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Time and uncertainty

In situation calculus,  we view the world
as a series of snapshots (time slices).
A similar approach can be applied in
probabilistic reasoning about time.

Each time slice (state) is described as a set of random 
variables:

– hidden (not observable) random variables Xt
describe the actual state

– observable random variables Et (with observed values et)
describe what we observe about the state

t is an identification of the time slice (we assume discrete time
with uniform time steps)

Notation:
Xa:b denotes a set of variables from Xa to Xb
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Formal model

We need to describe evolution of states and how observations 
depend on states.
Transition model

specifies the probability distribution over the latest state variables 
given the previous values P(Xt | X0:t-1)
Simplifying assumptions:
– state depends on previous state only (Markov assumption): 

P(Xt | X0:t-1) = P(Xt | Xt-1)
– all transitions tables P(Xt | Xt-1) are identical for all t (stationary 

process)
Sensor (observation) model

describes how the evidence (observed) variables Et depend on 
other variables P(Et | X0:t, E1:t-1)
Simplifying assumption:
– observation depends on current state only (sensor Markov 

assumption): P(Et | X0:t, E1:t-1) = P(Et | Xt)
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Working example: umbrella world

You are the security guard stationed at a secret 
underground installation and you want to know 
whether it is raining today:
– hidden random variable Rt

But your only access to the outside world occurs 
each morning when you see the the director 
coming in with, or without, an umbrella.
– observable random variable Ut
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A Bayesian network view

The transition and sensor models can be described using a 
Bayesian network.
In addition to P(Xt | Xt-1) and P(Et | Xt) we need to say how 
everything gets started P(X0) (= á0.5, 0.5ñ , for example).

We have a specification of the complete joint distribution:
P(X0:t, E1:t) = P(X0) Pi P(Xi | Xi-1) P(Ei | Xi) 
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Basic inference tasks

Filtering: the task of computing the posterior distribution over 
the most recent state, given all evidence to date
P(Xt | e1:t) 

Prediction: the task of computing the posterior distribution 
over the future state, given all evidence to date
P(Xt+k | e1:t) for k>0

Smoothing: the task of computing posterior distribution over 
a past state, given all evidence up to the present
P(Xk | e1:t) for k: 0 £ k < t

Most likely explanation: the task to find the sequence of 
states that is most likely generated a given sequence of 
observations
argmaxx1:t P(x1:t | e1:t) 
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Where am I now?

Where will I be in future?

Where was I in past?

What path did I go through?



Filtering

The task of computing the posterior distribution over the most recent 
state, given all evidence to date – P(Xt|e1:t).
A useful filtering algorithm needs to maintain a current state estimate 
and update it, rather than going back over (recursive estimation):

P(Xt+1|e1:t+1) = f(et+1,P(Xt|e1:t))

How to define the function f?
P(Xt+1|e1:t+1) = P(Xt+1|e1:t,et+1)

= a P(et+1|Xt+1,e1:t) P(Xt+1|e1:t)
= a P(et+1|Xt+1) P(Xt+1|e1:t) 
= a P(et+1|Xt+1) Sxt P(Xt+1|xt,e1:t) P(xt|e1:t)
= a P(et+1|Xt+1) Sxt P(Xt+1|xt) P(xt|e1:t)

A message f1:t is propagated forward over the sequence:
P(Xt|e1:t) = f1:t 
f1:t+1 = a FORWARD(f1:t, et+1)
f1:0 = P(X0)

Bayes rule

sensor Markov assumption

conditioning
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Prediction

The task of computing the posterior distribution 
over the future state, given all evidence to date –
P(Xt+k | e1:t) for some k>0.
We can see this task as filtering without the 
addition of new evidence:

P(Xt+k+1|e1:t) = Sxt+k P(Xt+k+1|xt+k) P(xt+k|e1:t)

After some time (mixing time) the predicted 
distribution converges to the stationary distribution 
of the Markov process and remains constant.
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Smoothing

The task of computing posterior distribution over a past state, given all 
evidence up to the present – P(Xk|e1:t) for k: 0 £ k < t.
We again exploit a recursive message-passing approach, now in two 
directions.
P(Xk|e1:t) = P(Xk|e1:k,ek+1:t)

= a P(Xk|e1:k) P(ek+1:t|Xk,e1:k)
= a P(Xk|e1:k) P(ek+1:t|Xk)
= a f1:k ´ bk+1:t

P(ek+1:t|Xk) = Sxk+1 P(ek+1:t|Xk,xk+1) P(xk+1|Xk)
= Sxk+1 P(ek+1:t|xk+1) P(xk+1|Xk)
= Sxk+1 P(ek+1,ek+2:t|xk+1) P(xk+1|Xk)
= Sxk+1 P(ek+1|xk+1) P(ek+2:t|xk+1) P(xk+1|Xk)

Using the backward message-passing notation:
P(ek+1:t|Xk) = bk+1:t 
bk+1:t = BACKWARD(bk+2:t, ek+1)
bt+1:t = P(et+1:t|Xt) = P(|Xt) = 1

Bayes rule

conditional independence

conditioning

conditional independence

conditional independence
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Most likely explanation/sequence

The task to find the sequence of states that is most likely generated a 
given sequence of observations – argmaxx1:t P(x1:t | e1:t).

Note: This is different from smoothing for each past state and taking the 
sequence of most probable states!

We can see each sequence as a
path through a graph whose nodes
are possible states at each time step.

The most likely path to a given state consists of the most likely path to 
some previous state followed by a transition to that state.
This can be described using a recursive formula (Viterbi algorithm):

maxx1,…,xt P(x1,…,xt,Xt+1|e1:t+1)
= a P(et+1|Xt+1) maxxt (P(Xt+1|xt) maxx1,…,xt-1 P(x1,…,xt|e1:t))

Again, we use an approach of forward message passing:
m1:t = maxx1,…,xt-1 P(x1,…,xt-1,Xt|e1:t),        m1:t+1 = P(et+1|Xt+1) maxxt (P(Xt+1|xt) m1:t)

Introduction to Artificial Intelligence, Roman Barták 10

Rain1

m1:1

true

Rain5

m1:5

true

Rain4

m1:4

true

Rain3

m1:3

false

Rain2

m1:2

trueUmbrellat

(a)

(b)
.8182

.1818

.0210

.0024

.0334

.0173

.0361

.1237

.5155

.0491

true

false

true

false

true

false

true

false

true

false

Rain1

m1:1

true

Rain5

m1:5

true

Rain4

m1:4

true

Rain3

m1:3

false

Rain2

m1:2

trueUmbrellat

(a)

.8182

.1818

.0210

.0024

.0334

.0173

.0361

.1237

.5155

.0491

true

false

true

false

true

false

true

false

true

false

Observed variable

0.9 * max(0.7 * 0.0334,
0.3 * 0.0173)

Raint

Umbrellat

Raint–1

Umbrellat–1

Raint+1

Umbrellat+1

Rt -1 tP(R )

0.3f
0.7t

tR tP(U  )
0.9t
0.2f

Raint

Umbrellat

Raint–1

Umbrellat–1

Raint+1

Umbrellat+1

Rt -1 tP(R )

0.3f
0.7t

tR tP(U  )
0.9t
0.2f

0.2 * max(0.3 * 0.0334,
0.7 * 0.0173)

a á0.9*0.5, 0.2*0.5ñ
= á0.8182, 0.1818ñ



Hidden Markov models

Assume that the state of process is described by a single discrete 
random variable Xt (there is also a single evidence variable Et).
This is called a hidden Markov model (HMM).

This restricted model allows for a simple and elegant matrix 
implementation of all the basic algorithms.
Assume that variable Xt takes values from the set {1,…S}, where S 
is the number of possible states.
The transition model P(Xt | Xt-1) becomes an S´S matrix T, where:

T(i,j) = P(Xt = j | Xt-1=i)
We also put the sensor model in matrix form. Now we know the 
value of the evidence variable et so we describe P(Et = et | Xt=i), 
using a diagonal matrix Ot, where:

Ot (i,i) = P(Et = et | Xt=i)
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Matrix formulation of algorithms

The forward message propagation (from filtering)
P(Xt|e1:t) = f1:t
f1:t+1 = a P(et+1|Xt+1) Sxt P(Xt+1|xt) P(xt|e1:t)

can be reformulated using matrix operations (message f1:t
is modelled as a one-column matrix) as follows:

T(i,j) = P(Xt = j | Xt-1=i)
Ot (i,i) = P(Et = et | Xt=i)

f1:t+1 = a Ot+1 TT f1:t

The backward message propagation (from smoothing)
P(ek+1:t|Xk) = bk+1:t 
bk+1:t = Sxk+1 P(ek+1|xk+1) P(ek+2:t|xk+1) P(xk+1|Xk)

can be reformulated using matrix operations (message bk:t
is modelled as a one-column matrix) as follows:

bk+1:t = T Ok+1 bk+2:t
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Localization (an example of HMM) 
Assume a robot that moves randomly in a grid world, has a map of the world 
and (noisy) sensors reporting obstacles laying immediately to the north, south, 
east, and west. The robot needs to find its location.

A possible model:
– random variables Xt describe robot’s location at times t

• possible values are 1,..,n for n locations
• Nb(i) – a set of neighboring locations for location i

– transition tables (random move)
• P(Xt+1=j|Xt=i) = 1/ |Nb(i)|, if jÎNb(i),

0, otherwise
– sensor variables Et describe observations (evidence) at times t (four sensor for 

four directions NSEW)
• values indicate detection of obstacle at a given direction NSEW (16 values for all directions)
• assume that sensor’s error rate is e

– sensor tables
• P(Et=et|Xt=i) = (1-e)4-dit edit

where dit is the number of deviations of observation et from the true values for square i
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Dynamic Bayesian networks

Dynamic Bayesian network (DBN) is a Bayesian 
network that represents a temporal probability 
model.

the variables and links are exactly replicated from 
slice to slice

It is enough to describe one slice.
• prior distribution P(X0)
• transition model P(X1 | X0)
• sensor model P(E1| X1) 

Each state variable has parents either at the same 
slice or in the previous slice (Markov assumption).
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DBN vs HMM

A hidden Markov model is a special case of a dynamic Bayesian network.
Similarly, a dynamic Bayesian network can be encoded as a hidden Markov 
model

one random variable in HMM whose
values are n-tuples of values
of state variables in DBN

What is the difference?
The relationship between DBN and HMM is roughly analogous to the 
relationship between ordinary Bayesian networks and full tabulated joint 
distribution.
– DBN with 20 Boolean state variables, each of which has three parents

• the transition model has 20 ´ 23 = 160 probabilities
– Hidden Markov model has one random variable with 220 values

• the transition model has 220 ´ 220 » 1012 probabilities
• HMM requires much more space and inference is much more expensive
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Inference in DBN

Dynamic Bayesian networks are Bayesian networks and we already have 
algorithms for inference in Bayesian networks.
We can construct the full Bayesian network
representation of a DBN by replicating slices
to accommodate the observations (unrolling).
Exact inference:

If applied naively, its complexity will increase with time (due to more slices). 
We can use variable elimination and keep in memory only last two slices (via 
summing out the variables from previous slices).
The bad news are that “constant” space to represent the largest factor will 
be exponential in the number of state variables.

Approximate inference:
We sample non-evidence nodes of the network in topological order, 
weighting each sample by the likelihood in accords to the observed evidence 
variables.
But samples are generated completely
independently of the evidence!
Hence, the weights of samples will decrease so to keep accuracy we need to 
increase the number of samples exponentially with t.

Introduction to Artificial Intelligence, Roman Barták

0.3f 0.7t
P(R  )1R0

0.7
P(R0)

0.2f 0.9t
P(U  )1R1

Umbrella1

Rain0 Rain1

0.7
P(R0)

4

0.2f 0.9t
P(U  )R4

f
t

0.30.7
P(R  )4R3

Umbrella4

Rain4

0.2f 0.9t
P(U  )3R3

f
t

R

0.30.7
P(R  )32

Umbrella3

Rain3

0.2f 0.9t
P(U  )2R2

f
t

R

0.30.7
P(R  )21

Umbrella2

Rain2

0.2f 0.9t
P(U  )1R1

f
t

R

0.30.7
P(R  )10

Umbrella1

Rain0 Rain1

16



Summary

We can exploit probability theory when reasoning about time. 
Specifically, when transitions are uncertain, and environment is 
partially observable via sensors.
We use transition and observation models with Markov 
assumptions.
Basic inference tasks (exploit recursive formulas):

– filtering (where am I now?)
– prediction (where will I be in future?)
– smoothing (where was I in past?)
– most likely explanation (what path did I go through?)

Hidden Markov Model
– one state variable and one observation variable
– simplified inference using matrix operations

Dynamic Bayesian Network
– compact representation via more CPTs
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