pccompile tool J

Petr Ku&era

Charles University, Czech Republic

KOCOON Workshop, Arras
December 16-19, 2019

~ PetrKugera | pecompile tool KOCOON Workshop 2019 1/18

Contents

= Short tool description

= Propagation complete formula

= Checking propagation completeness
= Algorithms

* Invoking pccompile

= Conclusion

Petr Kucera pccompile tool KOCOON Workshop 2019 2/18

pccompile

* pccompile aims to solve the following problems:

= Checking if a CNF formula is propagation complete (PC).
= Compile a CNF formula into an equivalent PC formula.

= Two obstacles:

= Checking propagation completeness is hard and
= an equivalent PC formula might be exponentially bigger than the
input CNF.

= Often works on formulas with 40—50 variables and a few hundreds
of clauses.

= Solves some bigger formulas as well.

= The input CNF must be easy for a SAT solver (glucose is used
internally).

= The tool is EXPERIMENTAL.
= Available at
http://ktiml.mff.cuni.cz/~kucerap/pccompile

Petr Kucera pccompile tool KOCOON Workshop 2019 3/18

http://ktiml.mff.cuni.cz/~kucerap/pccompile

Other approaches

= (Brain et al., 2016) (GenPCE) — also tries to add auxiliary
variables.

= (Ehlers and Palau Romero, 2018) — also consider approximations
of propagation complete formulas

= Both approaches are based on a systematic way of checking
partial assignments, usable only for a small number of variables

Petr Kucera pccompile tool KOCOON Workshop 2019 4/18

Propagation Complete Formulas

lit(x) literals over variables x.

@ N a +1 | Literal I can be derived by unit propagation from ¢ A .
1 the contradiction (empty clause).

Definition (Bordeaux and Marques-Silva, 2012)

A CNF formula ¢(x) on variables x = (xy, ..., x,) is propagation
complete (PC) if for every partial assignment « C lit(x) we have

px)NaEFleex)Aar Lorex)Aatk]

= Allows checking consistency and propagating using unit
propagation.

Petr Kucera pccompile tool KOCOON Workshop 2019 5/18

Checking Propagation Completeness

= Checking if a CNF is PC is co-NP complete (Babka et al., 2013).

= ¢(x) is not PC if and only if to asking if there is a partial
assignment « and a literal [such that

©® ¢ ra¥ 1 (C=-aVlisempowering) and
® ¢ AaA-lr L(Cis 1-provable).
= We can check this using a SAT solver.

Petr Kucera pccompile tool KOCOON Workshop 2019 6/18

Encoding 1-provability

* pccompile oOffers two encodings of 1-provability:

quadratic size O(||¢|| - n) (n times dual rail encoding)
logarithmic size O(||¢|| - log 1) (smaller, but sometimes harder to
solve)

= Allows to pick the smaller of these for each check

= Bounding the depth of the unit resolution proof of o A a A =l L
during compilation.

Petr Kucera pccompile tool KOCOON Workshop 2019 7/18

Algorithms

= Incremental algorithm
= |dea: While the formula is not PC, find an empowering implicate
and add it to the formula
= Learning approach
= Dual rail encoding of a PC formula represents a specific Horn
function (K. and Savicky, 2020)
= Learn the Horn function using equivalence and closure queries
= A modification of the algorithm described by Arias, Balcazar, and
Tirnduca (2015).
equivalence try to find an empowering implicate (by SAT,
randomly)
closure find all literals implied by an assumption
= Smaller number of PC checks, but bigger overhead

= Use learned clauses as empowering

= Regularly remove the clauses which are not empowering anymore
(are absorbed) during the compilation.

Petr Kucera pccompile tool KOCOON Workshop 2019 8/18

Invoking pccompile

Checking if a formula is PC
pccompile input.cnf
= Compiling a formula with the incremental algorithm
pccompile —-mca incremental input.cnf output.cnf
= Compiling a formula with the learning algorithm
pccompile -mca learning input.cnf output.cnf

= For other parameters (preprocessing, inprocessing, timeouts,
encoding parameters, ...) see the help screen

pccompile —-help

Petr Kucera pccompile tool KOCOON Workshop 2019 9/18

Example output (PC check)

Simplified end of the output of an unsuccessful check if a formula is PC

[..FindEmpoweringWithLevel] level=1, input cnf 40 77
Calling SAT with encoding (p cnf 539 2266)
timeout: -1s
Found empowering implicate, time=0.005042s

Inprocess -2 3 -4 5 8 10 11 12

>ring implicate with e

O 0 000aQ0

Found en ring variable 10:
10 12 0

Total time: 0.0908475s

Total processor time: 0.089818s

Found empowering implicate

510 12 0

with empowering variable 10

No output written

Q0000 wm

PEEETEAle (T KOCOON Workshop 2019 10/18

Example output (incremental)

A simplified end of the output of an incremental compilation of a
randomly generated formula on 40 variables and 80 clauses.

c Minimizing hypothesis (p cnf 40 346)

¢ Finished minimization of hypothesis (p cnf 40 346), time=0.050125s
c Compilation finished successfully, formula is prop:
Total time: 68.85425

Total processor time: 68.0544s

Processor time until the last SAT based EQ check: 24.7915
Processor time of the last SAT based EQ check: 43.2125

Total number of empowering clauses: 485

Total number of added clauses: 485

Total number of empowering clauses found by SAT: 350

Total number of learned clauses used: 139

Total number of learned clauses added as empowering: 135

Total time of SAT based equivalence queries: 66.4629s

SAT based equivalence with result SAT (time/count): 21.7473s / 350
SAT based equivalence with result UNSAT (time/count): 44.7159s / 4
Maximum UP level: 4

yation complete

Q000000000000

PEEETEAle (T KOCOON Workshop 2019 11/18

Example output (learning)

A simplified end of the output of an learning compilation of a randomly

generated formula on 40 variables and 80 clauses.

c Finished minimization of hypothesis (p cnf 40 346), time=0.07498s

c Hypothesis minimized (p cnf 40 346), time=0.075456s

c Compilation finished successfully, formula is propagati

Total time: 74.64765

Total processor time: 71.4704s

Processor time until the last SAT based EQ check: 14.9207

Processor time of the last SAT based EQ check: 56.4741

Negatives added to the hypothesis: 281

Clauses added to the hypothesis: 385

Number of successful refinements: 17

Total number of candidates with closure: 228

Total number of candidates without closure: 253

Total number of learned clauses considered: 95

Total number of random empowering implicates: 0

Total number of random bodies: 0

Total number of learned clauses from random queries: 0

Total number of random queries: 0

Total number of empowering implicates found by SAT: 205
(statistical information continue for a few lines)

Q0000000000000

12/18

Experiments on random instances

Randomly generated formulas with modularity-based
generator (Girdldez-Cru and Levy, 2015).

= Two sets of 50 instances — 40 variables, &0 clauses and 50
variables, 100 clauses.

= Other parameters k =3,Q =0.8,¢c =3

Avg. time untilthe emp. found by SAT
last check cnt time

n=40 () 35.99 11.89 206.35 10.47
n=40 (L) 40.44 1227 126.60 8.23
n=50 (I) 3115.02 296.05 638.69 275.51
n=50 (L) 3459.58 34337 42610 303.38

(I)=incremental, (L)=learning algorithm
CPU Intel Xeon 2.00 GHz (2007)

Petr Kucera pccompile tool KOCOON Workshop 2019 13/18

Configuration problems

= We were able to solve some instances from the configuration
problem set, here are some of them.

= Sizes after propagating backbones

n m Totaltime untilthe emp. found by SAT
last check cnt time
C169_FV (1) 50 93 0.32 0.21 2 0.08
C169_FV (L) 50 93 0.59 0.48 2 0.08
C171_FR (I) 451 1793 484 .47 448.35 271 412.14
C171_FR (L) 451 1793 692.86 629.93 88 162.16
C211_FS (I) 247 906 4191.64 2349.89 1536 2228.13
C211_FS (L) 247 906 2632.64 956.29 305 720.43
C250_FV (1) 129 327 5.46 4.86 46 3.96
C250_FV (L) 129 327 5.49 4.98 8 0.70

(D=incremental, (L)=learning algorithm
CPU Intel Xeon 2.00 GHz (2007)

pccompile tool

KOCOON Workshop 2019

14/18

Conclusion

= pccompile can be also used to check unit refutation
completeness (URC) and compile into a URC formula
= Bigger encoding
= Only incremental algorithm
= Future directions
= Different solvers for checking if a formula is PC (other SAT solvers,
QBF, SMT)
= Other approaches to checking if a formula is PC
= Testing on some interesting formulas
= Adding auxiliary variables

Petr Kucera pccompile tool KOCOON Workshop 2019 15/18

References |

- Arias, Marta, José L. Balcazar, and Cristina Tirnauca (2015). “Learning
definite Horn formulas from closure queries”. In: Theoretical
Computer Science, pp. -. 1ISsN: 0304-3975. poi:
http://dx.doi.org/10.1016/j.tcs.2015.12.0109.

- Babka, Martin et al. (2013). “Complexity issues related to propagation
completeness”. In: Artificial Intelligence 203.0, pp. 19—34. ISSN:
0004-3702. pot:
http://dx.doi.org/10.1016/j.artint.2013.07.006.

- Bordeaux, Lucas and Joao Marques-Silva (2012). “Knowledge
Compilation with Empowerment”. In: SOFSEM 2012: Theory and
Practice of Computer Science. Ed. by Maria Bielikova et al.

Vol. 7147. Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, pp. 612—-624. i1sBN: 978-3-642-27659-0.

~ PetrKugera | pecompile tool KOCOON Workshop 2019 16/18

https://doi.org/http://dx.doi.org/10.1016/j.tcs.2015.12.019
https://doi.org/http://dx.doi.org/10.1016/j.artint.2013.07.006

References Il

- Brain, Martin et al. (2016). “Automatic Generation of Propagation
Complete SAT Encodings”. |n: Verification, Model Checking, and
Abstract Interpretation: 17th International Conference, VMCAI 2016,
St. Petersburg, FL, USA, January 17-19, 2016. Proceedings. Ed. by
Barbara Jobstmann and K. Rustan M. Leino. Springer Berlin
Heidelberg, pp. 536—-556. IsBN: 978-3-662-49122-5. po!I:
10.1007/978-3-662-49122-5_26.

| Ehlers, Rudiger and Francisco Palau Romero (2018). “Approximately
Propagation Complete and Conflict Propagating Constraint
Encodings”. In: Theory and Applications of Satisfiability Testing —
SAT 2018. Ed. by Olaf Beyersdorff and Christoph M. Wintersteiger.
Cham: Springer International Publishing, pp. 19—-36. isBN:
978-3-319-94144-8.

~ PetrKugera | pecompile tool KOCOON Workshop 2019 17/18

https://doi.org/10.1007/978-3-662-49122-5_26

References llI

- Giréldez-Cru, Jesus and Jordi Levy (2015). “A modularity-based
random SAT instances generator”. In: Twenty-Fourth International
Joint Conference on Atrtificial Intelligence.

- K. and Petr Savicky (2020). “On the size of CNF formulas with high
propagation strength”. To appear at ISAIM 2020.

Petr Kuéera pccompile tool KOCOON Workshop 2019 18/18

	References
	References

