
pccompile tool

Petr Kučera

Charles University, Czech Republic

KOCOON Workshop, Arras
December 16–19, 2019

Petr Kučera pccompile tool KOCOON Workshop 2019 1 / 18



Contents

Short tool description
Propagation complete formula
Checking propagation completeness
Algorithms
Invoking pccompile

Conclusion

Petr Kučera pccompile tool KOCOON Workshop 2019 2 / 18



pccompile

pccompile aims to solve the following problems:
Checking if a CNF formula is propagation complete (PC).
Compile a CNF formula into an equivalent PC formula.

Two obstacles:
Checking propagation completeness is hard and
an equivalent PC formula might be exponentially bigger than the
input CNF.

Often works on formulas with 40–50 variables and a few hundreds
of clauses.
Solves some bigger formulas as well.
The input CNF must be easy for a SAT solver (glucose is used
internally).
The tool is EXPERIMENTAL.
Available at
http://ktiml.mff.cuni.cz/~kucerap/pccompile

Petr Kučera pccompile tool KOCOON Workshop 2019 3 / 18

http://ktiml.mff.cuni.cz/~kucerap/pccompile


Other approaches

(Brain et al., 2016) (GenPCE) — also tries to add auxiliary
variables.
(Ehlers and Palau Romero, 2018) — also consider approximations
of propagation complete formulas
Both approaches are based on a systematic way of checking
partial assignments, usable only for a small number of variables

Petr Kučera pccompile tool KOCOON Workshop 2019 4 / 18



Propagation Complete Formulas

lit(x) literals over variables x.
ϕ ∧ α `1 l Literal l can be derived by unit propagation from ϕ ∧ α.

⊥ the contradiction (empty clause).

Definition (Bordeaux and Marques-Silva, 2012)
A CNF formula ϕ(x) on variables x � (x1 , . . . , xn) is propagation
complete (PC) if for every partial assignment α ⊆ lit(x) we have

ϕ(x) ∧ α |� l ⇔ ϕ(x) ∧ α `1 ⊥ or ϕ(x) ∧ α `1 l

Allows checking consistency and propagating using unit
propagation.

Petr Kučera pccompile tool KOCOON Workshop 2019 5 / 18



Checking Propagation Completeness

Checking if a CNF is PC is co-NP complete (Babka et al., 2013).
ϕ(x) is not PC if and only if to asking if there is a partial
assignment α and a literal l such that

1 ϕ ∧ α 01 l (C � ¬α ∨ l is empowering) and
2 ϕ ∧ α ∧ ¬l `1 ⊥ (C is 1-provable).

We can check this using a SAT solver.

Petr Kučera pccompile tool KOCOON Workshop 2019 6 / 18



Encoding 1-provability

pccompile offers two encodings of 1-provability:
quadratic size Θ(‖ϕ‖ · n) (n times dual rail encoding)

logarithmic size Θ(‖ϕ‖ · log n) (smaller, but sometimes harder to
solve)

Allows to pick the smaller of these for each check
Bounding the depth of the unit resolution proof of ϕ ∧ α ∧ ¬l `1 ⊥
during compilation.

Petr Kučera pccompile tool KOCOON Workshop 2019 7 / 18



Algorithms

Incremental algorithm
Idea: While the formula is not PC, find an empowering implicate
and add it to the formula

Learning approach
Dual rail encoding of a PC formula represents a specific Horn
function (K. and Savický, 2020)
Learn the Horn function using equivalence and closure queries
A modification of the algorithm described by Arias, Balcázar, and
Tîrnăucă (2015).
equivalence try to find an empowering implicate (by SAT,

randomly)
closure find all literals implied by an assumption

Smaller number of PC checks, but bigger overhead
Use learned clauses as empowering
Regularly remove the clauses which are not empowering anymore
(are absorbed) during the compilation.

Petr Kučera pccompile tool KOCOON Workshop 2019 8 / 18



Invoking pccompile

Checking if a formula is PC
pccompile input.cnf

Compiling a formula with the incremental algorithm
pccompile -mca incremental input.cnf output.cnf

Compiling a formula with the learning algorithm
pccompile -mca learning input.cnf output.cnf

For other parameters (preprocessing, inprocessing, timeouts,
encoding parameters, …) see the help screen

pccompile --help

Petr Kučera pccompile tool KOCOON Workshop 2019 9 / 18



Example output (PC check)

Simplified end of the output of an unsuccessful check if a formula is PC
c [..FindEmpoweringWithLevel] level=1, input cnf 40 77
c ... Calling SAT with encoding (p cnf 539 2266)
c ... timeout: -1s
c ... Found empowering implicate, time=0.005042s
c Inprocess -2 3 -4 5 8 10 11 12 ..
c Found empowering implicate with empowering variable 10:
5 10 12 0
c Total time: 0.0908475s
c Total processor time: 0.089818s
c Found empowering implicate
c 5 10 12 0
c with empowering variable 10
c No output written

Petr Kučera pccompile tool KOCOON Workshop 2019 10 / 18



Example output (incremental)

A simplified end of the output of an incremental compilation of a
randomly generated formula on 40 variables and 80 clauses.
c Minimizing hypothesis (p cnf 40 346)
c Finished minimization of hypothesis (p cnf 40 346), time=0.050125s
c Compilation finished successfully, formula is propagation complete
c Total time: 68.8542s
c Total processor time: 68.0544s
c Processor time until the last SAT based EQ check: 24.7915
c Processor time of the last SAT based EQ check: 43.2125
c Total number of empowering clauses: 485
c Total number of added clauses: 485
c Total number of empowering clauses found by SAT: 350
c Total number of learned clauses used: 139
c Total number of learned clauses added as empowering: 135
c Total time of SAT based equivalence queries: 66.4629s
c SAT based equivalence with result SAT (time/count): 21.7473s / 350
c SAT based equivalence with result UNSAT (time/count): 44.7159s / 4
c Maximum UP level: 4

Petr Kučera pccompile tool KOCOON Workshop 2019 11 / 18



Example output (learning)

A simplified end of the output of an learning compilation of a randomly
generated formula on 40 variables and 80 clauses.
c Finished minimization of hypothesis (p cnf 40 346), time=0.07498s
c Hypothesis minimized (p cnf 40 346), time=0.075456s
c Compilation finished successfully, formula is propagation complete
c Total time: 74.6476s
c Total processor time: 71.4704s
c Processor time until the last SAT based EQ check: 14.9207
c Processor time of the last SAT based EQ check: 56.4741
c Negatives added to the hypothesis: 281
c Clauses added to the hypothesis: 385
c Number of successful refinements: 17
c Total number of candidates with closure: 228
c Total number of candidates without closure: 253
c Total number of learned clauses considered: 95
c Total number of random empowering implicates: 0
c Total number of random bodies: 0
c Total number of learned clauses from random queries: 0
c Total number of random queries: 0
c Total number of empowering implicates found by SAT: 205
... (statistical information continue for a few lines)

Petr Kučera pccompile tool KOCOON Workshop 2019 12 / 18



Experiments on random instances

Randomly generated formulas with modularity-based
generator (Giráldez-Cru and Levy, 2015).

Two sets of 50 instances — 40 variables, 80 clauses and 50
variables, 100 clauses.
Other parameters k � 3, Q � 0.8, c � 3

Avg. time until the emp. found by SAT
last check cnt time

n=40 (I) 35.99 11.89 206.35 10.47
n=40 (L) 40.44 12.27 126.60 8.23
n=50 (I) 3115.02 296.05 638.69 275.51
n=50 (L) 3459.58 343.37 426.10 303.38

(I)=incremental, (L)=learning algorithm
CPU Intel Xeon 2.00 GHz (2007)

Petr Kučera pccompile tool KOCOON Workshop 2019 13 / 18



Configuration problems

We were able to solve some instances from the configuration
problem set, here are some of them.
Sizes after propagating backbones

n m Total time until the emp. found by SAT
last check cnt time

C169_FV (I) 50 93 0.32 0.21 2 0.08
C169_FV (L) 50 93 0.59 0.48 2 0.08
C171_FR (I) 451 1793 484.47 448.35 271 412.14
C171_FR (L) 451 1793 692.86 629.93 88 162.16
C211_FS (I) 247 906 4191.64 2349.89 1536 2228.13
C211_FS (L) 247 906 2632.64 956.29 305 720.43
C250_FV (I) 129 327 5.46 4.86 46 3.96
C250_FV (L) 129 327 5.49 4.98 8 0.70

(I)=incremental, (L)=learning algorithm
CPU Intel Xeon 2.00 GHz (2007)

Petr Kučera pccompile tool KOCOON Workshop 2019 14 / 18



Conclusion

pccompile can be also used to check unit refutation
completeness (URC) and compile into a URC formula

Bigger encoding
Only incremental algorithm

Future directions
Different solvers for checking if a formula is PC (other SAT solvers,
QBF, SMT)
Other approaches to checking if a formula is PC
Testing on some interesting formulas
Adding auxiliary variables

Petr Kučera pccompile tool KOCOON Workshop 2019 15 / 18



References I

Arias, Marta, José L. Balcázar, and Cristina Tîrnăucă (2015). “Learning
definite Horn formulas from closure queries”. In: Theoretical
Computer Science, pp. -. issn: 0304-3975. doi:
http://dx.doi.org/10.1016/j.tcs.2015.12.019.

Babka, Martin et al. (2013). “Complexity issues related to propagation
completeness”. In: Artificial Intelligence 203.0, pp. 19–34. issn:
0004-3702. doi:
http://dx.doi.org/10.1016/j.artint.2013.07.006.

Bordeaux, Lucas and Joao Marques-Silva (2012). “Knowledge
Compilation with Empowerment”. In: SOFSEM 2012: Theory and
Practice of Computer Science. Ed. by Mária Bieliková et al.
Vol. 7147. Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, pp. 612–624. isbn: 978-3-642-27659-0.

Petr Kučera pccompile tool KOCOON Workshop 2019 16 / 18

https://doi.org/http://dx.doi.org/10.1016/j.tcs.2015.12.019
https://doi.org/http://dx.doi.org/10.1016/j.artint.2013.07.006


References II

Brain, Martin et al. (2016). “Automatic Generation of Propagation
Complete SAT Encodings”. In: Verification, Model Checking, and
Abstract Interpretation: 17th International Conference, VMCAI 2016,
St. Petersburg, FL, USA, January 17-19, 2016. Proceedings. Ed. by
Barbara Jobstmann and K. Rustan M. Leino. Springer Berlin
Heidelberg, pp. 536–556. isbn: 978-3-662-49122-5. doi:
10.1007/978-3-662-49122-5_26.

Ehlers, Rüdiger and Francisco Palau Romero (2018). “Approximately
Propagation Complete and Conflict Propagating Constraint
Encodings”. In: Theory and Applications of Satisfiability Testing –
SAT 2018. Ed. by Olaf Beyersdorff and Christoph M. Wintersteiger.
Cham: Springer International Publishing, pp. 19–36. isbn:
978-3-319-94144-8.

Petr Kučera pccompile tool KOCOON Workshop 2019 17 / 18

https://doi.org/10.1007/978-3-662-49122-5_26


References III

Giráldez-Cru, Jesús and Jordi Levy (2015). “A modularity-based
random SAT instances generator”. In: Twenty-Fourth International
Joint Conference on Artificial Intelligence.

K. and Petr Savický (2020). “On the size of CNF formulas with high
propagation strength”. To appear at ISAIM 2020.

Petr Kučera pccompile tool KOCOON Workshop 2019 18 / 18


	References
	References

