
Which variable and value order should be used?

Variable ordering
Fail-first principle: assign first a variable whose assignment will
probably lead to a failure
– dom heuristic: variable with the smallest domain first
– deg heuristic: variable participating in the largest number of

constraint first

Value ordering
Succeed-first principle: value belonging to the solution first
How to recognize such a value?
– for example a value that restricts least the other variables

(keeps the largest flexibility in the problem)
– finding the generally best value is frequently computationally

expensive and hence problem-dependent heuristics are more
frequently used

Introduction to Artificial Intelligence, Roman Barták 19

Summary

Constraint Programming is a declarative
approach to (combinatorial) problem solving.
– construct a model (variables, domains, constraints)
– use a general constraint solver
• combination of search (backtracking) and inference

(domain pruning)
• arc consistency and global constraints are the most

widely used inference techniques

For more information
course Constraint Programming
– winter term
– http://ktiml.mff.cuni.cz/~bartak/podminky/

Introduction to Artificial Intelligence, Roman Barták 20

© 2020 Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

bartak@ktiml.mff.cuni.cz

