

Deterministic Sequential Planning

Milan Ježek

- Deterministic sequential planning
- Best planners of IPC 2011
- Plan-space planning
- My Basic Planner

Restricted State-Transition System $\Sigma = (S, A, \gamma)$

- S Set of states
- A Set of actions
- (E Set of events)
- * **y** Transition function $\gamma: S \times A \rightarrow P(S)$

Planning Problem $P = (\Sigma, s_0, g)$:

- Σ System modeling states and transitions
- s₀ The initial state
- * g The goal states

States and Goals

- Represented as sets of facts
- Closed World Assumption (CWA)
 - Fact not listed in a state are assumed to be false
- Goal state any state with all the goal facts

Operators and **Actions**

- Operator o = (name(o), precond(o), effects(o))
- An action is any ground instance of an operator
- Move(r, l, m) // Example of an operator
 - Precond:

adjacent(l, m), at(r, l), not occupied(m)

Effects:

at(r, m), occupied(m), not occupied(l), not at(r, l)

Solution of Planning Problem

- Sequence of **actions** $\langle a_1, a_2, ..., a_k \rangle$
- Sequence of states $\langle s_0, s_1, ..., s_k \rangle$
- Such that:
 - $s_i = \gamma(s_{i-1}, a_i)$
 - s_k satisfies g

Extensions of the Classical Representation

- Typed variables
- Non-negative costs
- Conditional effects
- Optional derived predicates

Sequential Satisfying Domains

Sokoban

ScanAnalyzer

- Peg solitaire
- ⋆ TSP
- Elevators
- Transport

Best planners of IPC 2011

Some used techniques

- Forward search, planning graph
- Landmarks variable assignments that must occur at some point in every solution plan
- ACOPlan Ant colony optimalization
- Arvand Monte Carlo random walks (MRW)
- BRT (Biased Rapidly exploring Tree)
- Divide-and-Evolve Evolutionary computation
- Fast downward (autotune), lama various algorithms and heuristics
- Madagascar SAT
- POPF2 Forward-Chaining Partial Order Planner

Plan-Space Planning

- Partially specified plans
- Refinement operations
- Least commitment principle

Partial Plan $\Pi = (A, <, B, L)$

- A Set of partially instantiated operators
 {a₁, ..., a_k}
- **< Partial order** on A ($a_i < a_j$)
- **B** Set of **constraints** $x=y, x \neq y$ or $x \in D_x$
- L Set of causal relations (p: $a_i \rightarrow a_j$)

Partial Plan $\Pi = (A, <, B, L)$

Plan-Space Planning

- Start with an empty plan
- Repair all flaws in partial plan step by step
 - Add actions to satisfy open goals
 - Remove threats
 - Bind variables
 - Add ordering between actions
 - Add causal relations

Solution for problem $P = (E, s_0, g)$

- Partial plan $\Pi = (A, \langle, B, L)$
 - Partial ordering < and constraints B are globally consistent
 - Any linearly ordered sequence of fully instantiated actions from A satisfying < and B goes from s₀ to a state satisfying g

Solution for problem $P = (E, s_0, g)$

- Partial plan $\Pi = (A, \langle, B, L)$
 - Partial ordering < and constraints B are globally consistent
 - There are no flaws
 - No open goals
 - No threats

PSP procedure

$PSP(\pi)$

flaws \leftarrow OpenGoals(π) U Threats(π) if flaws = Ø then return π select any flaw $\varphi \in$ flaws resolvers \leftarrow Resolve(φ, π) if resolvers = Ø then return failure non-deterministically choose a resolver $p \in$ resolvers $\pi' \leftarrow$ Refine(p, π) return PSP(π')

Algorithm PoP

PoP(π , agenda) // where $\pi = (A, \langle, B, L)$

if flaws = \emptyset then return π setect any pair (aj, p) in and remove it from agenda relevant \leftarrow Providers(p, π) if relevant = \emptyset then return failure nondeterministica[[y choose an action $a_i \in relevant$ $L \leftarrow LU \{ (p: a_i \rightarrow a_i) \}$ update B with the binding constraints of this causal link if a, is a new action in A then update A with a_i update < with $(a_i < a_i)$, $(a_0 < a_i < a_{\infty})$ update agenda with all preconditions of a_i for each threat on (p: $a_i \rightarrow a_i$) or due to a_i do resolvers \leftarrow set of resolvers for this threat if resolvers - 0 then return failure non-deterministically choose a resolver in resolvers add that resolver to \lt or to B return PoP(π , agenda)

Algorithm PoP - extensions

- Conditional operators
- Flaw-Selection Heuristics
- Resolver-Selection Heuristics

- PDDL parser
- Preprocessor
 - Analyze operators/actions
 - map possible predecessors/successors for each action
 - Replace some operators with meta-operators
 - Analyze domain/instance of the problem
 - Derive some restrictions
- Plan-Space planning
- (CSP for some sub-problems)

Possible future extensions

- Durative actions
- Qualitative (temporal) relations
- Preferences
- Learning (domain specific properties)

References

- Automated Planning: Theory and Practice; M. Ghallab, D. Nau, P. Traverso; Morgan Kaufmann, 2004
- http://ktiml.mff.cuni.cz/~bartak/planovani/
- http://sokoban-jd.blogspot.cz/
- http://en.wikipedia.org/wiki/Peg_solitaire
- The Scanalyzer Domain: Greenhouse Logistics as a Planning Problem; M. Helmert, H. Lasinger; ICAPS 2010
- http://www.fast-downward.org/
- http://ipc.icaps-conference.org/
- http://www.plg.inf.uc3m.es/ipc2011-deterministic/