
Toolformer

Language Models Can Teach Themselves to Use Tools

Michal Pospěch

March 28, 2023



Introduction

• Classic LLMs

• good at solving new tasks

• struggle with some basic

tasks (arithmetics,

information lookup. . . )

• Provide them with external

tools

• Model deciding which API

to call, when to call it, with

what parameters and how

to incorporate the output

• Performance on pair with

much larger model on

downstream tasks
1



Outline

• Why?

• How does it work?

• Tools

• Experiments

2



Why?



Why?

• LLMs have limitations

• Up-to-date info on recent events

• Tendency to hallucinate facts

• Difficulties understanding low-resource languages

• Lack of mathematical skills

• Unawareness of time progression

• Can be solved by incorporating tools

• Large amount of human annotations

• Task-specific setting for a particular tool

3



How does it work?



How?

• In-context learning

• Dataset generation from scratch

• Few human-written examples

• LM annotated huge dataset with potential API calls

• Self-supervised loss to filter the API calls

• Finetune the model

• Dataset agnostic

• Can use the same as the pretrained model →The

generalisation ability is kept

4



How?

• API call c = (ac , ic)

• representation

e(c) = <API>ac(ic)</API>

e(c , r) = <API>ac(ic) → r</API>

5



Sampling API Calls

• Prompt P(x) for each API

call to annotate example

x = x1, . . . xn with API calls

• Generate k candidates for

API calls by computing

pi = pM(<API>|P(x), x1:i−1)

• Keep at most k positions

for which pi > τs

• Sample at each position to

get up to m API calls

6



Filtering API calls

• Weighted crossentropy loss for M if x prefixed with z

Li (z) = −
n∑
j=i

wj−i · log pm(xj |z, x1:j−1)

• 2 instantiations

L+i = Li (e(ci , ri ))

L−i = min(Li (ε), Li (e(ci , ε)))

• Keep if L−i − L+i ≥ τf

7



Model Finetuning

• From text x with API call and result (ci , ri ) at position i we

create x∗ = x1:i−1, e(ci , ri), xi :n

• We do so for all x ∈ C and get C∗ and use it to finetune M

using stanard language modelling objective

• Finetuning on C∗ exposes M to same content as finetuning on

C

8



Tools



Tools

• Question answering - Atlas

• Calculator

• Wikipedia search - BM25 retrieval

• Machine Translation system - NLLB (600M parameter model)

+ fasttext

• Calendar

9



Experiments



Experimental setup

• Dataset - CCNet

• Language Model - GPT-J

• Thresholds τ set individually per tool

• Baseline models

• GPT-J

• GPT-J + CC

• Toolformer

• Toolformer (disabled)

• OPT (for comparison)

• GPT-3 (for comparison)

10



Downstream Tasks

• Zero-shot setup

• Greedy decoding with slight modification (API call when

<API> one of k = 10 most likely tokens)

• Tasks:

• LAMA

• Math

• Question answering

• Multilingual question answering

• Temporal datasets

11



LAMA

• SQuAD, GoogleRE, T-REx

subsets of LAMA

benchmark

• Complete statement with a

missing fact

• More lenient evaluation

• No Wikipedia Search API

(unfair advantage)

• 98.1% of times the question

asking tool is used

12



Math

• ASDiv, SVAMP, MAWPS

• More lenient evaluation

• Toolfomer (disabled) has

strong results

• 97.9% of times the

calculator tool is used

13



Question answering

• Web Questions, Natural

Questions, TriviaQA

• More lenient evaluation

• No Question Answer API

(unfair advantage, since the

QA system was trained on

Natural Questions)

• 99.3% of times Wikipedia

API is used

• No interactivity (query

reformulation) →advantage

of GPT-3 and possible

future work

14



Multilingual Question Answering

• MLQA

• Context paragraph in

English, question in another

language

• 63.8% to 94.9% of times

translation is used, 7.3% for

Hindi

• Not better than base

models, finetuning

deteriorates performance

• OPT and GPT-3 fail tu

provide answer in English

even after being instructed

to do so 15



Temporal Datasets

• TempLAMA, DATESET

(new)

• only 0.2% of TempLAMA

evaluations used calendar

tool (mostly Wikipedia and

question answering)

• 54.8% of DATESET

evaluations used calendar

tool

16



Scaling

17



Conclusion



Limitations

• No tool chaining

• No interactive usage of tools

• Sensitive to wording

• Sample-inefficiency

• Computational cost not taken into account

18



Conclusion

• Self-supervised learning of tool usage

• Finetuning on a large number of sampled API calls

• Better zero-shot performance than base model

• Outperforms much larger models

19


	Why?
	How does it work?
	Tools
	Experiments
	Conclusion

