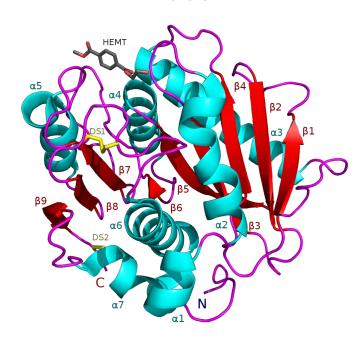
A Comprehensive Review of Protein Language Models

- Authors of the paper: Lei Wang, Xudong Li, Han Zhang, Jinyi Wang, Dingkang Jiang, Zhidong Xue and Yan Wang
- **Affiliation:** Huazhong University of Science and Technology
- **Journal:** Arxiv preprint
- Published: February 2025

8.12.2025

1/19

Table of contents


- Motivation
- Biological approach
 - Sequence of protein
 - Structure of protein
- Conceptual similarities in natural languages and proteins
- Transformer
- Protein language models (PLM)
 - Non-transformer-based Models
 - Transformer-based Models
 - Application of PLM
- ProptGPT2
 - Example of prediction
 - Evaluation of model
- Conslusion

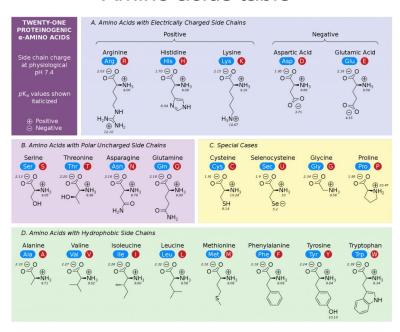
Motivation

 Designing novel proteins can solve the biomedical and environmental problems

 Biological experimental research methods are very time-consuming and expensive opposite to computational biology.

PETase

By Keministi - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid =68401651

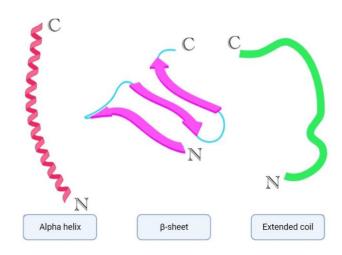

3/19

Motivation

Sequence of protein

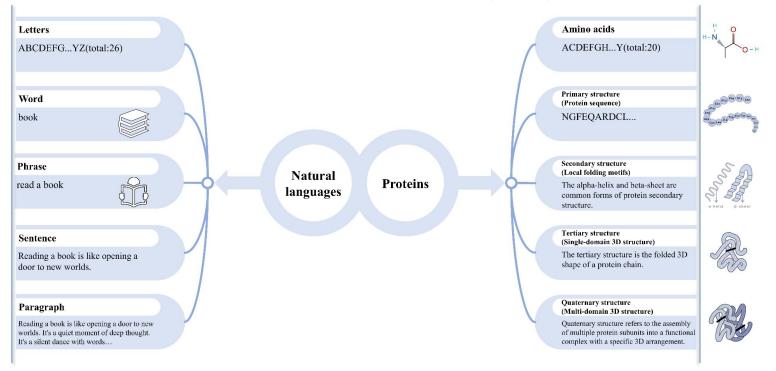
- Protein is linear chain of Amino-acids
- Only 20 different amino-acids
- We use edit distance to define similarity.
- $20^{300} \approx 10^{390} > 10^{80}$
- Multiple sequence alignment (MSA)
 - O(Length^{Nseqs}) without heuristics

Amino acids table



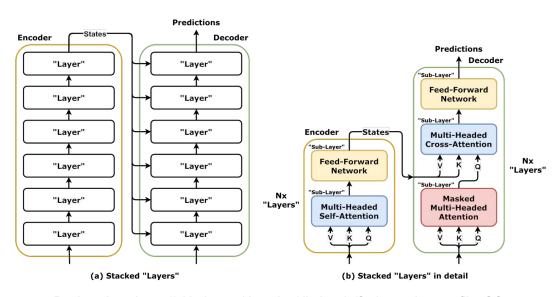
https://chemistrytalk.org/amino-acid-chart/

Structure of protein


- Structure (folded protein) is spontaneously formed from sequence
- (Stable) structured vs disorder protein
- Secondary structure of protein:
 - Alpha-helix,
 - Beta-sheet,
 - Coil
- Prediction of protein structure is hard problem - deepMind research

Secondary structures:

https://www.researchgate.net/figure/Simplified-models-of-alpha-he lix-b-sheet-and-extended-coil-structures-Created-in_fig1_3787106 45


Conceptual similarities in natural languages and proteins

!!! Protein sequence is 1 string without whitespace/separators.

Transformer

- Artificial neural network
- Multi-head attention mechanism
- Encoder + Decoder

Non-transformer-based Models

Limitations:

- Only handle fixed-length sequences
- Typically require a large amount of labeled data

Model	Pretraining Dataset	Base Model	Params	Time	Code
CARP	UniRef50	CNN	600K-640M	2024.02	✓
MIF-ST	CATH	GNN	3.4M	2023.03	/
ProSE	UniRef90, SCOP	LSTM	-	2021.06	✓
Seq2vec	-	CNN-LSTM	-	2020.09	X
UDSMProt	UniProtKB/Swiss-Prot	AWD-LSTM	-	2020.01	X
SeqVec	UniRef50	ELMo	-	2019.12	/
UniRep	UniRef50	mLSTM	-	2019.10	/
ProtVecX	UniRef50, UniProtKB/Swiss-Prot	ProVec	-	2019.03	X
ProtVec	UniProtKB/Swiss-Prot	Skip-gram	-	2015.11	X

TABLE I: Non-transformer-based models

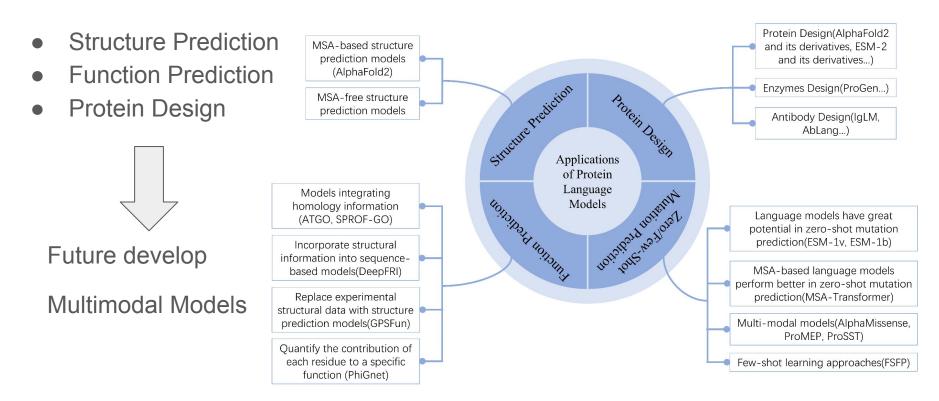
Transformer-based Models

- Encoder-only (BERT like)
 - Encode protein sequences into fixed-length vector representations
- Decoder-only (GPT like)
 - Used for protein generation tasks
 - Auto-regressive models
 - o ProptGPT2
- Encoder—Decoder (Text-to-Text Transfer Transformer like)
 - Typically used for sequence-to-sequence tasks
 - Combined sequence and structure information

Protein language models 9/19

Encoder–Decoder: Positional encoding of amino-acids

- Absolute encoding
 - Simplicity
 - Limiting the model's ability to handle sequences of varying lengths
 - Positions of amino-acids
 - Rotation matrix and precise distances
- Relative encoding
 - Relationship between 2 tokens


Protein language models 10/19

Models scaling

- Scaling PLMs brings bigger gains than scaling NLP models.
- PLMs are more prone to underfitting
- Further scaling of models can improve the performance of PLMs

Protein language models 11/19

Application of PLM

Protein language models 12/19

ProptGPT2 - example model

ProtGPT2 is a deep unsupervised language model for protein design

- Authors of the paper: Noelia Ferruz, Steffen Schmidt & Birte Höcker
- Affiliation: Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
- Journal: Nature Communications volume
- Published: July 2022

ProptGPT2

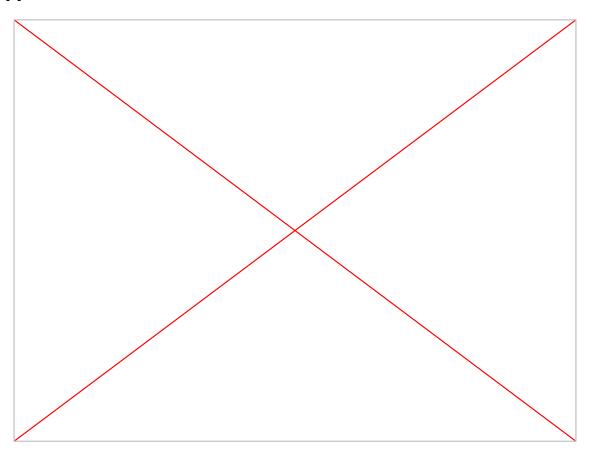
- Used to:
 - De novo protein design
 - engineering
- Model description
 - 36 layers
 - model dimensionality 1289
 - 738 milion parameters
 - trained on ~50 million non-redundant protein sequences
- Generates sequences in seconds
- Freel available: https://huggingface.co/nferruz/ProtGPT2

ProptGPT2

Example of prediction

- Used as HuggingFace transformer python package
- Best sequence = lower perplexity metrix
- Validate of new sequence by predict the structure

ProptGPT2 The second se


Evaluation of model

 Comparison result by: AlphaFold predictions, Rosetta Relax scores, molecular dynamics simulations.

	Natural dataset	ProtGPT2 dataset
IUPred3 (globular domains)	88.40%	87.59%
Ordered content	79.71%	82.59%
Alpha-helical content	45.19%	48.64%
Beta-sheet content	41.87%	39.70%
Coil content	12.93%	11.66%

(n = 10,000 independent sequences/dataset).

Conclusion

Thank you for your attention

"We stop being observers of molecular life and start actively participating in the creation of new beneficial proteins."

Resourses

- WANG, Lei; LI, Xudong; HAN, Zhang; WANG, Jinyi; JIANG, Di et al. A Comprehensive Review of Protein Language Models. Online. ArXiv (Cornell University). 2025. Dostupné z: https://doi.org/10.48550/arxiv.2502.06881. [cit. 2025-12-08].
- FERRUZ, Noelia; SCHMIDT, Steffen a HÖCKER, Birte. ProtGPT2 is a deep unsupervised language model for protein design. Online. *Nature Communications*. 2022, vol. 13, no. 1, s. 4348-4348. ISSN 2041-1723. Dostupné z: https://doi.org/10.1038/s41467-022-32007-7. [cit. 2025-12-08].